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Abstract 
Carcinogenicity of dioxins seems to be largely mediated by their binding to the aryl hydrocarbon receptor (AhR), a 
cytosolic transcriptional regulator of cell growth, differentiation, and migration. The most widely studied agonist 
of AhR, in the last thirty years, is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which also presents the highest 
binding affinity for this receptor. The activated ligand-AhR complex has been described to contribute in 
suppressing both humoral and cellular immune responses. Starting from the description of the main mechanisms 
underlying the physiological activation of AhR, the present review is aimed at evaluating a putative functional role 
of the intragenic AhR polymorphisms, which could greatly affect the functionality of the receptor by either 
inducing or contrasting its ligand-dependent activation. As consequence, this may participate in lowering or 
increasing the risk of cancer, particularly, in the most polluted areas. 
1. Introduction 
The aryl hydrocarbon receptor (AhR), a cytosolic ligand-activated transcription factor, is a member of the PAS 
protein family and is highly conserved during the evolution, expressed in a variety of phylogenetically distant 
organisms such as drosophila melanogaster, nematodes, and mammals (Feng, Cao, & Wang, 2013). The AhR 
protein acts as a transcriptional regulator of different biological aspects, with physiological functions mainly 
exerted during early stages of development of each organism. AhR is able to control neurogenesis, vascularization, 
circadian rhythms, metabolism, and stress responses to hypoxia, with evident effects on cell proliferation, 
differentiation, and migration (Hahn, 2002). Furthermore, AhR-mediated changes in gene expression frequently 
affect cell growth and regulate cell cycle progression (Elferink, 2003; Marlowe & Puga, 2005; Glinka et al., 2012). 
In particular, induced Ahr signaling may either promote activiy of oncogenic kinases either interfere with the 
function of tumor suppressor genes (Falahatpisheh & Ramos, 2003; Tomkiewicz et al., 2013).  
The activated AhR has been widely studied in relation to its role in immunosuppression and a large amount of data 
has been published in this field (Stevens, Mezrich, & Bradfield, 2009; Esser, Rannug, & Stockinger, 2009). 
Activated AhR leads to a thymic involution, with consequent thymocyte loss and premature migration of T cell 
progenitors; it also suppresses T cell function and mediates B cell antibody response inhibition (Laiosa, 2003; 
Temchura, Frericks, Nacken, & Esser, 2005; Ito, Inouye, Fujimaki, Tohyama, & Nohara, 2002; Allan & Sherr, 
2005). The consequence is a profound suppression of both humoral and cellular immune responses (Stockinger, 
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2009). Exposure of AhR to activating ligands either reduces the number and functions of CD8+ T cells either has 
an impact on dendritic cell (DC) phenotype, function, and quantity (Vorderstrasse, Dearstyne, & Kerkvliet, 2003; 
Laupeze et al., 2002). In particular, AhR inhibits DC activation and differentiation, contributing to both reduce 
their number and block their maturation in mice and humans (Vorderstrasse & Kerkvliet, 2001; Lee et al., 2007; 
Vogel et al., 2013; Aguilera-Montilla et al., 2013). Further important issues in activated-AhR-induced 
immunosuppression are the impact on the differentiation and expansion of both T- regulators (CD4+CD25+ 

FoxP3+) and IL-17-producing T helper cells (Th17 cells) with a consequent adverse effect on CD8+ T cell 
response (Funatake, Marshall, Steppan, Mourich, & Kerkvliet, 2005; Quintana et al., 2008; Veldhoen et., 2008; 
Gandhi et al., 2010). The immunosuppressive action of dioxin-AhR binding is shown in Figure 1.  
 

 

