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Abstract

Background

The manual processes used for risk assessments are not scaling to the amount of data

available. Although automated approaches appear promising, they must be transparent in a

public policy setting.

Objective

Our goal is to create an automated approach that moves beyond retrieval to the extraction

step of the information synthesis process, where evidence is characterized as supporting,

refuting, or neutral with respect to a given outcome.

Methods

We combine knowledge resources and natural language processing to resolve coordinated

ellipses and thus avoid surface level differences between concepts in an ontology and out-

comes in an abstract. As with a systematic review, the search criterion, and inclusion and

exclusion criterion are explicit.

Results

The system scales to 482K abstracts on 27 chemicals. Results for three endpoints that are

critical for cancer risk assessments show that refuting evidence (where the outcome

decreased) was higher for cell proliferation (45.9%), and general cell changes (37.7%) than

for cell death (25.0%). Moreover, cell death was the only end point where supporting claims

were the majority (61.3%). If the number of abstracts that measure an outcome was used as

a proxy for association there would be a stronger association with cell proliferation than cell

death (20/27 chemicals). However, if the amount of supporting evidence was used (where

the outcome increased) the conclusion would change for 21/27 chemicals (20 from prolifera-

tion to death and 1 from death to proliferation).
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Conclusions

We provide decision makers with a visual representation of supporting, neutral, and refuting

evidence whilst maintaining the reproducibility and transparency needed for public policy.

Our findings show that results from the retrieval step where the number of abstracts that

measure an outcome are reported can be misleading if not accompanied with results from

the extraction step where the directionality of the outcome is established.

Introduction

The current methods used to conduct chemical risk assessments do not scale to recent regula-

tory changes such as the European Union’s REACH initiative that dramatically increases the

number of chemicals to be assessed and the US EPAs trend towards cumulative risk assess-

ments that consider multiple chemicals or combinations of chemical and non-chemical stress-

ors. Manual processes used to synthesize evidence include 4 steps—retrieval, extraction,

verification, and analysis [1]. Systematic reviews must include the search criterion, the data-

bases searched and the search terms used [2, 3], and the inclusion and exclusion criterion to

make the review scope clear to a reader, enable others to replicate or extend the work, and to

instill trust by making it difficult to cherry-pick results. Automated systems for risk assessment

have been developed to accelerate the retrieval step of the information synthesis process [4, 5];

however systems that employ black-box machine learning are not ideal in a public policy set-

ting because it can be unclear why an abstract has been retrieved and because most system

reports do not provide explicit inclusion and exclusion criteria.

Automated systems that identify relevant studies should not be confused with systems that

extract, verify, and analyze the results from those studies. The latter steps in the review process

differentiate studies that find an effect, from studies that find no-effect, and studies that refute

the hypothesis that there is an effect. For example, an abstract that states “Furthermore, evi-

dence is presented that AHTN is not genotoxic, does not induce peroxisome proliferation” [6]

was labeled as indirect genotoxic peroxisome proliferation [4, 5], but this study refutes the

hypothesis that the chemical was genotoxic and induces peroxisome proliferation. The authors

of the previous work are clear that the system “does not exclude abstracts with no-effect

results” [7], but this lack of differentiation between studies that find an association from those

that do not is a major gap between automated approaches and manual efforts that attempt to

include all evidence and then quantify the amount of supporting and refuting evidence. Thus

stating that “a significant difference can be seen with higher numbers of abstracts for mela-

noma, reflecting the existing knowledge about the metastatic potential of melanoma” [8] con-

flates the number of abstracts that measure an outcome with those that find an association

with melanoma because abstracts that do not find an association are not removed from the

total number of abstracts retrieved. Similarly, consider the stated objective of a text mining

approach to create a blood exposome database: “We aimed to generate a comprehensive blood

exposome database of endogenous and exogenous chemicals associated with the mammalian

circulating system through text mining and database fusion.” [9]. This could be easily misinter-

preted as the number of chemicals that are positively associated, but the system does not ana-

lyze the direction of the association, but rather just retrieves studies that mention the

mammalian circulating system.

Our goal is to bridge the gap between manual and automated approaches to systematically

review literature on chemicals for risk assessments so that assessments can consider a greater

PLOS ONE Using semantics to scale up evidence-based chemical risk-assessments

PLOS ONE | https://doi.org/10.1371/journal.pone.0260712 December 15, 2021 2 / 24

https://doi.org/10.1371/journal.pone.0260712


number of chemicals and exposure sources. Such tools would reduce the time needed to con-

duct or reassess an individual or cumulative risk assessment as new information becomes

available. Further, such tools can be used by scientific researchers to help focus their research

questions based on existing literature.

In keeping with the definition of a systematic review the search criterion is explicit and defi-

nitions of each target outcome are provided. The proposed knowledge-based approach is con-

sistent with manual processes that include explicit inclusion and exclusion criterion.

Synonyms from the Unified Medical Language System (UMLS) are collected and abstracts are

preprocessed using natural language processing (NLP) to manage coordinated ellipses [10] to

avoid mismatches between the terms used and the text descriptions. For example, the NLP pre-

processing identifies cell proliferation from sentence 1 and necrotic cell death from sentence 2

that would have otherwise been missed as the words in each of these phrases do not appear

consecutively in the text. Once each target outcome is identified, explicit and observational

claims from the Claim Framework [11] are used to characterize the evidence as supporting,

where there is an increase (e.g. sentence 1), neutral where a change is reported but the direc-

tionality of the change is not provided (e.g. sentence 2). Refuting evidence, where there a

decrease is reported, and negation are also identified for all claims, such as in sentence 3 that

contains negated refuting evidence.

1. Example sentence with supporting evidence: A significant increase in regulated cell death

and proliferation in salmon fed . . .”. (PMID 11255104).

2. Example sentence with neutral evidence: Cd(2+) caused necrotic and apoptotic cell death.

(PMID 15665557)

3. Example sentence with negated refuting evidence: Neither sulindac sulfide nor sulfone

inhibited cell proliferation under conditions where the drugs were growth inhibitory.

