
*Corresponding author: E-mail: aishtaiwi@uop.edu.jo;

Current Journal of Applied Science and Technology

25(2): 1-9, 2017; Article no.CJAST.38361
Previously known as British Journal of Applied Science & Technology
ISSN: 2231-0843, NLM ID: 101664541

Reducing the Cost of Exploring Neighborhood
Areas in Dynamic Local Search for SAT

Abdelraouf Ishtaiwi1*, Ghassan Issa1 and Wael Hadi1

1Faculty of IT, School of CS, University of Petra, Amman, Jordan.

Authors’ contributions

This work was carried out in collaboration between all authors. Author AI designed the study,

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript.
Authors GI and WH managed the analyses of the study. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/CJAST/2017/38361
Editor(s):

(1) Wei Wu, Professor, Department of Applied Mathematics, Dalian University of Technology, China.
Reviewers:

(1) Sanjib Kumar Datta, University of Kalyani, India.
(2) Utku Kose, Suleyman Demirel University, Turkey.

(3) K. Ashwini, Visvesvaraya Technological University, India.
(4) Sofiya Ostrovska, Atilim University, Turkey.

Complete Peer review History: http://www.sciencedomain.org/review-history/22549

Received 23 rd November 2017
Accepted 13 th December 2017

Published 1 st January 2018

ABSTRACT

Stochastic Local Search (SLS) algorithms are of great importance to many fields of Computer
Sciences and Artificial Intelligence. This is due to their efficient performance when applied for
solving randomly generated satisfiability problems (SAT). Our focus in the current work is on one of
the SLS dynamic weighting approaches known as multi-level weight distribution (mulLWD). We
experimentally investigated the performance and the weight behaviors of mulLWD. Based on our
experiments, we observed that the 2nd level weights movements could lead to poor performance of
mulLWD, especially when applied for solving large and harder SAT problems. Therefore, we
developed a new heuristic that could reduce the cost of the 2nd level neighborhood exploitation
known as partial multi-level weight distribution mulLWD+. Experimental results indicate that
mulLWD+ heuristic has significantly better performance than mulLWD in a wide range of SAT
problems.

Keywords: Artificial intelligence; Boolean satisfiability; search algorithms.

Original Research Article

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

2

1. BACKGROUND

The Boolean satisfiability problems (also known
as propositional satisfiability or SAT for short)
form a substantial portion of the core of many
computer science fields and artificial intelligence.
This is due to the fact that, finding a satisfying
assignment to a SAT problem is imperative and
has very deep signification. In our research we
consider formulas in Conjunctive Normal Form

(CNF), where (CNF): in which
each is a literal (boolean variable or its
negation), and each disjunct is a clause.
The task of any given search algorithm is to find
a complete assignment that satisfies . Due to
the time limitation, this task is beyond the reach
of systematic search algorithms except for limited
small sized problems as SAT problems is NP
complete. On the other hand, almost any simple
stochastic local search (SLS) method could
successfully solve a broad range of larger and
more challenging problems [1].

Breakout heuristic [2] was introduced in 1993 as
the first sls weighting algorithm and since then
many tries have been made to enhance the
performance of SLS weighting algorithms [3,4].
However, the performance of these algorithms
remained weak when compared to non-weighting
SLS techniques. This remained the case until the
occurrence of Dynamic Lo- cal Search algorithms
(DLS) such as DLM [5], SAPS [6], PAWS [7],
DDFW [8] and more recently BalancedZ [9],
probSAT [10] and DCCAlm [11].

Escaping local minima in DLS is achieved
through altering the search space by utilising a
cost function that depends on the weights. The
utlization of weights in the cost function is used in
almost all DLS algorithms (i.e. DLM, SAPS,
PAWS, EWS [12], COVER [13], DDFW, and
recently BalancedZ [9]) where these algorithms
perform the same weighting scheme such that
they increase the weights of the false clauses in
the current assignment while encountering a
local minima and then they reduce the weights to
prevent indefinite weights growth.

This study has emerged out of studying an
algorithm known as Multi level Weight
Distribution (mulLWD) [14] which in turn, evolved
out of Divide and Distribute Fixed Weights
(DDFW). DDFW and mulLWD retain the method
of dividing the clauses into satisfied and
unsatisfied clauses and then distributing a fixed
amount of weights among the clauses. The

weights are maintained during the search by the
transfer of weights from satisfied to unsatisfied
clauses in both mulLWD and DDFW. Moreover, it
is worth mentioning that both algorithms implicitly
distribute the weights among the clauses in an
adaptive manner. Hence mulLWD is a
completely adaptive mechanism and requires no
parameter tuning, as is the case with DDFW. A
crucial difference between mulLWD and DDFW
is that weights are distributed from satisfied (true)
clauses to unsatisfied (false) clauses by picking a
satisfied clause, as a weight donor, from multiple
neighbouring levels of a clause that is currently
false. Where in DDFW, only one level
neighbouring picking is performed. DDFW
basically was derived from Pure Additive
Weighting Scheme where weights are additively
increased and then periodically reduced
according to a weight smoothing probability wp
parameter.