Figure 1. The immunosuppressive effects due to the TCDD-AhR binding activity 
 
The AhR-driven immunosoppressive activity - together with the ancestral functions controlling cell differentiation, 
proliferation, and migration - is a strong indicator about the key role of this receptor in carcinogenesis (Quintana, 
2013; Dietrich & Kaina, 2010; Casado, Singh, & Gasiewicz, 2011). An increasing amount of literature data 
indicates a strong association between high levels of activation of this receptor and cancer growth in preclinical 
models as well as cancer incidence (Di Natale, Schroeder, & Perdew, 2011; John, Lahoti, Wagner, Hughes, & 
Perdew, 2013; Tsay et al., 2013). The interaction between the activated AhR and estrogen receptor alpha has been 
described to play a positive role in E2-dependent BRCA-1 transcription, suggesting that impairment of BRCA-1 
expression may contribute to the onset of breast cancers (Hockings et al., 2006). Recently a possible role of AhR 
has been reported in malignant B-cell growth as well as in tumor progression and metastasization when it is 
expressed in the melanoma stroma (Sherr & Monti, 2013; Contador-Troca et al., 2013).  
1.1 AhR agonists 
In the last thirty years, the most widely studied agonist of AhR was 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
(Schecter, Birnbaum, Ryan, & Constable, 2006), which exerts the highest binding affinity for this receptor: 
Stevens reports that in mice the EC50 (mol/kg) for the TCDD-AhR binding is 10-12  (Stevens et al., 2009; Mimura 
& Fujii-Kuriyama, 2003). TCDD and its congeners (Dioxins) are organochlorine compounds belonging to the 
families of polyalogenated-dibenzo-p-dioxin, polyalogenated-dibenzo-furan and polyalogenated-byphenyl; 
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TCDD itself is listed as a class I carcinogen from the International Agency for Research on Cancer (IARC) 
Working Group (Tomatis, 2002). Dioxin molecules are extremely stable and spread rapidly through the 
environment, especially via the soil and water, inevitably polluting the food chain and accumulating in fatty tissues 
and milk of animals and humans as a result of their liposolubility (Schecter et al., 1994; Kerkvliet, 2002). Dioxins 
have a half-life in humans of 7 to 11 years, suggesting a potential accumulation within the body and a long-term 
stimulation and activation of AhR (Schecter et al., 1994, 2006; Bohonowych & Denison, 2007). Recently, the 
IARC Working Group classified the polychlorinated biphenyls (PCBs) as a class I carcinogen, on the basis of 
extensive evidence of an AhR-mediated mechanism of carcinogenesis that is quite identical to that of TCDD. 
PCBs, a class of aromatic compounds, are persistent and readily absorbed. They also accumulate in the fatty 
tissues and are present in most samples of human milk (Lauby-Secretan et al., 2013). 
1.2 AhR Antagonists  
AHR binds several exogenous ligands such as natural plant flavonoids, polyphenolics, and indoles, but several 
other ligands with low to intermediate-affinity have been also described (Denison & Nagy, 2003). Endogenous 
AhR ligands, e.g. low density lipoproteins and bilirubin, several dietary carotinoids and derivatives of tryptophan 
can be either antagonist or agonist, although they were generally considered as AhR antagonists because of their 
competitive action with respect to dioxin. For example, Savouret and colleagues identified 7-ketocholesterol 
(7-KC), an endogenous modulator that inhibits the AhR activation through competitive binding and displaces 
labeled dioxin (Savouret et al., 2001). Researchers have taken action for years to discover a good dietary candidate 
for preventing dioxin toxicity and major suggestions indicated several flavonoids (Ashida, Fukuda, Yamashita, & 
Kanazawa, 2000). The anticarcinogenic effects of flavonoids (flavones, flavonols, and flavan-3-ols) include their 
antagonistic action on the AhR and experimental evidence suggests that flavonoids modulate signal transduction 
pathways at each stage of carcinogenesis (Mukai et al., 2010; Nishiumi et al., 2011). In the last ten years, several 
articles have demonstrated the molecular mechanisms by which food factors regulate the AhR activity and can 
suppress its transformation induced by dioxin. In particular, black tea, theaflavins, ethanolic extracts of propolis, 
and pigments in green tea leaves (Camellia sinensis) have been indicated as suppressor of dioxin-induced AhR 
activation; on the contrary, Anthocyans do not exert these properties. On this regard, several indigenous plants 
were described in Japan in 2006 (Nishiumi et al., 2006) and an update on the dietary ligands of the AhR was 
reported in 2008 (Ashida, Nishiumi, & Fukuda, 2008). Papoutsis and colleagues described epigenetic mechanisms 
that may contribute to down-regulate the tumor suppressor gene BRCA-1 in breast cancers, through food 
compounds acting as AhR antagonists. The induction of BRCA-1 hypermethylation could be the basis for the 
development of prevention strategies aimed at silencing the TCDD-AhR activation (Papoutsis, Borg, Selmin, & 
Romagnolo, 2012). Furthermore, an antiallergic drug (tranilast) that is an AhR agonist with inhibitory effects on 
triple-negative breast cancer cells selected for anti-cancer drug resistance has recently been discovered, suggesting 
promising applications in the treatment of such a disease (Prud'homme et al., 2010). Finally, epidemiological data 
indicated that flavonoids and proanthocyanidins seem to decrease the risk of cancer incidence. A series of Italian 
multicenter case-control studies (for a total of 16,000 controls and 10,000 incident cases of histologically-proven 
different cancer types) has indicated that the intake of these substances recognizes an inverse correlation with 
cancer incidence (Rossi, Bosetti, Negri, Lagiou, & La Vecchia, 2010).  
1.3 Dioxins (TCDD), AhR, and Cancer 
Dioxin (TCDD) was classified as “carcinogenic to humans” (Group 1) in 1997 from the IARC; it is the first 
molecule for which “there is now sufficient epidemiological evidence for all cancers combined” (Baan et al., 2009). 
TCDD carcinogenicity is largely mediated by the AhR; among the different ligands, TCDD has indeed the highest 
affinity for this receptor (Stevens et al., 2009). However, many questions remain to be answered in order to 
understand the exact dynamics of these relationships. It is not clear how much the carcinogenicity of TCDD is 
linked to the action of AhR and/or mediated by the immune suppression. There are insufficient data about the 
concentration of Dioxins in adipose tissue (and, hence, plasma) in healthy subjects and in cancer patients, 
particularly within polluted areas. It is still unclear if the ability of protective factors (AhR antagonist) may inhibit 
or compete with dioxins in the AhR activation. Finally, data are missing about the capability of AhR to bind with 
its ligands in relation to the presence of genetic polymorphisms favoring or hampering such a binding. Here we 
tried to go through this last issue. 
2. Activation Mechanisms of AhR 
AhR is a ubiquitous cytosolic protein, highly conserved during evolution, which belongs to the family of "basic 
helix-loop-helix/Per-Arnt-Sim (bHLH/PAS)" transcription factors, presenting different functional domains 
(Figure 2).  
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Figure 2. Main domains in the AhR protein 

