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Abstract 
Among all the issues that restrict the application of Li-air battery, poor power 
performances of O2 cathode comes first. In this paper, we establish carbon 
(Super P)/LiMxOy (LiMn2O4/LiFePO4/LiNi1/3Co1/3Mn1/3O2) hybrid cathode to 
promote the power output of conventional carbon cathode through conti-
nuous Li+-insertion reaction of LiMxOy and Li+ transportation in bulk LiMxOy 
during the discharging process. Weight and volume specific power perfor-
mances of the hybrid cathode are much higher than those of traditional Super 
P carbon cathode. The mechanism of improving power performance of O2 
cathode has also been discussed through electrochemical impedance spec-
troscopy and cyclic voltammetry method in this paper. 
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1. Introduction 

The non-aqueousLi-air (Li-O2) batteries have attracted great attention owing to 
the highest theoretical specific energy (3505 Wh∙kg−1) among various energy 
storage systems [1] [2] [3]. However, the development of Li-O2 batteries is 
largely lagged by low round-trip efficiency [4] [5] [6] [7] (caused by decomposi-
tion of non-aqueous electrolyte and carbon based oxygen electrode), short cycle 
life [8] [9] [10] (caused by non-recovery of reaction surface/interface), and poor 
power capability [11] [12] [13] (caused by low kinetics of electron, Li+ and O2 
transport) during oxygen reduction reaction (ORR) and oxygen evolution reac-
tion (OER). The low round-trip efficiency and short cycle life issues mentioned 
above have attracted great attentions in recent years [14] [15] [16]. More impor-
tantly, the power ability of the non-aqueous Li-O2 battery (no advantage com-
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pare to Li-ion battery) [17], should be improved as well since high power output 
are required if it is expected to be developed for portable device and electric 
transportation. 

For non-aqueous Li-O2 battery, sluggish ORR process of the O2 cathode, dur-
ing which O2 is, principally, reduced to produce Li2O2 on cathode surface, gives 
rise to the poor power output. Insolubility and low ionic/electronic conductivity 
of Li2O2 [18] [19] [20] mean it is difficult to transport electron and Li+ to the 
reaction interface through bulk Li2O2. Low O2 solubility and transportation in 
electrolyte mean it is hard to supply sufficient O2, especially under high current 
density [11] [21] [22] [23]. 

To improve the poor power ability of O2 cathode mentioned above, researchers 
have focused on how to promote the ORR catalysis, oxygen and ionic/electronic 
transport. Although the catalysis mechanism is still in dispute, ORR catalysts 
have been found to play a key role in improving the power ability of the O2 ca-
thode [24] [25] [26]. In addition, continuous passage construction for gaseous 
O2 through cathode design could provide a specific power more than 1600 
W∙kg−1 [21] and faster Li+ transport in Li2O2 could also promote the power abili-
ty of O2 cathode [27]. However, awkward problems (e.g., catalysts are easily 
deactivated and O2/electrolyte/Li2O2 reaction interfaces are limited when Li2O2 
deposit on the cathode surface) still exist and need to be tackled. 

In this paper, a novel strategy to readily enhance the poor power ability of the 
non-aqueous Li-O2 battery has been demonstrated. Super P (Superconductive 
carbon)/LiMxOy (LiMn2O4/LiFePO4/LiNi1/3Co1/3Mn1/3O2) hybrid cathode (SLHC) 
is established to improve the power performance of conventional Super P ca-
thode (SC) through continuous Li+-insertion reaction of LiMxOy to provide ad-
ditional cathodic reactions and continuous Li+ transportation of LiMxOy to ex-
tended additional reaction interfaces. This method may provide a new direction 
for promoting the power performances for the non-aqueous Li-O2 batteries. 