Moreover, it is worth mentioning that another
method older than PAWS used additive instead
of multiplicative weight adjustment called DLM.
The difference between PAWS and DLM is that
PAWS has one parameter instead of 27
parameters (in the case of DLM it contains 27
parameters but only three need tuning) of DLM.
Also, PAWS utilize random flat moves.

The mulLWD was shown to outperform DDFW,
PAWS, SAPS, AdaptNovelty+ [15], BalancedZ,
probSAT in a wide range of problems, and was
effective in handling weights for a wide range of
hard satisfiability problems.

Experiments reported in this paper indicate that
mulLWD could suffer from the overhead cost
caused by the exploitation of the entire 2nd level
neighboring areas weights during the search
steps. Among the factors that could cause such
cost is that the 2nd level neighboring areas might
be of large size which will cause the search to
stagnate until exploring the whole area. Thus,
our current investigation of weight movements in
mulLWD addresses the question of whether
there is an alternative method to handle the cost
of exploring the 2nd level neighboring areas to
further achieve gains in SAT domain. In
particular, we are interested in partial multi-level
weight distribution mulLWD+ scheme, that
exploit weighted clauses in the entire first level
neighboring areas and partially in the second
level neighbors so that the cost of searching the
entire 2nd level neighboring areas is prevented.
The partial multi-level weight distribution
approach offers the advantage of partially

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

3

exploiting weights that are indirectly connected.
As a result, the high degree of deterministic
weight distribution from within the same
neighboring area is relaxed without
compromising the benefits gained by the original
approach of one level weight distribution.

In the next section we provide a general
background on the evolution of clause weighting
algorithms. Then, we provide further details of
weights movements within the first level
neighboring area (which is implemented in
mulLWD and DDFW). We then introduce the
mulLWD+ in more detail, and provide an
experimental comparison between mulLWD+
and its predecessor mulLWD. Consequently, a
significant category of problems are identified
where mulLWD+ has a remarkably better
performance. Then we conclude our work by
recommendations for applying mulLWD+ on the
domain of MAXSat.

2. CLAUSE WEIGHTING FOR SAT

DLS clause weighting heuristics for SAT follow a
common method in which they start with a simple

process of randomly assigning all literals in
clause for all clauses of a given problem
(given a boolean value for each literal ∈ 0, 1).
Then the weights are equally assigned to all
clauses prior to the search process. The search
then starts by changing the boolean value of a
literal (flipping the literal value from 0 to 1 or vice
versa), if it leads to a reduction of the overall
number of false clauses count of the current
stage of the search. Otherwise the weights of all
false clauses are increased and weights for all
clauses periodically smoothed (decreased).

Basically there are two main methods on
deciding on when to adjust the weights. This
decision is a key factor that distinguishes the
weighting heuristics from one another. Some
heuristics use a multiplicative method such as
SAPS, other heuristics adjust weights additively
such as PAWS, DLM, DDFW, and BalancedZ.

A. Partial Multi Level Weight Distribution

A first level neighboring clause to clause

is defined as: if there exists at least a literal

that is , and . Furthermore, we term

 a same sign literal in all clauses that
occur in, which in turn implies that its negation

literal is − . As a result, we term any two

clauses , and neighbors if literal

 is clause and clause where

. Consequently, if clause ci is false it

means all literals clause evaluate to

false (the boolean value of all literals clause

, or 1 if the literal is negated). Thus,

flipping literal (the boolean value of literal

) will help clause and all its false

neighbors. On the other hand, if clause has

a literal and its current value is 0 then if we

change the Boolean value of literal to 1 will

make literal evaluate to 0. Assuming that

literal was the only literal in clause cn that
evaluates to 1 before changing its value then
clause cn will be damaged by changing the value

of literal from 0 to 1

Basically, if literal occur in clause , and
clause has another literal which occurs

in a subset of clauses where literal
then all the clause are a second level

neighboring clauses of clause . The partial

multi-level weight distribution + pick

the first satisfied clause that occurs in the 2nd
level neighborhood area, if none were found in
the first level neighboring area. Where it is not
the case with , where all the clauses

in the 2nd level neighborhood are searched and
the maximum weighted satisfied clause is
chosen to be a weight donor, if no such clause
exists in the first level neighbors nor in the
second, a randomly satisfied clause is picked as
a weight donor.

