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ABSTRACT 
 
Stochastic Local Search (SLS) algorithms are of great importance to many fields of Computer 
Sciences and Artificial Intelligence. This is due to their efficient performance when applied for 
solving randomly generated satisfiability problems (SAT). Our focus in the current work is on one of 
the SLS dynamic weighting approaches known as multi-level weight distribution (mulLWD). We 
experimentally investigated the performance and the weight behaviors of mulLWD. Based on our 
experiments, we observed that the 2nd level weights movements could lead to poor performance of 
mulLWD, especially when applied for solving large and harder SAT problems. Therefore, we 
developed a new heuristic that could reduce the cost of the 2nd level neighborhood exploitation 
known as partial multi-level weight distribution mulLWD+. Experimental results indicate that 
mulLWD+ heuristic has significantly better performance than mulLWD in a wide range of SAT 
problems. 
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1. BACKGROUND 
 
The Boolean satisfiability problems (also known 
as propositional satisfiability or SAT for short) 
form a substantial portion of the core of many 
computer science fields and artificial intelligence. 
This is due to the fact that, finding a satisfying 
assignment to a SAT problem is imperative and 
has very deep signification. In our research we 
consider formulas in Conjunctive Normal Form 

(CNF), where (CNF):  in which 
each  is a literal (boolean variable or its 
negation), and each disjunct  is a clause. 
The task of any given search algorithm is to find 
a complete assignment that satisfies . Due to 
the time limitation, this task is beyond the reach 
of systematic search algorithms except for limited 
small sized problems as SAT problems is NP 
complete. On the other hand, almost any simple 
stochastic local search (SLS) method could 
successfully solve a broad range of larger and 
more challenging problems [1]. 
 
Breakout heuristic [2] was introduced in 1993 as 
the first sls weighting algorithm and since then 
many tries have been made to enhance the 
performance of SLS weighting algorithms [3,4]. 
However, the performance of these algorithms 
remained weak when compared to non-weighting 
SLS techniques. This remained the case until the 
occurrence of Dynamic Lo- cal Search algorithms 
(DLS) such as DLM [5], SAPS [6], PAWS [7], 
DDFW [8] and more recently BalancedZ [9], 
probSAT [10] and DCCAlm [11]. 
 
Escaping local minima in DLS is achieved 
through altering the search space by utilising a 
cost function that depends on the weights. The 
utlization of weights in the cost function is used in 
almost all DLS algorithms (i.e. DLM, SAPS, 
PAWS, EWS [12], COVER [13], DDFW, and 
recently BalancedZ [9]) where these algorithms 
perform the same weighting scheme such that 
they increase the weights of the false clauses in 
the current assignment while encountering a 
local minima and then they reduce the weights to 
prevent indefinite weights growth. 
 
This study has emerged out of studying an 
algorithm known as Multi level Weight 
Distribution (mulLWD) [14] which in turn, evolved 
out of Divide and Distribute Fixed Weights 
(DDFW). DDFW and mulLWD retain the method 
of dividing the clauses into satisfied and 
unsatisfied clauses and then distributing a fixed 
amount of weights among the clauses. The 

weights are maintained during the search by the 
transfer of weights from satisfied to unsatisfied 
clauses in both mulLWD and DDFW. Moreover, it 
is worth mentioning that both algorithms implicitly 
distribute the weights among the clauses in an 
adaptive manner. Hence mulLWD is a 
completely adaptive mechanism and requires no 
parameter tuning, as is the case with DDFW. A 
crucial difference between mulLWD and DDFW 
is that weights are distributed from satisfied (true) 
clauses to unsatisfied (false) clauses by picking a 
satisfied clause, as a weight donor, from multiple 
neighbouring levels of a clause that is currently 
false. Where in DDFW, only one level 
neighbouring picking is performed. DDFW 
basically was derived from Pure Additive 
Weighting Scheme where weights are additively 
increased and then periodically reduced 
according to a weight smoothing probability wp 
parameter. 
 