2. Experimental 

Super P cathode (SC) and Super P /LiMxOy hybrid cathode (SLHC) used in this 
paper were prepared by coating a Super P carbon (70 wt.%)/PTFE (30 wt.%) or 
Super P carbon (20 wt.%)/LiMn2O4 (50/3 wt.%)/LiFePO4 (50/3 wt.%)/Li- 
Ni1/3Co1/3Mn1/3O2 (50/3 wt.%))/PTFE (30 wt.%) (Shenzhen Kejingstar, Ltd.), re-
spectively, slurry onto a Ni foam304 SS mesh (Shenzhen Kejingstar, Ltd.) with a 
diameter of 1.4 cm and the electrolytes were prepared by mixing lithium trifluo-
romethane sulfonimide (LiTFSI) in tetraglyme (TEGDME) (Aladdin-Reagent, 
Inc.) with the molar ratio between LiTFSI and TEGDME is 1:5 (~0.89 M) in a 
glove box (MikrounaChina Co., Ltd.) filled with argon ([H2O] < 0.1 ppm). More 
details about the cathodes and electrolytes preparations can be found elsewhere 
[28]. 

The Li-O2 battery configuration used in this paper has been described else-
where [29], including a lithium foil (1.6 cm in diameter), one pieces of Whatman 
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glass microfibre filters separator (1.9 cm in diameter), and a SC or SLHC ca-
thode (1.4 cm in diameter). The cell was assembled in a glove box with water 
contents of <0.1 ppm, and about 300 μl prepared electrolyte was added in each 
cell. After standing for at least 24 h at room temperature, cells were discharged 
and charged under O2 with a 1.1 atm pressure using a New are Battery Testing 
System (CT-3008, Shenzhen Newear Co., Ltd.). 

Electrochemical impedance spectroscopy (EIS) was measured by a CHI660E 
(CH Instruments, Inc.) and the spectra were obtained in the frequency range 
from 1 MHz to 100 mHz with an AC amplitude of 5 mV at 0% deep of discharge 
(DOD). 

Cyclic voltammetry (CV) was also measured by a CHI660E with the scan 
speed of 10 mV∙s−1 from the open circuit potential (OCP) to 2 V (vs. Li+/Li) and 
then, 4.5 V (vs. Li+/Li). 

3. Results and Discussion 
3.1. Power Performances of SLHC and SC 

Galvanostatic discharge method was used to reveal the power performance of 
SLHC and SC. The second discharge profiles of the SLHC and SC at a current 
density of 0.1 mA∙cm−2 (Figure 1) are illustrated since LiMxOy need “activation” 
during the first charging process ( 1LiM O zLi ze Li M Ox y z x y

+ −
−− − → ). The 

second discharge process of the SLHC consists of two kinds cathodic reactions. 
The first one is conventional Li+-insertion reaction  
( 1 z x y x yLi M O zLi ze LiM O+ −

− + + → ) at different voltage (~3.8 V for Li1-zMn2O4, 
~3.6 V for Li1-zNi1/3Co1/3Mn1/3O2 and ~3.4V for Li1-zFePO4) and the second one is 
ORR ( 2 2 22Li O 2e Li O+ −+ + → ) at about 2.5 - 2.6 V. Obviously, under 0.1 
mA∙cm−2, Li+-insertion reaction dominates the initial parts (ORR dominates the 
rest) of discharge processes of SLHC, which are different from those of SC. Since 
 

 
Figure 1. Discharge profiles of the SLHC and SC at 0.1 mA∙cm−2. 
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most parts of discharge processes of SLHC are ORR, the specific capacities of 
SLHC are a little larger than those of SC. In addition, under 0.1 mA∙cm−2, ORR 
voltage plateaus are about 2.7 V vs. Li/Li+ (2.96 V in theory), which reveals the a 
dynamic characteristic of ORR. 

