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Abstract 
Introduction: This paper represents the numerical simulation of blood flow in the circle of Willis 
(CoW). Circle of Willis is responsible for the oxygenated blood distribution into the cerebral 
mass. To investigate the blood behavior, two Newtonian and non-Newtonian viscosity models 
were considered and the results were compared under steady state conditions. 
Methods: Methodologically, the arterial geometry was obtained using 3D magnetic resonance 
angiography (MRA) data. The blood flow through the cerebral vasculature was considered to be 
steady and laminar, and the Galerkin’s finite element method was applied to solve the systems of 
non-linear Navier-Stokes equations. 
Results: Flow patterns including flow rates and shear rates were obtained through the simulation. 
The minimal magnitude of shear rates was much greater than 100 s-1 through the larger arteries; 
thus, the non-Newtonian blood viscosity tended to approach the constant limit of infinite shear 
viscosity through the CoW. So, in larger arteries the non-Newtonian nature of blood was less 
dominant and it would be treated as a Newtonian fluid. The only exception was the anterior 
communicating artery (ACoA) in which the blood flow showed different behavior for the 
Newtonian and non-Newtonian cases.
Conclusion: By comparing the results it was concluded that the Newtonian viscosity assumption of 
blood flow through the healthy, complete circle of Willis under the normal and steady conditions 
would be acceptably accurate.

Introduction
The circle of Willis is a ring-like arterial network in the 
base of the brain which is the main distributor of the 
nutrition and oxygenated blood throughout the cerebral 
mass. Cerebral circulation receives almost 15-20% of 
cardiac output. Blood is transmitted to the brain through 
two internal carotid arteries (ICAs) that contribute 80-85% 
of blood supply and two vertebral arteries (VAs) which 
join each other to form the basilar artery (BA). To follow 
the arterial path, middle and anterior cerebral arteries 
(MCAs and ACAs) and posterior cerebral arteries (PCAs) 
bifurcate in order to feed the whole cerebral portion.1

The Newtonian or non-Newtonian treatment of blood 
through the arterial networks can be a challenging research 
topic. Blood plasma that is mainly composed of water 
and some dissolved proteins and ions, totally exhibits a 
Newtonian fluid behavior.2 The non-Newtonian nature of 
blood is due to the distinct behavior of erythrocytes under 
different shear rates. Blood viscosity tends to approach 
an infinite shear viscosity at shear rates greater than 100 
s-1 due to the erythrocytes’ deformation. When the shear 
rates are less than 100 s-1, the blood cells aggregate to 
form rouleaux, then the shear thinning nature of blood 

becomes dominant and the effective viscosity increases. In 
smaller blood vessels such as communicating arteries, or 
large vessels where the flow has been reduced by a stenosis 
or occlusion, the shear rates are less than 100 s-1  and hence 
the viscosity increases.3 These manners are also affected 
by a parameter termed Hematocrit. Hematocrit indicates 
the volume percentage of blood cells over the total blood 
volume. As the hematocrit increases, the viscosity rises 
nonlinearly.4