Moreover, it is worth mentioning that another 
method older than PAWS used additive instead 
of multiplicative weight adjustment called DLM. 
The difference between PAWS and DLM is that 
PAWS has one parameter instead of 27 
parameters (in the case of DLM it contains 27 
parameters but only three need tuning) of DLM. 
Also, PAWS utilize random flat moves. 
 
The mulLWD was shown to outperform DDFW, 
PAWS, SAPS, AdaptNovelty+ [15], BalancedZ, 
probSAT in a wide range of problems, and was 
effective in handling weights for a wide range of 
hard satisfiability problems. 
 
Experiments reported in this paper indicate that 
mulLWD could suffer from the overhead cost 
caused by the exploitation of the entire 2nd level 
neighboring areas weights during the search 
steps. Among the factors that could cause such 
cost is that the 2nd level neighboring areas might 
be of large size which will cause the search to 
stagnate until exploring the whole area. Thus, 
our current investigation of weight movements in 
mulLWD addresses the question of whether 
there is an alternative method to handle the cost 
of exploring the 2nd level neighboring areas to 
further achieve gains in SAT domain. In 
particular, we are interested in partial multi-level 
weight distribution mulLWD+ scheme, that 
exploit weighted clauses in the entire first level 
neighboring areas and partially in the second 
level neighbors so that the cost of searching the 
entire 2nd level neighboring areas is prevented. 
The partial multi-level weight distribution 
approach offers the advantage of partially 
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exploiting weights that are indirectly connected. 
As a result, the high degree of deterministic 
weight distribution from within the same 
neighboring area is relaxed without 
compromising the benefits gained by the original 
approach of one level weight distribution. 
 
In the next section we provide a general 
background on the evolution of clause weighting 
algorithms. Then, we provide further details of 
weights movements within the first level 
neighboring area (which is implemented in 
mulLWD and DDFW). We then introduce the 
mulLWD+ in more detail, and provide an 
experimental comparison between mulLWD+ 
and its predecessor mulLWD. Consequently, a 
significant category of problems are identified 
where mulLWD+ has a remarkably better 
performance. Then we conclude our work by 
recommendations for applying mulLWD+ on the 
domain of MAXSat. 
 
2. CLAUSE WEIGHTING FOR SAT 
 
DLS clause weighting heuristics for SAT follow a 
common method in which they start with a simple 

process of randomly assigning all literals  in 
clause  for all clauses of a given problem 
(given a boolean value for each literal ∈ 0, 1). 
Then the weights are equally assigned to all 
clauses prior to the search process. The search 
then starts by changing the boolean value of a 
literal (flipping the literal value from 0 to 1 or vice 
versa), if it leads to a reduction of the overall 
number of false clauses count of the current 
stage of the search. Otherwise the weights of all 
false clauses are increased and weights for all 
clauses periodically smoothed (decreased). 
 
Basically there are two main methods on 
deciding on when to adjust the weights. This 
decision is a key factor that distinguishes the 
weighting heuristics from one another. Some 
heuristics use a multiplicative method such as 
SAPS, other heuristics adjust weights additively 
such as PAWS, DLM, DDFW, and BalancedZ. 
 
A. Partial Multi Level Weight Distribution 

  
 