 
The bHLH motif is localized in the N-terminal region of the protein and is common in the transcription factors. 
The nuclear localization signal (NLS) sequence, which allows the transport of the protein inside the nucleus 
through the nuclear pore complex (NPC), is also present in the N-terminal region. Transport of the protein into the 
nucleus is dependent on cytosolic nuclear transport receptors, called importins (importin-α and importin-β), as 
well as a small monomeric GTPase, called Ran. Like other G proteins, Ran is active when bound to GTP and 
inactive when bound to GDP. In the cytosol, Ran is complexed with a protein called GAP (GTPase Activator 
Protein), which may promote its GTPase activity. In the nucleoplasm, Ran is instead complexed with GEF 
(Guanilic nucleotide Exchange Factor), a protein activating Ran through the induction of the GDP to GTP 
exchange. Therefore, a gradient of two conformational forms of Ran (Ran-GTP and Ran-GDP) can be generated 
across the two sides of the nucleus. 
AhR functional domains, distinctive and highly conserved in this superfamily of receptors, are located: i) in the 
basic region, containing the DNA binding domain; ii) in the HLH region, which contains the helix-loop-helix 
motif, necessary for protein-protein interactions; iii) in two regions (PAS and PAS-A-B) presenting the 
dimerization (DD) and ligand-binding (LBD) domains, which specifically interact with other proteins containing 
PAS domains (Coumailleau, Poellinger, Gustafsson, & Whitelaw, 1995; Goryo et al., 2007) or share a high 
homology with the domains of the following proteins: Per (period circadian protein), Sim (single-minded protein), 
and ARNT (aryl hydrocarbon receptor nuclear translocator protein) (Ema et al., 1992); iv) in the glutamine-rich 
C-terminal region, which contains the transactivation domain for the recruitment of co-activators (Kumar, 
Ramadoss, Reen, Vanden Heuvel, & Perdew, 2001) (Figure 2).  
In humans, the AhR gene maps at chromosome 7, spanning a genomic region of 47146 nt, and consists of 11 
coding exons specifying for an mRNA of 5483 nt (Micka et al., 1997). The AhR gene consists of 2547 nt and 
encodes for a protein of 848 amino acid residues (Le Beau et al., 1994; Ema et al., 1994; Micka et al., 1997; 
http://www.uniprot.org/uniprot/P35869). The AhR protein is located in an inactive form in the cytosol, where it 
forms a multi-protein complex with the HSP90 (90-kDa Heath Shock Protein) chaperone (Denis, Cuthill, 
Wikström, Poellinger, & Gustafsson, 1998; Perdew , 1998), the P23 (tubulin binding protein) co-chaperone (Cox 
& Miller, 2004; Kazlauskas, Poellinger, & Pongratz, 1999), and a subunit of XAP-2 (hepatitis B virus 
X-associated protein or immunophilinlike protein), also referred to as AIP or ARA9 (Meyer, Pray-Grant, Vanden 
Heuvel, & Perdew, 1998). 
Such a multimeric complex is assembled through several stages. The initial AhR-HSP90 complex is stabilized by 
the intervention of P23 before binding the ligand (TCDD), which enters the cell by simple diffusion due to its high 
lipophilicity (Gu, Hogenesch, & Bradfield, 2000) and binds to the receptor pocket of the PAS-B domain of AhR. 
The resulting ligand-AhR-HSP90-P23 complex is the pre-requisite for the recruitment of XAP-2, whose function 
is to redistribute the complex into the cell cytoplasm. After the complex formation, HSP90 induces a 
conformational change in the N-terminal portion of AhR, making its NLS sequence accessible to the importin-α 
(Kazlauskas, Sundstrom, Poellinger, & Pongratz, 2001) (Figure 3).  
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Figure 3. Activation of the AhR protein through formation of a multimeric complex 
 