Regarding the cerebral arteries, there have been some 
researches performed on the blood flow in the CoW. 
Primarily, 1D structural model with Poiseuille flow 
assumption was applied. The works of Hillen et al. and 
Cassot et al. treated the flow in the circle of Willis as 1D 
unsteady pulsatile flow in straight elastic walled tubes.5-7 
The ability of the CoW in providing collateral flow in 
response to an occlusion of the ICA was studied by Viedma 
et al.8 Alastruey et al. presented a model of 1D equations of 
pressure and flow wave propagation in compliant arteries.9 
They showed there is a continuous blood flow towards 
the brain during all the cardiac cycles. Afterwards, 2D 
models improved the geometry definition. Ferrandez et al. 
treated the flow in the CoW as unsteady non-pulsatile in 
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a 2D rigid walled structure.10,11 They studied the transient 
response of blood flux in efferent arteries as a result of 
afferent pressure changes.
To achieve more realistic results, 3D models were 
considered in some papers. The works of Cebral et al. 
illustrated the patient-specific models treating the flow as 
unsteady pulsatile in 3D rigid and distensible models.12,13 
The models were generated from time-of-flight magnetic 
resonance imaging (TOF-MRI) data, and a finite element 
scheme was applied to solve the equations. Kim et al. 
studied the blood flow in the carotid and cerebral arteries 
and the Navier-Stokes equations were applied with the 
gravity effects taken into account.14 Moore et al. applied 3D 
Navier-stokes equations using the finite volume method 
to investigate the effects of 3D CoW anatomical variation 
on the cerebral hemodynamic.15,16 The blood flow was 
modeled as unsteady, incompressible and viscous. An 
autoregulation mechanism had been developed and 
three pathological conditions were explored. The results 
proved the vital role of the autoregulation mechanism 
in adjusting the efferent blood flows in response to the 
afferent pressure changes. Zuleger et al. simulated the non-
Newtonian blood flow through the circle of Willis using 
3D TOF-MR data for geometry acquiring and showed 
the areas having high averaged wall shear stress gradients 
(AWSSG) correspond to the most common locations of 
aneurismal formation.17

In this paper, we investigated the blood flow to find out 
whether it treats as a Newtonian or non-Newtonian fluid 
through the circle of Willis for the first time. The three-
dimensional Navier-Stokes equations were solved using 
the Galerkin’s FEM. The flow is normally laminar through 
the cerebral vasculature and the pulsatile nature of blood 
flow was also ignored. Thus the assumptions of steady 
laminar flow were applied and the flow characteristics 
were discussed.

Materials and methods
Anatomical modeling
The model geometry has been obtained using the 
magnetic resonance imaging data combined with 
computer-aided design (CAD) software. Applying the 
method, three orthogonal plans taken from a single MRA 
scan were imported to the CAD package CATIA. First, 
the wireframe was created with 3D splines; afterwards, 
the arteries’ diameters were applied and the model was 
completed by creating and smoothing the junctions. 
Fig. 1 demonstrates the model generating steps using the 
generative shape design order in CATIA. The completed 
geometry is illustrated in Fig. 2.
Table 1 shows the geometric dimensions taken from 
Moore et al.15 These magnitudes were obtained from a 
population study of MRA scans. The diameters were 
measured using an in-house software package by which 
the various slices from a TOF MRA scan could be read 
and by dragging a cursor between points of interest, the 
measurements would be obtained. For the complete CoW, 
13 cases were examined and the standard deviations were 

Fig. 1. (a) The projected curve created into a 3D sketch with points 
and the process of creating the arterial walls (b) the procedure of 
creating junctions when the parent and daughter arteries are of 
similar diameter.

Fig. 2. Complete Circle of Willis geometry

Table 1. Complete Circle of Willis measurements

Artery Diameter (mm) Standard deviation (mm)

ACA-A1 2.33 0.22
ACA-A2 2.4 0.31

MCA 2.86 0.17
PCA-P1 2.13 0.25
PCA-P2 2.10 0.21
ACoA 1.47 0.17
PCoA 1.45 0.31
BA-B1 3.17 0.51
BA-B2 3.29 0.44

ICA 4.72 0.26

obtained. Their model included the VAs in addition to 
the others, thus the BA-B1, BA-B2 imply the diameters of 
different parts of the VAs and the BA. In this work, the 
mean values were used to create the model.
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The images concern the MRA scan of a healthy mature 
man which had a rather complete circle structure. This 
method helped us to get more authentic physiological 
approximation to the cerebral vasculature. Of course, 
there are some finer details which may be lost during 
the modeling, but compared to the total dimension 
these topological features have minor effects in the main 
efferent blood supply under the normal conditions. 
An important point to be declared is the boundaries in 
terminal locations, which should be far enough away from 
the arterial connections in order to reach fully developed 
velocity profiles. Considering the arterial path to the 
cerebral network, the blood flow becomes fully developed 
after passing the short laminar entrance length (x= 
0.06*D*Rex)

18 and reaches the fully developed condition 
before entering the CoW. The parabolic velocity profile 
( 2

max (1 ( ) )ru u
R

= − ) would be an appropriate assumption to 
state the velocity distribution through the circle of Willis 
arteries.