A first level neighboring clause  to clause 

is defined as: if there exists at least a literal  

that is , and  . Furthermore, we term 

 a same sign literal in all clauses that  
occur in, which in turn implies that its negation 

literal is −  . As a result, we term any two 

clauses  ,  and  neighbors if literal 

 is  clause  and clause  where 

. Consequently, if clause ci is false it 

means all literals  clause  evaluate to 

false (the boolean value of all literals  clause 

, or 1 if the literal is negated). Thus, 

flipping literal (the boolean value of literal 

) will help clause  and all its false 

neighbors. On the other hand, if clause  has 

a literal and its current value is 0 then if we 

change the Boolean value of literal  to 1 will 

make literal evaluate to 0. Assuming that 

literal was the only literal in clause cn that 
evaluates to 1 before changing its value then 
clause cn will be damaged by changing the value 

of literal  from 0 to 1 
 
Basically, if literal  occur in clause  , and 
clause  has another literal  which occurs 

in a subset of clauses  where literal 
then all the clause are a second level 

neighboring clauses of clause  . The partial 

multi-level weight distribution + pick 

the first satisfied clause that occurs in the 2nd 
level neighborhood area, if none were found in 
the first level neighboring area. Where it is not 
the case with , where all the clauses 

in the 2nd level neighborhood are searched and 
the maximum weighted satisfied clause is 
chosen to be a weight donor, if no such clause 
exists in the first level neighbors nor in the 
second, a randomly satisfied clause is picked as 
a weight donor. 
 
The  and + heuristics both 
use the two uniquely implemented ideas that are 
built in DDFW, as in algorithm 1, and 2. Firstly, 
both algorithms evenly distribute a fixed amount 
of weights across all clauses at the beginning of 
the search process, escaping from the traps of 
local minima is performed by the weight transfer 
from satisfied clauses to unsatisfied (false 
clauses). The state-of-the-art-idea is that the 
weights increments and decrements are done in 
implicitly one step. That is, a neighboring 
satisfied clause will donate its weights (because 
weights are no longer needed since the clause 
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has been satisfied) to unsatisfied (false) clause. 
In other words, weight normalization (weight 
decrements of satisfied clauses) is a sub-function 
of the weight increment step. This idea is 
crucially important in the weight increment 
process as it waives the need of deciding at 
which point weight reductions should be 
performed. Secondly and a more original idea is 
the exploitation of false clauses neighboring area 
in order to search for weights donors. This 
neighboring exploitation is a key factor that 
distinguishes between mulLWD, mulLWD+ and 
DDFW. For instance, DDFW utilizes a one level 
neighboring area search where it looks for all              
the satisfied clauses that are directly connected 
with false clauses, where with mulLWD the two 
level neighboring areas are checked, so the 
search for a satisfied clause for the weight 
transfer is performed by searching all the 
satisfied clauses that are in the neighboring area 
of a false clause and their neighboring clauses. 
For the mulLWD+, the search for a satisfied 
clause to be a weight donor is similar to the one 
level neighboring area search in DDFW and 
mulLWD and significantly differ in the way it 
searches the 2nd level neighboring area where 
the second level neighboring area of a false 
clause is exploited partially by searching for a 
clause that is satisfied and has enough weight to 
donate, once the clause is found, the second 
level exploitation is stopped (as in algorithm 2 
line 13). 

The mulLWD search the entire first and second 
neighboring clauses to find a clause that is 
satisfied and has enough weight to donate. Our 
experimental results reported in Fig. 4 indicates 
that the cost of mulLWD 2nd level neighboring 
areas exploitation is very high compared to 
mulLWD+. This further supports our new method 
of partially searching the second level. Moreover, 
it leads to the speeding up of the overall search 
process as discussed in the experimental results 
section. 
 
3. EXPERIMENTAL RESULTS AND 

ANALYSIS 
 
Our empirical study is divided in to two stages. In 
stage one, we studied the weights behaviors and 
the occurrence of local minima for both 
algorithms, mulLWD and mulLWD+. Both 
algorithms were run on the problem sets and the 
number of local minima, the number of first level 
satisfied clause picks and the number of second 
level satisfied clause picks are reported. Fig 1 
illustrates the total number of local minima 
encountered by both algorithms while searching 
for a satisfying assignment. The number of local 
minima encountered by both algorithms is    
almost similar except that with mulLWD+ the 
number was slightly less. In Fig. 2 the total 
number of first and second level neighbors 
checks while searching for a weight donor is 
reported. The figure indicates that the
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Fig. 1. Illustration of the total number of local minima encountered by mulLWD and mulLWD+ 

 
total number of checks for both algorithms was 
also similar. We also reported the number of first 
level satisfied clause picks for both algorithms as 
in Fig. 3. The behaviors of the algorithms differ 
significantly as mulLWD+ successfully picks a 
first level neighboring clause much more than 
mulLWD, where as in the second level 

neighboring clause picks, mulLWD spend most 
of the time, as in Fig. 4. 
 