(PMID 7606732)

Lastly, the spectrum of evidence from refuting to neutral to supporting is shown in a waffle

plot that provides decision makers with both the amount of literature available and the direc-

tionality of that evidence. We demonstrate the benefit of moving from the retrieval to the

extraction and analysis stages of the systematic review process using a set of 27 xenobiotic

chemicals that are relevant to human exposure paradigms, known carcinogens, known endo-

crine disrupting chemicals, and/or known toxicants [12–15]. These chemicals are typical of

those used by toxicologists and other scientists when conducting research on chemical expo-

sures and cancer outcomes to guide research questions and experimental designs as well as to

develop risk/benefit assessments. The target outcomes of cell death and cell proliferation

together indicate one of the hallmarks of cancer [16] and because many of the selected chemi-

cals are known endocrine disruptors and/or toxicants and studies indicate that endocrine dis-

rupting chemicals often exert their toxic effects by interfering with proliferation and/or cell

death.

Related work

The target entities in this paper–cell death, cell proliferation and cells–appear in 21, 33 and 97

biomedical vocabularies respectively (https://bioportal.bioontology.org/). For example, the

Gene Ontology (GO) [17] captures cell death and cell proliferation as biological processes and

cells as a cellular components. The entities also appear in labeled text collections that were cre-

ated to drive the development of automated information extraction tools such as the shared

tasks on Gene Regulation Ontology (GRO) [18] and the Cancer Genetics task [19] that
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included cell death and cell proliferation. The GENIA collection comprises 2,000 abstracts on

transcription factors for human blood cells and includes manual annotations for cell, cell

types, cell components, and cell lines [20] and the CRAFT corpus comprises 97 full text articles

on mouse genes [21] and includes manual annotations for multiple ontologies that capture

our target entities. In contrast to the biomedical search terms for existing text corpora we pro-

vide the exact search string used to select the abstracts for each of the 27 chemicals that form

our collection of 482,314 abstracts.

Many systems detect biomedical entities automatically (see [22] for a review). Such systems

employ a knowledge-based approach such as MetaMap [23] where the system searches for

expressions from an existing vocabulary (e.g. the exact phrase ‘cell death’), or a machine learn-

ing approach where a model is induced from training data. Automated approaches can be fur-

ther characterized into those that employ traditional machine learning algorithms such as

Naïve Bayes classifiers, or Support Vector Machines [24] and those that use a neural networks

such as deep learning. In this work we extend the knowledge-based approach by using natural

language processing to overcome surface level differences between the concept representations

used by authors and how concepts are captured in a knowledge resource. Deep learning is also

used to classify result or conclusion sentences to avoid including an author’s motivation or

stated hypothesis with the outcomes of a study.

This work also relates to argumentation in biomedicine such as the Claim Framework [11]

that captures how scientists who conduct empirical research report their findings. The Frame-

work was developed by analyzing full text articles and comprises five types of claims: explicit,

implicit, comparison, associations and correlations. Explicit claims are the most prevalent and

require that a sentence include two entities (an entity that has been changed and an entity that

is responsible for the change), and how the first entity changes the second such as in the sen-

tence ‘The [CaN inhibitor cyclosporine A (CsA)]entity1 reduced[change] [cell growth]entity2.’.

Observations are also included in this analysis where authors report a changed entity but do

not include the entity that was responsible for the change.

Explicit claims are equivalent to the causal claim in [25]. The post error analysis found that

the text needed to address a query appeared at the end of the abstract, which suggests that sen-

tences were likely from the result and conclusion sections. In contrast to argumentation sys-

tems that strive to identify major claims [25] or to differentiate between major and minor

claims, which has been shown to have low inter-rater reliability [26] we make no judgments

regarding the veracity of a claim. Instead, directionality and negation of each claim are show

to the decision maker as six discrete steps from refuting to negated refute, neutral, negated

neutral, negated support, and finally to supporting evidence.

Other work that has contrasted supporting and refuting evidence has framed the task as

identifying contradictions [25, 27]; however, neutral changes such as ‘Results showed a change

in cell death’ do not fit into this framework. Moreover, ‘There was no significant increase in

cell proliferation’ could mean that there was no change or that there was an increase that did

not reach statistical significance (or even that there was a decrease although that is arguably

less likely). Several of the examples from the contradiction papers may be better represented as

a comparison claim [28–31] that uses a ternary relationship (rather than the binary relation-

ship in an explicit claim) that captures at least two entities that are being compared, and the

measure that was used in the comparison. For example, cd-induced apoptosis was used to com-

pare the cells in the gradable comparison sentence ‘[Cd-induced apoptosis]outcome was higher-

gradable in [GSK-3beta-knockdown cells]entity1 than in [normal cells]entity2.

The claims reported here are also similar to manually constructed networks that capture

statistically significant relationships between gene and proteins and cell proliferation [32] or

cell death [33]. In contrast to that work, we do not constrain the relationships to only those
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that are statistically significant. The results for the 27 chemicals analyzed here show a high

level of disagreement reported in the literature that can be seen clearly in the waffle plots but

would be very difficult to discern from a dense ‘hair ball’ network graph.

Both entity and argumentation efforts have discussed elliptical coordinated compound

noun phrases (CCNPs), where an author will save space by not repeating words, for example,

an author will use the backward ellipses T or B cells rather than T cells or B cells. Without deal-

ing with CCNPs, the system would fail to capture T cells. Annotators who constructed the

GENIA corpus could mark the non-consecutive text, but most argumentation systems do not

deal with this phenomenon. For example, in [26], liver and cardiac toxicities was marked as 1

entity which resulted in low inter-annotator agreement because some entities in lists such as

eanthralogia/myalgia were separated, but CCNPs were not. In [25], the coordination issue was

avoided by asking annotator to identify the entire sentence that supported or contradicted a

query. For example, annotated the sentence “Among older adults, consumption of tuna or

other broiled or baked fish, but not fried fish is associated with lower incidence of CHF’ was

identified as causal, but in the claim framework this would be characterized as an association

(not an explicit aka causal claim) and broken into 4 separate associations between tuna and

CHF, broiled fish and CHF, baked fish and CHF and the negated association between fried

fish and CHF. We process CCNPs using the approach in [10], where syntax from the Stanford

Dependency grammar [34] is used to identify candidate forward (e.g. cell death and prolifera-

tion), backward (e.g. T and B cells) and complex (e.g. normal human and animal cells) ellipses.

A semantic strategy is then employed that uses rules (e.g. if a word appears multiple times

when expanded the candidate phrases is not included) and heuristics (the number of times

that a modifier is used with a head noun) to establish which noun phrases should be expanded.