Governing equations 
In the current work, blood flow through the circle of 
Willis was modeled as steady, incompressible and viscous. 
Therefore, the governing equations to be solved are the 
continuity equation:

. 0V∇ =
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	                                                                                 (1)
The momentum equation is shown in Eq. (2)

[ ( . ) ] .[ ]V V V pI F
t

ρ τ∂
+ ∇ = ∇ − + +

∂


 

	                                 (2)

where V


, p and ρ indicate velocity vector, pressure vector 
and the fluid density, respectively. F represents any 
additional momentum sink to be incorporated.15 τ, the 
deviatoric stress tensor which is related to the strain rate 
tensor is usually expressed as

µτ γ=                                                          	                  (3)

where µ is the fluid viscosity and γ  is the strain rate 
vector.19 For the incompressible flow, the strain rate tensor 
is defined as

TVVD


 ∇+∇== 2γ 	                                                  (4)

where D is the rate of deformation tensor. Unlike the 
constant viscosity for a Newtonian fluid, the viscosity of a 
non-Newtonian fluid is a function of the second invariant 
of the rate of deformation tensor, γ  and is given by

)( γµµ = 	                                                                 (5)

in which
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To account for the non-Newtonian nature of blood, the 
Carreau model has been applied,
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where µ0 and µ ͚ are the zero and infinite shear viscosities 
respectively taken as 0.056 and 0.00345 Pa s. The remaining 
parameters λ and n were taken as 3.313 s and 0.3568, 
respectively.20 A 0.00345 Pa s viscosity was considered for 
the Newtonian case.

Numerical method and boundary conditions
The numerical modeling of an incompressible viscous 
flow requires the solution of the Navier-Stokes and the 
continuity equations. The flow simulation was performed 
by the COMSOL software, in which the mesh was 
generated using tetrahedral elements. Also, the Galerkin’s 
FEM was adopted for discretization and solving the 
equations, thus the following set of non-linear differential 
equations was obtained: 21

0=VL
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where V


 and p are columns containing the velocity 
components and pressure values, M the mass matrix, 

)(VS


 the diffusion matrix, )(VN


 the non-linear 
convection matrix, L the divergence matrix, and f are 
columns containing the body and boundary forces.
In the present study, systemic and venus pressures at 
the inlets and outlets of the afferent and efferent arteries 
were applied as the boundary conditions. Neglecting 
the pulsatile nature of afferent blood pressure, an inlet 
pressure equal to 100 mmHg and a 4 mmHg outlet blood 
pressure were specified as the inlet and outlet boundary 
conditions, respectively.15 Considering the arterial wall, it 
was decided to treat it as a rigid structure and impose the 
no-slip condition.