The and + heuristics both
use the two uniquely implemented ideas that are
built in DDFW, as in algorithm 1, and 2. Firstly,
both algorithms evenly distribute a fixed amount
of weights across all clauses at the beginning of
the search process, escaping from the traps of
local minima is performed by the weight transfer
from satisfied clauses to unsatisfied (false
clauses). The state-of-the-art-idea is that the
weights increments and decrements are done in
implicitly one step. That is, a neighboring
satisfied clause will donate its weights (because
weights are no longer needed since the clause

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

4

has been satisfied) to unsatisfied (false) clause.
In other words, weight normalization (weight
decrements of satisfied clauses) is a sub-function
of the weight increment step. This idea is
crucially important in the weight increment
process as it waives the need of deciding at
which point weight reductions should be
performed. Secondly and a more original idea is
the exploitation of false clauses neighboring area
in order to search for weights donors. This
neighboring exploitation is a key factor that
distinguishes between mulLWD, mulLWD+ and
DDFW. For instance, DDFW utilizes a one level
neighboring area search where it looks for all
the satisfied clauses that are directly connected
with false clauses, where with mulLWD the two
level neighboring areas are checked, so the
search for a satisfied clause for the weight
transfer is performed by searching all the
satisfied clauses that are in the neighboring area
of a false clause and their neighboring clauses.
For the mulLWD+, the search for a satisfied
clause to be a weight donor is similar to the one
level neighboring area search in DDFW and
mulLWD and significantly differ in the way it
searches the 2nd level neighboring area where
the second level neighboring area of a false
clause is exploited partially by searching for a
clause that is satisfied and has enough weight to
donate, once the clause is found, the second
level exploitation is stopped (as in algorithm 2
line 13).

The mulLWD search the entire first and second
neighboring clauses to find a clause that is
satisfied and has enough weight to donate. Our
experimental results reported in Fig. 4 indicates
that the cost of mulLWD 2nd level neighboring
areas exploitation is very high compared to
mulLWD+. This further supports our new method
of partially searching the second level. Moreover,
it leads to the speeding up of the overall search
process as discussed in the experimental results
section.

3. EXPERIMENTAL RESULTS AND

ANALYSIS

Our empirical study is divided in to two stages. In
stage one, we studied the weights behaviors and
the occurrence of local minima for both
algorithms, mulLWD and mulLWD+. Both
algorithms were run on the problem sets and the
number of local minima, the number of first level
satisfied clause picks and the number of second
level satisfied clause picks are reported. Fig 1
illustrates the total number of local minima
encountered by both algorithms while searching
for a satisfying assignment. The number of local
minima encountered by both algorithms is
almost similar except that with mulLWD+ the
number was slightly less. In Fig. 2 the total
number of first and second level neighbors
checks while searching for a weight donor is
reported. The figure indicates that the

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

5

Fig. 1. Illustration of the total number of local minima encountered by mulLWD and mulLWD+

total number of checks for both algorithms was
also similar. We also reported the number of first
level satisfied clause picks for both algorithms as
in Fig. 3. The behaviors of the algorithms differ
significantly as mulLWD+ successfully picks a
first level neighboring clause much more than
mulLWD, where as in the second level

neighboring clause picks, mulLWD spend most
of the time, as in Fig. 4.

The behaviors of mulLWD and mulLWD+ as
shown in the mentioned figures indicates that the
mulLWD+ partial by second level neighboring
area weight distribution enhances the overall

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

6

search process while retaining escaping from
traps caused by local minima. That is shown in
Figs. (1, 2, 3, 4) where the number of the total
checks, number of local minima encountered,

remained the same while algorithm mulLWD+
spent much less time searching the 2nd level
neighboring area and concentrated on the first
level neighbors.

Fig. 2. Illustration of the number of neighboring clauses checks in both mulLWD and mulLWD+

Fig. 3. Illustration of the total number of first level neighboring clause pick in both mulLWD
and mulLWD+

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

7

Fig. 4. Illustration of the total number of 2nd -neighbor level clause pick in both mulLWD and
mulLWD+

Fig. 5. Comparison between mulLWD and mulLWD+, the results are recorded in seconds

In stage two, we compared the performance of
mulLWD and mulLWD+. The comparison
experiments were performed on a iMAC machine
with i5 multiCore 2.5. GHz CPU and 8GB
memory. The experiment general sittings were

set as follows for both algorithms: the cutoff was
set 50,000,000 for each run, on all the problem
set. The algorithms were allowed 1000 tries on
each problem. For each run the time and % of
solution, if found, is reported.