Experiments with 21,280 full text articles showed that more than 1 million noun phrases were

impacted by coordinated ellipses and that 10.79% of all noun phrases would be missed if coor-

dination were not addressed. The approach achieved 73% precision, 75% recall, 74% F-score

and 95% accuracy for new noun phrases. Precision was higher for backward (82.62 vs. 78.63)

and forward expansions (64.82 vs. 60.17) coordinated noun phrases and lower for complex

expansions (63.41 vs. 72.59).

Materials and methods

Search strategy

The paper captures evidence about cell changes, death and proliferation associated with 27

chemicals with known genotoxic or non-genotoxic mode of actions [5] (see Table 4). Each

chemical name along with the synonyms produced by PubChem were reviewed by an expert

(JS) who searched for synonyms and reviewed the published literature in PubMed, references

listed in identified manuscripts, and textbooks to ensure that the terms in PubChem were rele-

vant. The PubMed search was conducted in July 2019 (see Fig 1 for additional constraints and

S1 Appendix for the actual search strings used).

Text preprocessing

The XML PubMed Baseline Repository (updated December 2018) were processed on an AWS

server along with daily update files to July 14th, 2019 (the last file was pubmed19n1318).

Markup tags in the XML were used to identify the Background, Objectives, Methods, Results

and Conclusions sections from structured abstracts and any remaining markup tags were

removed using JSoup [35]. Abstracts available in English were processed using a the Ling Pipe

biomedical text class [36] with additional abbreviations that occur frequently in the biomedical

literature. After processing, non-ASCII characters in the extended ASCII set were replaced
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with ASCII approximations such as removing tildes and carons. MEDLINE abstracts can

include itemized lists such as “Four categories represented a positive correlation: (1) increasing

abnormal CEA with progressing disease, (2) decreasing abnormal CEA with disease regres-

sion, (3) unchanged abnormal CEA with stable disease, (4) change from normal to abnormal

CEA with progressive disease.”(PMID 982100) that can interfere with the dependency parse.

Thus, sentences were further processed to convert lists depicted with (a), (b) and (1), (2) into

the constituent parts in order to improve the quality of subsequent parsing. In the example

above the preamble of “Four categories represented a positive correlation” would be the first

sentence and each of the constituent list items would become a separate sentence. Lastly,

dependencies were generated using the Stanford parser version 1.9.2 [34].

During the preprocessing the system identifies and resolves elliptical coordinated noun

phrases using the process described in [10] (see related work). For example, sentence 4 men-

tions two cells p53-effective cells and p53-defective cells, however the word “cells” appears only

with the second of these noun phrases. Without attending to elliptical coordinated noun

phrases, the system would detect that p53-defective cells had been induced but would neglect

to capture that p53-effective cells were also induced.

4. Example sentence with coordinated ellipses: The p53 transactivation target Gadd45alpha

was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment,

and this was associated with an acute inhibition of mitosis. (PMID 17174997)

a. p53-effective cells b. p53-defective cells

Of the 482,101 abstracts retrieved using the search strategy only 76,587 (15.89%) provide

section headings and of the structured abstracts most (69,901, 91.27%) include a result or con-

clusion section. BioBERT embeddings were used, which is a pre-trained Bidirectional Encoder

Representations from Transformers (BERT) [37] model that was trained using biomedical text

[38]. The model was trained on the structured abstracts to predict result or conclusion sen-

tences in the unstructured abstracts. The model performed well on structured abstracts (accu-

racy 0.9363, F1 0.9396, precision 0.9464, recall 0.9329) and on a set of 560 manually annotated

unstructured abstracts comprising 4,793 sentences that were assessed by 3 annotators (accu-

racy 0.9404, F1 0.9561, precision 0.9525, and recall 0.9597).

Target outcomes

We introduce a semantics approach that combines knowledge resources and human natural

language processing to overcome surface level differences between the way that knowledge is

represented in a formal ontology and how authors discuss those concepts in abstracts.

Fig 1. Search process used to identify MEDLINE abstracts for each of the 27 chemicals (see S1 Appendix for the complete

search strings).

https://doi.org/10.1371/journal.pone.0260712.g001
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In this paper, two primary outcomes cell proliferation and death capture critical points in

the cell life cycle and the underlying mechanisms associated with cancer. A broad definition of

proliferation would include explicit mentions of cell proliferation along with any genes, pro-

cesses, biomarkers, and assays [39] that are involved in the process. Although genes are com-

mon markers of cell proliferation [40], the National Cancer Institute’s definition of cell

proliferation is used in this paper, which is “An increase in the number of cells as a result of

cell growth and cell division” (see Fig 2). Thus, the mitosis step of the cell life cycle is within

scope, but changes within the cell such as DNA replication is out of scope (DNA replication is

also considered separately in [5]), as are changes in enzymes (most notably changes in peroxi-

some proliferation) and tumor changes that do not refer to cells. Abstracts that include prolif-

eration indexes and mitotic markers are also detected and included as a cell proliferation

target outcome. The second target outcome of cell death includes direct mentions of cell death

along with necrotic and apoptotic expressions. The secondary outcome in this study captures

any mention of cell changes that are not cell death or cell proliferation. This is essentially a less

specific reference to the target primary outcomes.

The semantics approach we propose combines knowledge resources with a natural lan-

guage processing method that tends to ellipses. First expressions for the target concepts–in this

paper cell, cell death, and cell proliferation are drawn from the Unified Medical Language Sys-

tem (UMLS) and online thesauri. The UMLS organizes knowledge as concepts (identified

using a Concept Unique Identifier (CUI)) that unifies expressions from hundreds of different

medical ontologies to improve the system recall (i.e. so that entities of interest are not missed).

For example, the CUI for Cell Death is C0007587 and includes apoptosis in which cells are no

longer needed and necrosis where the cells die due to injury. The MeSH taxonomy (one of the

resources within the UMLS) includes the more general concept of Regulated Cell Death and

the narrower concept of anoikis, a form of programmed cell death (see Fig 3). Thus, a specific

ontology (in this case MeSH), can enable a user to crisply define the scope of their target out-

come measures. Fig 3 shows only MeSH, but the UMLS online browser (https://uts.nlm.nih.

gov/uts/umls/home) which was used to identify the expressions in this paper includes multiple

ontology and thesauri resources.