Results 
The streamlines, shear rates and the flow rates were 
obtained for the arterial network of the circle of Willis 
over two Newtonian and non-Newtonian states. Fig. 3 
illustrates the streamlines through the cerebral arteries. 
As seen, there is almost no flow through the ACoA for 
both cases. There are some other uncolored regions that 
indicate the missing streamlines through the larger arteries 
in order to get clear illustrations. The flow rates are shown 
in Fig. 4 for both Newtonian and non-Newtonian cases. 
The comparison of results clarifies that there are minor 
negligible differences between them, verifying the fact that 
in larger arteries the non-Newtonian nature of blood is less 
dominant and it would be treated as a Newtonian fluid. 
A point to be declared is that the Newtonian results are 
rather greater than the non-Newtonian ones. Regarding 
the non-Newtonian case, there are some locations where 
the effective blood viscosity exceeds the infinite shear 
viscosity (Fig. 5). It implies a further resistance against the 
flow in these sections and lower flow rates through the 
arteries in non-Newtonian case.
The geometric model of the presented work demonstrates 
a noticeable difference between two MCAs’ branches. 
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This topological feature causes a dramatic difference 
between the flow characteristics through the right middle 
cerebral artery (RMCA) and left middle cerebral artery 
(LMCA). Compared with the previous works,14,15 the 
RMCA’s structure is more alike to the usual anatomy. The 
abnormality of LMCA’s structure is because of its intense 
slope which causes a higher flow rate passing through 
the artery (Fig. 3, Fig. 4). As the result, the Reynolds 
number calculated for this branch is about 900, indicating 
the probability of the turbulent flow, separation and the 
embolus formation. An embolus is frequently a blood 
clot, detached from a blood vessel wall which travels in 
the bloodstream until it becomes wedged in an artery, 
cutting off its blood supply and probably rising the risk of 
ischemic stroke.
The axial velocity profiles in two sections are obtained 
and shown in Fig . 5. The parabolic velocity distribution 
was set to describe the flow characteristics. The sections 

Fig. 3. Streamlines through the circle of Willis for the (a) 
Newtonian, and (b) non-Newtonian cases

Fig. 4. Flow rates through the cerebral arteries under normal 
condition. There are minor differences between the Newtonian 
and non-Newtonian results.

were chosen in two MCA branches, far enough away 
from the arterial connections to reach the fully developed 
condition. It is clear that the differences were small and 
negligible.
As seen in Fig. 3 there is almost no flow through the 
ACoA under normal condition for both cases. This causes 
considerably low shear rates through the ACoA and a high 
effective viscosity for the non-Newtonian case (Fig. 6, 7). 
Excluding the communicating arteries (especially the 
ACoA), the minimal amount of the shear rates through 
the arterial walls was much higher than 100 s-1, so the 
blood viscosity tended to approach a constant limit. That 
is, both Newtonian and non-Newtonian assumptions 

Fig. 5. (a) Velocity profiles in two sections through the RMCA and 
LMCA and (b) the section sites

Fig. 6. Some locations of effective viscosity, exceeding the infinite 
shear viscosity
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resulted in similar outcomes; so it could be concluded 
that the blood flow through the healthy, complete circle 
of Willis would be treated as a Newtonian fluid under the 
normal and steady conditions.

Discussion
The non-Newtonian nature of blood is mainly a function 
of the hematocrit and the flow shear rate. In this work 
the effects of blood’s shear thinning behavior on the flow 
properties through the cerebral vasculature was studied. 
The model was based on a complete healthy anatomy. The 
normal steady conditions were considered.
The results showed that the shear thinning properties of 
blood causes Newtonian fluid behavior through the CoW. 
The exception was the ACoA, showing considerably 
distinct behaviors under two conditions. To consider 
the larger arteries, there were minor differences between 
Newtonian and non-Newtonian results. As a result 
the Newtonian viscosity model would be a reasonable 
approximation to describe the blood flow characteristics 
through the larger arteries as well as the cerebral arteries 
(the larger arteries include those in which the shear rates 
are much greater than 100 s-1).

Conclusion
As a consequence it would be declared that the blood 
flow through the healthy, complete circle of Willis would 
be treated as a Newtonian fluid under the normal and 
steady conditions.
The studies concerning the distensible walls and unsteady 
conditions require further works. Furthermore, the 

Fig. 7. Shear rates through the cerebral arteries for the (a) 
Newtonian and (b) non-Newtonian cases

clinical data and experimental studies would help us to 
get more authentic results in order to achieve the patient-
specific flow characteristics, which is an essential point in 
planning the treatments.
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