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

8

Table 1. Comparison results of MULLWD, and MULLWD+. for each algorithm the time and the
% solved is reported

Problem mulLWD+ mulLWD

Time %solved Time %solved
ais 22.77 100 41.32 100
bw.c 535.52 100 1399.96 94
bw.d 1231.78 100 4539.66 87
f800-hard 170 100 597.03 100
f1600-hard 324.33 100 1181.18 92
flat200 159.56 100 422.01 100
g125.18 150.49 100 312.49 100
logistics 15.91 100 57.08 100
uf400-hard 64.48 100 266.36 100
Unif-k6-r4.37v135 2517 100 5913 100

Fig. 5 illustrates the CPU time in which the
algorithms could reach solutions in all attempts.
As discussed above, the narrowing of
neighboring areas pays off as mulLWD+ could
outperform mulLWD in all runs. Furthermore,
mulLWD+ reached a 100% successful rate in
every attempt, where mulLWD could only reach a
success rate of 94% on the blocks world (bw.c)
problem, and 87% on the (bw.d) and 92% on
(f1600) problem, and a 100% success rate on
the remaining problem set. Furthermore,
mulLWD+ was faster in reaching solutions by
almost a factor of four as reported in Table 1.

4. CONCLUSION

Overall we can conclude that the addition of a
the partial multi-level weight distribution mulLW-
D+ has shown a significant enhancement over
the 2nd level neighboring areas exploitation over
the entire range of the problem sets we have
considered. Thus, the reduction of the 2nd level
neighboring areas exploitation clearly enhances
the overall process of searching for solutions
while not compromising the efficiency of the
search process. Thus due to the fact that
MulLWD+ retains the first level neighborhood
exploitation and spends much less in the
exploitation of the 2nd level neighboring areas
which incurs a high overhead cost.

ACKNOWLEDGEMENT

The authors would like to acknowledge the
financial support of the Scientific Research
Committee at University of Petra. Also we would
like to thank all faculty members of the
Information Technology faculty who contributed
directly or indirectly to this work.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Holger Hoos, Thomas Stulze. Stochastic

local search. Morgan Kaufmann,
Cambridge, Massachusetts; 2005.

2. Morris P. The breakout method for
escaping from local minima. In
Proceedings of 11th AAAI. 1993;40–45.

3. Byungki Cha, Kazuo Iwama. Adding new
clauses for faster local search. In
Proceedings of 13th AAAI. 1996;332–337.

4. Jeremy Frank. Learning short-term clause
weights for GSAT. In Proceedings of 15th
IJCAI. 1997;384–389.

5. Wu Z, Benjamin Wah. An efficient global-
search strategy in discrete Lagrangian
methods for solving hard satisfiability
problems. In Proceedings of 17th AAAI.
2000;310–315.

6. Frank Hutter, Dave Tompkins, Holger
Hoos. Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In
Proceedings of 8th CP. 2002;233–248.

7. John Thornton, Pham DN, Stuart Bain,
Valnir Ferreira Jr. Additive versus
multiplicative clause weighting for SAT. In
Proceedings of 19th AAAI. 2004;191–196.

8. Abdelraouf Ishtaiwi, John Thornton, Abdul
Sattar, Duc Nghia Pham. Neighbourhood
clause weight redistribution in local search
for SAT. In Proceedings of 11th CP.
2005;772–776.

9. Chumin Li, Chong Huang, Ruchu Xu.
Balance between intensification and

Ishtaiwi et al.; CJAST, 25(2): 1-9, 2017; Article no.CJAST.38361

9

diversification: Two sides of the same coin.
In Proc. of SAT Competition, Solver
Description. 2013;10–11.

10. Adrian Balint, Armin Biere, Andreas Fro¨
hlich, Uwe Scho¨ ning. Improving
implementation of SLS solvers for SAT and
new heuristics for k-SAT with long clauses.
Springer International Publishing, Cham.
2014;302–316.

11. Chuan Luo, Shaowei Cai, Wei Wu, Kaile
Su. Double configuration checking in
stochastic local search for satisfiability. In
Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence,
AAAI’14. 2014;2703–2709.

12. Shaowei Cai, Kaile Su, Qingliang Chen.
EWLS: A new local search for minimum
vertex cover. In Proceedings of the
Twenty-Fourth AAAI Conference on

Artificial Intelligence, AAAI, Atlanta,
Georgia, USA; 2010.

13. Silvia Richter, Malte Helmert, Charles
Gretton. A stochastic local search
approach to vertex cover. In KI 2007:
Advances in Artificial Intelligence, 30th
Annual German Conference on AI, KI
2007, Osnabru¨ ck, Germany.
Proceedings. 2007;412–426.

14. Abdelraouf Ishtaiwi, Marco Juarez,
Ghassan Issa. Multi level weight
distribution in dynamic local search for
SAT. In Proceedings of 3rd International
Conference on Information Technology,
Control and Computer Engineering ITCCE.
2017;17:79–86.

15. Holger Hoos. An adaptive noise
mechanism for Walk SAT. In Proceedings
of 19th AAAI. 2002;655–660.

© 2017 Ishtaiwi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/22549