Each CUI in the UMLS is assigned 1 or more of the 134 semantic types that capture catego-

ries of concepts that can identify additional concepts that are broader or narrower than the ini-

tial target outcome. Cell is a both concept name and a semantic type (see Fig 4 which shows

Cell as a semantic type). As with concepts, the UMLS enables a user to add additional expres-

sions by exploring more general semantic types such as Fully Formed Anatomical structures to

sharply define the target outcome and ensure good coverage.

Fig 2. Cell proliferation outcome [41].

https://doi.org/10.1371/journal.pone.0260712.g002
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In a knowledge-based approach, terms from the knowledge resource are compared directly

with text in the abstract. However, the scientific literature often includes modifiers that are not

mentioned explicitly in an ontology and surface level differences such as coordinated ellipses

mean that an exact match strategy would miss target outcome expressions. Two strategies

were used to overcome this issue. First, natural language processing is used to attend to coordi-

nated ellipses (see text preprocessing). Second, the primary target outcomes were characterized

as either single or multi-word expression. Any phrases containing a single word expression

such as angioproliferate and apoptosis were included in the set of target outcomes. Multi-word

expressions were deconstructed into <cell><proliferation> and<cell><death> and then

combinations of words capturing synonyms of cell, proliferation, and death were combined to

form the target outcomes. The UMLS was searched using the online UMLS browser, and

online dictionaries and thesaurus were consulted. All terms were verified by the domain expert

(JF) who augmented her expertise with searches in PubMed, reference reviews and textbooks

to produce a dictionary of cell terms. Very few additional terms were added during the manual

step of this process. Similarly, a set of synonyms for proliferation and death were identified.

Lastly phrases that included at least 1 cell term and either 1 proliferation or 1 death term were

included as target outcomes. Phrases that included ’pathway’ or ’pathways’, or a word that

started with ’factor%’ or ‘’peroxisom%’ were removed to satisfy the exclusion criteria and

avoid including tumor necrosis factor (TNF) and phrases involving peroxisomes.

Fig 3. Partial view of the unified medical language system showing the Medical Subject Heading (MeSH) showing that apoptosis is a type of Regulated Cell Death,

which is in turn a type of Cell Death. Image courtesy of the U.S. National Library of Medicine.

https://doi.org/10.1371/journal.pone.0260712.g003
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In addition to noun phrases, the primary target outcome entities can be expressed as a prep-

ositional phrase, such as proliferation of cultured gastric cancer cells which is illustrated in sen-

tence 5. For these cases, the claim framework was used to detect changes where an increase in

cells was captured as cell proliferation and a decrease in cells was captured as cell death.

5. Example sentence where the outcome is a prepositional phrase: Enzastaurin suppressed

the proliferation of cultured gastric cancer cells and the growth of gastric carcinoma

xenografts. (PMID 18339873)

Extracting claims

The Claim Framework captures how scientists communicate results and comprises five types

of claims: explicit, implicit, comparisons, associations, and observations [11]. An explicit claim

is the most frequent claim type used in full text articles and requires two entities (an entity that

has been changed and an entity that is responsible for the change), along with a change term

that captures how the first entity changes the second. The analysis reported here considers

only the entity that has been changed where entity is constrained to cell death, cell prolifera-

tion, and cells changes that are not death or proliferation. An observation claim reports how

an entity has changed but does provide information about what was responsible for the change

in the same sentence, such as in, ‘Results show a statistically significant increase in cell

proliferation’.

Both semantics and syntax are used to identify claims automatically. The semantics in the

initial system to detect explicit claims [11] uses a set of anchor terms comprising 174 direction-

ality verbs (55 indicating an increase and 74 indicating a decrease) and 208 change verbs from

the TREC collection [42]. An evaluation using abstracts from [5] resulted in updates to the ini-

tial system, which now uses 215 directionality terms (58 increasing, 86 decreasing, and 71

Fig 4. Unified Medical Language System (UMLS) showing context for the semantic type cell. Image courtesy of the U.S. National Library of Medicine.

https://doi.org/10.1371/journal.pone.0260712.g004
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general change verbs and 235 causality verbs). As with the initial version, the base form of each

verb is expanded to capture all tenses and nominalized forms before being comparing with the

abstract text. Observational claims, where an author does not specify the entity responsible for

the change, had not been previously implemented. The system now detects observations using

the same syntax and semantics for the explicit claims, but where the entity responsible for the

change is not identified. The preprocessing step that reconciles coordinated ellipses has also

been added to the system so that example the neutral change to human lymphocyte prolifera-

tion is captured from “Inorganic arsenic effects on human lymphocyte stimulation and prolif-

eration” and the negated neutral change on proliferation and apoptosis is captured from “It

had no effect on proliferation, apoptosis, or differentiation”.

With respect to syntax, a set of rules were constructed that connect each anchor term

through dependency paths from the Stanford parser to the target outcomes. In addition to a

direct connection between an anchor and a target outcome (e.g. increases cell death), the sys-

tem captures connections through a prepositional phrase (e.g. induction of apoptosis), and

through measurement terms (e.g. the amount of cell death).

The error analysis revealed that one last change was needed to the original system because

the target outcomes in this paper implicitly indicate a change, such as in sentence 6, where cell

proliferation is captured a prepositional phrase. To resolve this issue explicit claims and obser-

vations were first applied to the text. The syntactic rules were then reapplied to any increase in

cells for cell proliferation and any decrease in cells for cell death. Thus, the system would

report a refuting cell proliferation for sentence 6, where inhibit is the change term and prolifer-
ation of U251 malignant glioma cells captures the target outcome cell proliferation.

6. Example sentence showing where the syntactic rules were applied twice: Released irinote-

can inhibited the proliferation of U251 malignant glioma cells. (PMID 24460101)

In a manual systematic review, an extraction worksheet helps reviewers identify the results

of a study [1] and our system is strongly influenced by this human practice. To avoid capturing

claims that reflect an author’s description of previous work or their proposed hypothesis that

has yet to be verified, the system only includes sentences from the result or conclusion section,

where the section is labeled as result or conclusion in structured abstracts and where the label

is predicted from a deep learning model for unstructured abstracts (see text preprocessing for

details).

Characterizing evidence

Supporting evidence is either an explicit or observational claim where the target outcome has

increased. Refuting evidence reports a decrease in the target outcome and neutral evidence

shows that there is a change, but the language used in the abstract lacks the specificity to deter-

mine if the target outcome has increased or decreased. Negation is also captured and can

occur within the noun phrase or within the relation, thus there are 12 possible claim directions.