The behaviors of mulLWD and mulLWD+ as 
shown in the mentioned figures indicates that the 
mulLWD+ partial by second level neighboring 
area weight distribution enhances the overall 
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search process while retaining escaping from 
traps caused by local minima. That is shown in 
Figs. (1, 2, 3, 4) where the number of the total 
checks, number of local minima encountered, 

remained the same while algorithm mulLWD+ 
spent much less time searching the 2nd level 
neighboring area and concentrated on the first 
level neighbors. 

 

 
 

Fig. 2. Illustration of the number of neighboring clauses checks in both mulLWD and mulLWD+ 
 

 
 

Fig. 3. Illustration of the total number of first level neighboring clause pick in both mulLWD 
and mulLWD+ 
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Fig. 4. Illustration of the total number of 2nd -neighbor level clause pick in both mulLWD and 
mulLWD+ 

 

 
 

Fig. 5. Comparison between mulLWD and mulLWD+, the results are recorded in seconds 
 

In stage two, we compared the performance of 
mulLWD and mulLWD+. The comparison 
experiments were performed on a iMAC machine 
with i5 multiCore 2.5. GHz CPU and 8GB 
memory. The experiment general sittings were 

set as follows for both algorithms: the cutoff was 
set 50,000,000 for each run, on all the problem 
set. The algorithms were allowed 1000 tries on 
each problem. For each run the time and % of 
solution, if found, is reported. 
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Table 1. Comparison results of MULLWD, and MULLWD+. for each algorithm the time and the 
% solved is reported 

 
Problem mulLWD+ mulLWD 

Time %solved Time %solved 
ais 22.77 100 41.32 100 
bw.c 535.52 100 1399.96 94 
bw.d 1231.78 100 4539.66 87 
f800-hard 170 100 597.03 100 
f1600-hard 324.33 100 1181.18 92 
flat200 159.56 100 422.01 100 
g125.18 150.49 100 312.49 100 
logistics 15.91 100 57.08 100 
uf400-hard 64.48 100 266.36 100 
Unif-k6-r4.37v135 2517 100 5913 100 

 
Fig. 5 illustrates the CPU time in which the 
algorithms could reach solutions in all attempts. 
As discussed above, the narrowing of 
neighboring areas pays off as mulLWD+ could 
outperform mulLWD in all runs. Furthermore, 
mulLWD+ reached a 100% successful rate in 
every attempt, where mulLWD could only reach a 
success rate of 94% on the blocks world (bw.c) 
problem, and 87% on the (bw.d) and 92% on 
(f1600) problem, and a 100% success rate on 
the remaining problem set. Furthermore, 
mulLWD+ was faster in reaching solutions by 
almost a factor of four as reported in Table 1. 
 
4. CONCLUSION 
 
Overall we can conclude that the addition of a 
the partial multi-level weight distribution mulLW- 
D+ has shown a significant enhancement over 
the 2nd level neighboring areas exploitation over 
the entire range of the problem sets we have 
considered. Thus, the reduction of the 2nd level 
neighboring areas exploitation clearly enhances 
the overall process of searching for solutions 
while not compromising the efficiency of the 
search process. Thus due to the fact that 
MulLWD+ retains the first level neighborhood 
exploitation and spends much less in the 
exploitation of the 2nd level neighboring areas 
which incurs a high overhead cost. 
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