As for the power performances (P = V*I) of SLHC and SC, it is vital important 
to keep high voltages output at large discharge currents. Figure 2 compares the 
600 s polarization curves for both the SLHC and SC at three current densities. 
During the short test process, Li+-insertion reaction are dominative for SLHC 
and while, ORR still dominate most parts of discharge processes of SC. Further-
more, due to the collaborative advantage of specific capacities and Li+-insertion 
potentials for LiMn2O4, LiFePO4 and LiNi1/3Co1/3Mn1/3O2, the polarization of the 
SLHC is much smaller than that of SC at all current densities. It is worth noting 
that, under high current density, the average voltage difference of SLHC and SC 
is larger in shorter test process. For example, when the current density rises from 
0.1 to 0.3 mA∙cm−2, the average voltage (E50s) differences of SLHC and SC in-
crease from about 0.7 to 1.4 V vs. Li/Li+ This excellent depolarization effect of 
SLHC should provide a substantially enhanced power output. As is shown in 
Figure 3, at low current density (0.1 mA∙cm−2), the weight specific power (Pw, 
Figure 3(a)) and volume specific power (Pv, Figure 3(b)) of SLHC in 50 s is 
13.2 W∙kg−1

cathode and 2685 W∙m−3
cathode, respectively, which is a little higher than 

that of SC (11.5 W∙kg−1
cathode and 2129 W∙m−3

cathode). However, with the increase 
of current density from 0.1 mA∙cm−2 to 0.3 mA∙cm−2, obviously, the Pw and Pv 
differences in 50 s between SLHC and SC become larger. At 0.3 mA∙cm−2, Pw and 
Pv of SLHC are 36.9 W∙kg−1

cathode and 7507 W∙m−3
cathode, respectively, which is 

much higher than that of SC (25.4 W∙kg−1
cathode and 4712 W∙m−3

cathode). In addi-
tion, similar results can be observed in 600 s as shown in Figure 3. More  
 

 
Figure 2. Galvanostatic polarization curves of the SLHC and SC. 
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Figure 3. (a) Weight and (b) volume specific power performances of the SLHC and SC (based on total weight and volume of the 
electrode, SLHC-50.1 mg/0.246 cm3, SC-47.6 mg/0.261 cm3). 
 

importantly, it can be speculated that at much higher current density, these ad-
vantages in power performances of SLHC should be more remarkable. 

3.2. High Power Output Mechanism of SLHC 

Cyclic voltammetry is carried out to study the electrochemical process of SLHC 
since it is a useful technique for discerning kinetics and mechanisms of electro-
chemical reactions. The potential for full-range cyclic voltammograms (CVs) is 
first swept from OCP of around 2.9 V to 2.0 V vs. Li/Li+, and then it is reversed 
to anodic direction (Figure 4). During the first cathodic scan process, no ob-
vious cathodic peaks (Pc) are observed for both SLHC and SC, which indicates a 
poor kinetic characteristic of ORR. When the scan reverses to anodic direction, 
the current of SLHC responds more strongly than that of SC, which may 
attribute to the “activation” of LiMxOy ( x y 1 x yLiM O zLi ze Li M Oz

+ −
−− − → ) 

mentioned above. A gentle anodic peak (Pa) around 3.5 V vs. Li/Li+ is observed 
in Figure 4 reflects the OER process ( 2 2 2Li O 2Li 2e O+ −→ + + ) and no sharp Pa 
exists because of the solution-like delithiation and two-phase oxidation 
processes [30]. It is worth to note that, during the second cathodic scan, the ca-
thodic current below 4.0 V vs. Li/Li+ may come from the Li+-insertion reaction 
at different voltage (~3.8 V for Li1-zMn2O4, ~3.6 V for Li1-zNi1/3Co1/3Mn1/3O2 and 
~3.4 V for Li1-zFePO4). Furthermore, addition of LiMxOy in SLHC also benefit 
ORR process since an obvious Pc around 2.5 V is observed for SLHC, which is 
different from that of SC (Figure 4). 

The discharging processes of SLHC and SC are schematically displayed in 
Figure 5. For SC, Li2O2 (insolubility and low ionic/electronic conductivity) cov-
ers on the outer space of C/electrolyte interface during the discharging process, 
which gives rise to the poor kinetic characteristic of ORR. However, the addition 
of LiMxOy in SLHC plays two vital roles. First, Li+-insertion reaction of LiMxOy 
during the discharging process could benefit the power output of SLHC (Figure 
3). Second, Li+ could diffuse through bulk LiMxOy to the inner reaction interface,  
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Figure 4. Cyclic voltammograms for SLHC and SC in the voltage range be-
tween 2 and 4.5 V. The potential was swept at a scan rate of 10 mV/s. 