Table 1 shows examples for the target outcome cell proliferation and includes both noun

phrase and non-noun representations.

An abstract can report multiple directions of evidence for the same target outcome and

sometimes within the same sentence. Consider sentence 7 for the target outcome necrotic
death where the system captures two directions of evidence from the words triggered that is

supportive and attenuates that is refuting.

7. Sentence with multiple lines of evidence for the same outcome: We show here that Nec-1

also effectively attenuates necrotic death triggered by Cd. (PMID 19135076)
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a. Supporting triggered necrotic death

b. Refuting attenuates necrotic death

The system first identifies outcomes (see section on target outcomes) and then identifies

claims that include those outcomes; thus, negation can be applied to the claim, the out-

come, both the claim and the outcome or neither the claim nor the outcome. Table 1

provides a summary of how negation at the claim level that also includes the polarity (sup-

port, neutral or refuting) and the entity level are reconciled to arrive at the direction of evi-

dence that are reported and shown as visual summaries. The direction of evidence is

ordered from left to right with respect to the extent to which the outcome supports a change

in evidence i.e. (Refute -> Negated Refute -> Neutral ->Negated Neutral -> Negated

Support ->Support).

It’s not clear if an abstract that reports the same claim multiple times should be considered

more compelling than an abstract that makes a claim only once. Consider 3 example thioben-

zamide abstracts that report changes in cell proliferation. As shown in Table 2 all three

abstracts included 2 supporting claims, and the second abstract also has refuting and neutral

claims. If the number of claims is considered then cell proliferation would have 1 refuting

claim, 1 neutral claim, and 6 supporting claims (n = 8). However, if the number of abstracts

were considered then there would be 1 refuting abstract, 1 neutral abstract and 3 supporting

abstracts (n = 3).

Table 1. Cell proliferation example showing how claims and outcomes are aligned with the direction of evidence.

Claim Out-

come

Noun Phrase Non-Noun Phrase Con-clusion

^ . . . increased cell proliferation . . . (11852482) . . . induced proliferation of mammary epithelial cells.

(10965359)

Support

- . . . the short-term effects of various agents on cell

proliferation . . . (17875779)

. . . effects promoting cell growth . . . (21771884) Neutral

v . . . directly inhibit DLD-1 cell growth . . . (21098876) . . . down-regulates proliferation of choriocarcinoma cells

(11352660)

Refute

¬ ^ Cell proliferation was not inhibited by . . . (18296742) . . . failed to stimulate the growth of WY-1 and WY-20 cells . . .

(1740016)

Negated

Support

¬ - . . . had no effects on cell proliferation. (18395325) . . . had no apparent influence on the proliferation of PML/

RARalpha-positive stem cells . . . (17339181)

Negated

Neutral

¬ v . . . did not inhibit cell growth. (17415774) Growth of HepG2 cells in culture was not inhibited by . . .

(20377131)

Negated

Refute

^ ¬ . . . MPP(+)-induced sympathetic neuron loss . . .

(20079841)

. . . contributes to the loss of such neurons . . . (21975039) Refute

- ¬ A strong synergistic effect on antiproliferative and

proapoptotic activity was found. . . (21390185)

. . . effect on loss of thymocytes is . . . (12032332) Neutral

V ¬ . . . reduction in striatal and cortical cell loss (20976216) . . . to diminish bulbectomy-induced loss of NRD neurons . . .

(9075262)

Support

¬ ^ ¬ PQ did not induce neuronal cell loss or. . . (27788145) . . . did not induce the loss of TH expression or DA neurons . . .

(23500093)

Negated

Refute

¬ - ¬ . . . had no appreciable effect on its antiproliferative activity

(12538494)

. . . had no effect on loss of cell viability . . . (14617789) Negated

Neutral

¬ V ¬ . . . did not prevent TH-positive cell loss. (16464239) . . . not prevent the loss of conjunctival goblet cells . . .

(31038554)

Negated

Support

The first column captures the negation (¬) and the polarity (^ depicts support,—depicts neutral, and v depicts refuting evidence) of the relationship and the second

column captures if the outcome is negated. PMIDs are shown in parenthesis.

https://doi.org/10.1371/journal.pone.0260712.t001
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Results and discussion

Target outcome detection

There are no gold standards that capture the directionality of cellular outcomes, cell death, and

cell proliferation. An earlier study used machine learning to detect cell death and cell prolifera-

tion abstracts during the retrieval stage of a risk assessment. The accompanying manual anno-

tations had substantial agreement (Kappa statistic 0.68) for inter-rater reliability [4]. We

require that authors explicitly mention cell proliferation or cell death (or a synonym) and

many of the 340 abstracts that were annotated as cell proliferation (out of 3,078 total abstracts

from 15 journals), or cell death (380 abstracts) do not mention the target outcomes. The anno-

tations from the earlier work suggests that annotators were inferring cell proliferation from

internal cell processes such as peroxisome proliferation, which does not always lead to cell pro-

liferation. We include mitogens, a protein that induces a cell to proliferate, but it appears that

the previous work did not identify those abstracts. It is not clear if the annotators in the prior

work were asked to identify all abstracts that measure cell proliferation or death, or if they

were only asked to identify abstracts in which these outcomes increased. These nuances under-

score the need to provide a clear definition of each target outcome as part of the system report-

ing and clear instructions that identify any abstract where the target outcome was measured,

regardless of the result.

Differences in the scope limit the utility of measuring precision and recall of our system

with respect to the earlier manual annotations so we focus instead on how the different scoping

choices might change the subsequent decision making. Specifically, is there a difference

between claims in the entire collection (i.e. reported anywhere in the 3078 abstracts), com-

pared with claims made in the annotated abstracts and un-annotated abstracts? For cell death,

the abstracts that were not in the manually identified set of abstracts had a greater proportion

of supportive evidence than those in the manually annotated abstracts (see Fig 5). In contrast,

for cell proliferation, abstracts that were not manually annotated but did report cell prolifera-

tion had a greater proportion of refuting evidence. This is consistent with the distribution of

evidence found in our larger collection of 482,314 abstracts.

Outcome mentions

Human language often follows a power law distribution where a small number of expressions

capture a large proportion of the expressions; thus, the target outcomes were evaluated by

manually inspecting the 100 most frequent expressions for each of the primary target out-

comes. There were 7 errors for cell proliferation, a reference to an assay, an increase in cell size

rather than the number of cells, mitotic spindle, 2 expressions for cell migration, an antiproli-

feration agent, and geo-accumulation index. There were 14 errors for cell death, 8 expressions

Table 2. Claim vs abstract totals for 3 example thiobenzamide (chemical 27) abstracts.

ID Claim Counts Abstract Counts

1 Support 1 support for abstract 1

1 Support

2 Support 1 support for abstract 2

2 Support

2 Refute 1 refute for abstract 2

2 Neutral 1 neutral for abstract 2

3 Support 1 support for abstract 3

3 Support

https://doi.org/10.1371/journal.pone.0260712.t002
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referred to proteins, 3 referred to genes, an apoptosis assay, apoptotic potential and apoptotic

mechanism.

The top 20 terms (see Table 3) show that authors are more likely to use negation with cell

proliferation, where the 4th and 5th most frequent expressions capture an antiproliferative

effect or activity, but there is only 1 negated cell death term in the top 20. There were 24,435

cell proliferation expressions, 16,591 cell death expressions, and 195,903 cell mentions that

were neither proliferation nor death. This suggests that the approach is robust with respect to

additional modifiers that were not in the original knowledge base.

With respect to ellipses, 5,402 cell proliferation expressions from 4,283 abstracts would

have been missed if ellipses were not resolved (the most frequent expressions were cell prolifer-

ation, antiproliferative effect, cell growth and antiproliferative activity). With respect to cell

death, 5,880 expressions from 4,566 abstracts would have been missed (the most frequent

expressions were cell apoptosis, cell cycle apoptosis, oxidative apoptosis, and growth apoptosis)

if the system did not resolve coordination. For general cell terms, 46,823 terms from 29,113

abstracts were added (frequent expressions were cell differentiation, cell migration, cell inva-

sion, and normal cell).

Table 4 shows that the search criterion identified 482,314 abstracts relevant to the 27 chemi-

cals, where the number of abstracts ranged from 118 for Thiobenzamide (chemical 27) and

186,580 for Pyridine (chemical 23). With respect to the target outcomes, cell proliferation was

reported more often than cell death (average 7.5%, min 3.2% and max 32.6% versus average

5.6%, min 1.1% max 26.5%) and general cell terms were reported in 36.1% of the abstracts

(min 15.8% and max 86.7%).

Fig 5. Claims concerning cell proliferation and cell death reported in [4] showing the entire collection (All), abstracts that were marked as relevant

(Ann) and abstracts that were not manually annotated as relevant (NotAnn) from [4], where 5A shows abstract frequencies and 5B shows claim

frequencies.

https://doi.org/10.1371/journal.pone.0260712.g005
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When conducting a risk assessment, the manual processes should only consider the results

from the current study being reviewed, and not use an author’s interpretation of previous

work. The system therefore should identify only the outcomes in the result or conclusion sec-

tions of an abstract. The total number of abstracts that include a result or conclusion target

outcome was 27,810 for cell proliferation, 22,020 for cell death and 137,550 for a general cell

term (see Table 4). Table 4 also shows the difference between the total number of outcomes

mentioned anywhere in an abstract that would be identified during the retrieval step, and how

many outcomes appear in the result or conclusion sentences. Table 4 also provides an approxi-

mate upper bound on the number of claims that can be identified within the collection

(approximate because a single outcome can have multiple change terms). Note that some

abstracts include more than one chemical.

Claim extraction

To evaluate the precision of the claims extracted, a random sample of 50 sentences from each

outcome were manually inspected. The accuracy was 81.3% (82% for cell proliferation, and

88% for cell death and 75% for general cells). Of the 150 sentences, 58 were refuting, 28 were

neutral, and 64 were supporting and the accuracy was 84, 67 and 75% respectively which sug-

gests that the system is more accurate with respect to refuting claims, than for neutral, or sup-

porting claims.

With respect to recall, a random sample of 200 sentences (100 each for cell proliferation

and death) were manually reviewed that did not capture a claim but included a primary out-

come and at least 1 anchor term. Passive tense can be an issue for claim extraction so 50 sen-

tences included an anchor term before the outcome, which are more likely to use active tense,

and the 50 sentences used an anchor term after the outcome. There were 8 sentences that

included a claim that was not detected (3 sentences before the outcome and 5 after) for cell

Table 3. Twenty most frequent lemmatized outcome expressions for cell proliferation and cell death, where � depicts negation and depicts a non-noun phrase.

Cell Proliferation Abs Freq Cell Death Abs Freq

cell proliferation 4,755 6,482 apoptosis 11,451 23,132

cell growth 2,114 2,576 cell death 3,852 5,545

increase_cell 1,057 1,120 necrosis 1,599 2,122

� antiproliferative effect 797 983 cell apoptosis 1,200 1,438

� antiproliferative activity 700 949 cell cycle arrest 901 1,124

proliferate_cell 620 690 apoptotic cell death 842 1,019

proliferate_cell nuclear antigen 589 705 apoptotic cell 819 1,081

cellular proliferation 589 685 tumor necrosis 813 864

lymphocyte proliferation 274 354 program cell death 475 588

mitotic index 266 352 apoptotic effect 333 395

tumor cell proliferation 247 284 apoptosis induction 271 308

� loss_dopaminergic neuron 235 264 � antiapoptotic effect 237 310

t cell proliferation 207 285 neuronal cell death 235 298

cellular accumulation 187 224 apoptotic 233 249

increase_cell viability 177 184 arrest_cell cycle 220 235

� loss_cell viability 166 182 proapoptotic effect 219 248

growth_cell 163 170 arrest_cell 210 235

hepatocyte proliferation 162 239 kill_cell 208 227

� cell loss 153 176 neuronal apoptosis 197 278

� cell growth inhibition 145 161 acute tubular necrosis 190 240

https://doi.org/10.1371/journal.pone.0260712.t003
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proliferation and 13 sentences (7 before the outcome and 5 after) that missed a valid claim

about cell death, producing a recall of 92% and 87% for proliferation and death respectively. It

does not appear that passive tense impacts the recall of the claims.