 

 
Figure 5. Schematic representation of the discharging process of SLHC and SC. 
 
which benefit the ORR process (Figure 4) and electrochemical performance 
(Figure 1) of SLHC. 
EIS is further introduced to the study of the kinetic properties of SLHC and SCat 
0% DOD (Figure 6). Laoire et al. [31] interpreted the impedance spectra of 
Li-O2 batteries and proposed the equivalent circuit (Rs (C (RpW)), where C is 
the capacitive contributions of the two electrodes, Rs is the electronic resistance 
of the electrodes and their contacts to the current collectors, and electrolyte re-
sistance, Rp is the charge transfer resistance at the two electrodes, W is the linear 
Warburg element that may be attributed to the diffusion of the electroactive spe-
cies to the electrode. As shown in Figure 6, the charge-transfer resistance Rp of 
SLHC is a little larger than that of SC, probably because of the lower electronic 
conductivity of LiMxOy compared with C. At very low frequencies, there is a re-
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gion in which a typical Warburg behaviour, related to the diffusion of lithium 
ions in the cathode active material, is seen. By using the model proposed by Ho 
et al. [32], the diffusion coefficient for SLHC and SC are calculated by using Eq-
uation (1). 

( )( ) 2
1 2Li MD V SFA E xδ δ=                      (1) 

where VM is the molar volume (SLHC-10.23 cm3∙mol−1, SC-5.28 cm3∙mol−1), S is 
the contact area between electrolyte and sample (1.54 cm2), F is the Faraday con-
stant (96,486 C∙mol−1), A is the plot slope of imaginary resistance (Zim.) vs. in-
verse square root of angular frequency ( )1 2πf , which can be obtained from 

 

 
Figure 6. Nyquist plots of SLHC and SC. 

 

 
Figure 7. The plot of the imaginary resistance as a function of the inverse 
square root of angular speed for SLHC and SC. Data obtained from imped-
ance spectroscopy. 
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the Warburg impedance, and δE/δx is the slope of galvanostatic charge-discharge 
curves (SLHC, −1.284, SC, −0.424). 

Figure 7 shows the plot of the imaginary resistance determined by impedance 
spectroscopy as a function of the inverse square root of the angular frequency 
for SLHC and SC. Linear behaviors of SLHC and SC are observed for frequency 
values ranging from 100 m∙Hz to 178 m∙Hz with a slope of 236.8 Ω∙s−1 and 338.2 
Ω∙s−1, respectively. The diffusion coefficients of lithium for SLHC (5.43 × 10−15 
cm2∙s−1) and SC (2.33 × 10−15 cm2∙s−1) obtained by substitution of the curve slopes 
in Equation (1). This result of DLi is fairly in agreement with that of CV (Figure 
4) and galvanostatic charging (Figure 1). 

4. Conclusions 

The power output ability of cathode for non-aqueous Li-O2 battery has been im-
proved by simply adding LiMxOy into the conventional Super P carbon cathode. 
LiMxOy benefits the power output of cathode through providing additional 
Li+-insertion reaction and Li+ diffusion in bulk LiMxOy. At 0.3 mA∙cm−2, Weight 
and volume specific power performances of the SLHC are 36.9 W∙kg−1

cathode and 
7507 W∙m−3

cathode, respectively, which is much higher than those of SC (25.4 
W∙kg−1

cathode and 4712 W∙m−3
cathode). 

CVs of SLHC reveal that Li+-insertion reaction occurs at different voltages 
(~3.8 V for Li1-zMn2O4, ~3.6 V for Li1-zNi1/3Co1/3Mn1/3O2 and ~3.4 V for 
Li1-zFePO4) and improved ORR kinetics has been observed during the second 
discharging process. Furthermore, Li+ diffusion in SLHC is faster than in SC ac-
cording to the EIS results. 

These results may provide a new direction for promoting the power perfor-
mances of non-aqueous Li-O2 batteries and this method may be applied in other 
metal-O2 batteries. 
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