Table 4 shows the number of abstracts that report a target outcome and can thus be used

during the retrieval step of a risk assessment, whereas Figs 6–8 show the distribution of refut-

ing, neutral, and supporting evidence extracted. If all the abstracts (or claims) were supportive

then the waffle plot would be entirely green. With respect to cell proliferation, 53.6% of

abstracts included a refuting claim, 22% were neutral, and 38.7% were supporting (6.4% of

Fig 6. Cell proliferation claims from results or conclusions sentences showing [A] total abstracts and [B] total claims.

https://doi.org/10.1371/journal.pone.0260712.g006

PLOS ONE Using semantics to scale up evidence-based chemical risk-assessments

PLOS ONE | https://doi.org/10.1371/journal.pone.0260712 December 15, 2021 16 / 24

https://doi.org/10.1371/journal.pone.0260712.g006
https://doi.org/10.1371/journal.pone.0260712


abstracts included negated evidence). When considering the number of claims the rates are

45.9, 16.5 and 33% for refuting, neutral, and supporting claims respectively. None of the chem-

icals have entirely supporting evidence and more than half of the chemicals (15/27) have more

refuting evidence than supporting evidence, such as Sulindac (chemical 25) where 67.2%

of the claims refute the hypothesis that cell proliferation increases (see Fig 6). However, 12

chemicals do have more supporting evidence than refuting evidence with respect to cell

proliferation.

Fig 7. Cell death claims from results or conclusions sentences showing [A] total abstracts and [B] total claims.

https://doi.org/10.1371/journal.pone.0260712.g007
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In contrast to proliferation, 38.9% of abstracts refute the hypothesis that cell death

increases, 19.7% provide neutral evidence, and 76.7% of the evidence is supportive (6.4% of

the abstracts include negated claims). When considering the number of claims the rates are

25% refute, 10.6% neutral, and 61.3% support. None of the chemicals have more refuting evi-

dence and 26 of the 27 chemicals have more supporting evidence than refuting evidence (see

Fig 7).

The distribution between refuting, neutral, and supporting evidence for general cell

changes were more evenly distributed than for cell proliferation or death and there were

Fig 8. General cell claims from results or conclusions sentences showing [A] total abstracts and [B] total claims.

https://doi.org/10.1371/journal.pone.0260712.g008
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46.6%, 34.5%, and 41.4% of abstracts (note that the total is greater than 100% as an abstract

often reports more than 1 claim). When considering the number of claims, the distribution

was 37.7%, 25.0% and 32.6% for claims that refute, were neutral, or supportive. (see Fig 8).

Impact on decision-making

Cell proliferation and death capture diametrically opposed biological processes within the cell

cycle, so it makes sense to ask if a chemical is more strongly associated with cell proliferation

or death and how that decision might change if using data from only the retrieval step, versus

data from the extraction step that detects supporting, neutral, or refuting claims as shown in

Figs 6–8. Consider, genistein (chemical 17), where more abstracts report cell proliferation

than cell death (a finding that is consistent with [5]). The information retrieval step identifies

abstracts that measure an outcome but measuring an outcome should not be confused with

being associated with an outcome. Unfortunately, this distinction can be easily misinterpreted

when presented with figures that capture the number of abstracts retrieved, as shown in Fig 9A

(see Table 5, chemical 17 for the underlying data used in Fig 9). However, if the directionality

of the claims is considered, then there are more abstracts that refute an increase in cell prolifer-

ation and more abstracts that support an increase in cell death (see Fig 9B). The result is the

same if the number of claims (rather than number of abstracts) are considered, or if the per-

centage of supporting evidence rather than the raw numbers are considered (see Table 5).

Thus, a decision maker would conclude that genistein is more closely associated with cell

Fig 9. The number of genistein abstracts that report cell proliferation is greater than the number that report cell death (A); however, more claims refute

that cell proliferation increases, whereas more claims support an increase in cell death.

https://doi.org/10.1371/journal.pone.0260712.g009
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proliferation if considering only the abstracts retrieved, and cell death if considering the sup-

porting evidence.

Table 5 summarizes the analysis conducted for chemical 17 for all the chemicals. If the

number of abstracts that report cell proliferation versus cell death is used as a proxy for associ-

ation, a decision maker would conclude that 20/27 chemicals are more associated with prolif-

eration than death. However, if the number of abstracts that show an increase in cell

proliferation or death (i.e. that had supporting evidence) was used, the decision would change

from proliferation to death for 13 of the 27 chemicals. If instead the percentage of abstracts

that had supporting evidence was considered, the decision would change for 21 chemicals (20

from proliferation to death and 1 from death to proliferation). If instead the number of claims

rather than the number of abstracts was used, the decision would change for 17 chemicals (16

from proliferation to death and 1 from death to proliferation) and if the percentage of claims

was used the decision would change 19 times (18 from proliferation to death and 1 from death

to proliferation). The overall choice would also change from proliferation to death regardless

Table 5. Conclusion based on [A] the number of abstracts that mention the target outcome [B] the number of abstracts that include at least 1 claim where the target

outcome has increased, and [C] the number of claims where the target outcome has increased. Data for [B] and [C] consider only the result or conclusion sentences

(either actual or estimated).

[A] Retrieved abstracts [B] Abstracts with > = 1 support claim [C] Total support claims

Number Number % Number %

ID Prolif Death Concl Prolif Death Concl Prolif Death Concl Prolif Death Concl Prolif Death Concl

1 104 79 Prolif 20 43 Death 43.5 84.3 Death 23 76 Death 33.3 63.3 Death

2 27 10 Prolif 5 5 Death 55.6 83.3 Death 6 6 Death 50.0 66.7 Death

3 1,091 737 Prolif 171 443 Death 27.0 83.9 Death 198 723 Death 23.0 71.2 Death

4 1,211 1,699 Death 222 1,156 Death 32.8 86.8 Death 302 2,324 Death 28.1 70.5 Death

5 550 264 Prolif 100 132 Death 43.1 79.5 Death 133 232 Death 40.5 61.4 Death

6 827 516 Prolif 171 269 Death 42.9 78.4 Death 229 480 Death 38.6 61.9 Death

7 680 351 Prolif 209 171 Prolif 58.9 73.4 Death 297 268 Prolif 51.5 61.9 Death

8 1,426 1,487 Death 214 747 Death 38.9 79.0 Death 282 1,340 Death 35.6 59.8 Death

9 522 412 Prolif 95 192 Death 35.1 74.4 Death 116 295 Death 27.8 65.8 Death

10 3,085 2,644 Prolif 611 1,205 Death 40.1 72.5 Death 791 2,427 Death 32.8 54.8 Death

11 120 143 Death 22 89 Death 32.4 76.1 Death 29 151 Death 28.2 68.9 Death

12 920 455 Prolif 256 227 Prolif 51.1 72.1 Death 327 353 Death 44.0 59.8 Death

13 534 168 Prolif 161 74 Prolif 59.2 66.1 Death 204 115 Prolif 45.0 49.8 Death

14 179 60 Prolif 35 15 Prolif 44.9 71.4 Death 44 26 Prolif 44.0 68.4 Death

15 2,540 1,571 Prolif 306 349 Death 44.8 53.5 Death 387 497 Death 41.2 49.3 Death

16 187 381 Death 42 220 Death 40.0 83.0 Death 57 505 Death 32.4 61.9 Death

17 1,674 1,039 Prolif 486 677 Death 44.3 79.1 Death 668 1,307 Death 35.7 62.1 Death

18 454 602 Death 46 387 Death 16.2 86.4 Death 51 656 Death 13.1 72.6 Death

19 272 210 Prolif 32 115 Death 21.2 79.9 Death 40 202 Death 20.8 73.7 Death

20 67 47 Prolif 29 27 Prolif 58.0 64.3 Death 48 69 Death 58.5 43.1 Prolif

21 617 611 Prolif 130 379 Death 42.1 80.1 Death 171 771 Death 36.7 62.0 Death

22 684 458 Prolif 188 172 Prolif 60.3 64.9 Death 254 277 Death 51.6 49.2 Prolif

23 9,517 7,814 Prolif 1,694 4,408 Death 35.3 76.7 Death 2,101 7,664 Death 29.8 60.6 Death

24 568 226 Prolif 97 81 Prolif 46.9 68.6 Death 114 100 Prolif 41.5 57.5 Death

25 240 325 Death 33 237 Death 18.2 86.5 Death 38 477 Death 12.6 67.8 Death

26 734 397 Prolif 164 182 Death 45.8 70.5 Death 213 348 Death 37.6 58.4 Death

27 7 9 Death 3 5 Death 100.0 71.4 Prolif 6 5 Prolif 75.0 62.5 Prolif

23,558 18,284 Prolif 5,287 11,604 Death 38.7 76.7 Death 7,129 21,694 Death 33.4 61.2 Death

https://doi.org/10.1371/journal.pone.0260712.t005
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of which claim measure was used. These results suggest that authors of automated systems

should specify which step of the information synthesis process is being automated and poten-

tially a caution to readers that simplyreporting an outcome should not be interpreted as an

association (either positive or negative).

Although the proposed approach moves us closer to the manual risk assessment process,

there are other tasks in a systematic review process that are not part of this system. For exam-

ple, decision makers still need to search the grey literature (studies conducted but not pub-

lished) and follow references to minimize bias (the latter is a candidate for automation).

Similarly, no attempt is made to assess the quality of the study which is required in human sys-

tematic reviews [2]; however, it would seem that further work in this regard is needed for sys-

tematic reviews involving animal studies where 71% of preclinical systematic reviews did not

assess the methodological quality [43]. Understanding how a stressor impacts the cell cycle is

just one of the many outcomes that a decision maker would consider when establishing public

policy around potential carcinogens but cellular level outcomes are just one of the many

streams of evidence that includes amongst other endpoints genetic markers, and evidence on

humans and animals is weighted treated differently when determining if there is a sufficient

amount of evidence to change policy. We also do not attempt to differentiate between major

and minor claims, however human inter-rater reliability to establish this distinction has been

reported as low [26].

In addition to providing insight about outcomes for risk assessments, this approach may

also contribute to discussions around publication bias and the way in which authors choose to

describe their findings. The search criterion used in this study considered only the chemical

name, but the chemicals considered were selected because of their potential role in cancer.

Against that backdrop cell proliferation might be considered a negative outcome (i.e. that can-

cer is progressing) whereas cell death might be a positive outcome (i.e. that the cancer progres-

sion has been halted). This might influence an author’s preference to frame the negative

outcome (proliferation) using refuting evidence and the positive outcome (death) using sup-

porting evidence. It is notable that authors use more neutral claims when reporting cells in

general that are neither favorable nor unfavorable. Further work is needed to unpack the rela-

tionship between framing and the directionality that authors use when reporting outcomes.

Conclusions

Public policy regarding chemicals takes place against a complex backdrop of legal regulations

such as Section 6(b) of the Toxic Substances Control Act (TSCA) in the US, and the Regulation

No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of

Chemicals (REACH), efforts in the EU. Regardless of the statutory requirements, the human

processes used to synthesize evidence can slow down efforts to update public policy and do

not scale to cumulative risk assessments where multiple stressors are considered. Automated

systems that augment human efforts are urgently needed, but such techniques will only be

adopted if they are accurate and consistent with the level of transparency needed in this

setting.

The approach introduced in this paper combines domain expertise to clearly articulate tar-

get outcomes, knowledge resources to capture target outcomes, and natural language process-

ing methods to overcome surface level differences between how a target outcome is

represented in a formal ontology and how those same concepts are reported in the scientific

literature. To be consistent with the manual efforts used to conduct a chemical risk assessment,

the search strategy, and the inclusion and exclusion criterion must also be explicit. In contrast

to work that automates the retrieval step of the information synthesis process, the approach
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presented here automates the extraction step and provides decision makers with a visualization

using waffle plots that reflect the distribution of supporting, neutral, and refuting evidence for

a given outcome. This is consistent with a fundamental tenant of a systematic review where all

evidence is provided to a reader, not just the evidence that supports an author’s position.

Experiments using 482K abstracts for 27 chemicals show that refuting evidence (where the

target outcome has decreased) was higher for cell proliferation (45.9%) and general cell

changes (37.7%) than for cell death (25.0%), moreover that only cell death had more support-

ing claims (61.3%). If the number of abstracts that measure an outcome was used as a proxy

for association there would be a stronger association with cell proliferation than cell death (20/

27 chemicals). However, if the amount of supporting evidence was used (that the outcome

increased) the conclusion would change for 21 of the 27 chemicals—20 from proliferation to

death and 1 from death to proliferation. This suggests that results from the retrieval step (i.e.

the number of abstracts that measure an outcome) can be misleading if not accompanied with

results from the extraction step where the directionality of the outcome is established.
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