The presence of a HSP90 inhibitor, the geldanamycin (GA), has been demonstrated to interfere with the 
ligand-receptor binding, strongly suggesting that HSP90 plays an important role in regulating the intracellular 
traffic of AhR (Kazlauskas et al, 2001). The importin-α, in turn, performs the function of acceptor of importin-β 
that mediates the passage of the whole protein complex through the NPC. In fact, the dissociation of HSP90 
from the multimeric complex ligand-receptor does not take place before the entire complex translocates to the 
nucleus (Heid, Pollenz, & Swanson, 2000) (Figure 3). 
In the nucleus, AhR dimerizes with its translocation factor ARNT (Reyes, Reisz-Porszasz, & Hankinson, 1992; 
Probst, Reisz-Porszasz, Agbunag, Ong, & Hankinson, 1993) and the dimerization induces the HSP90 release 
from the complex (Kazlauskas et al., 1999; McGuire, Whitelaw, Pongratz, Gustafsson, & Poellinger, 1994). The 
heterodimer AhR/ARNT binds to specific regions on the DNA known as Dioxins Response Elements (DRE) or 
Xenobiotics Response Elements (XRE) (Matsushita, Sogawa, Ema, Yoshida, & Fujii-Kuriyama, 1993; Watson & 
Hankinson, 1992) located in the 5' region of the AhR-responsive genes. The DRE/XRE are regulatory elements 
placed upstream of the transcription start site of dioxin-inducible genes (Poland & Knutson, 1982). The binding 
of the AhR/ARNT heterodimer on the DRE/XRE elements involves the destruction of the nucleosome, the 
recruitment of transcription factors on the promoter region, and the subsequent mRNA synthesis. Currently, AhR 
and ARNT seem to directly bind to the general transcription factors. In mice, AhR/ARNT interact with the 
Transcription Factor IIF (TFIIF), while in humans AhR/ARNT interacts with both TFIIF and the transcription 
factor that specifically binds to sequences of DNA known as "TATA Box" (TATA-binding protein, TBP), which 
also represents the binding site of RNA polymerase II (Rowlands, McEwan, & Gustafsson, 1996; Beischlag et al., 
2002). 
The mechanisms of signal transduction depending on transcriptional activation mediated by AhR-TCDD/ligand 
are not exactly the same among the different species and this diversity may affect the biological and 
toxicological interspecies responses. Overall, the main effectors involved in such signal transduction are: 
- SRC1, coactivator 1 of the steroid receptor (also known as NCOA1 or coactivator of nuclear receptor 1), 

which is a protein endowed with intrinsic histone acetyltransferase activity and deputed to assist and support 
the activation of specific DNA sequences, after their specific binding with the estrogen receptor (ER); 

- the p300 coactivator protein (also known as EP300 or E1A p300 binding protein), which actively 
participates in cell proliferation and differentiation processes. Mutations in EP300 gene have been observed 
at somatic level in some cancer types only: colorectal, stomach, pancreas, breast, and prostate carcinomas. 
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In prostate cancer, presence of mutated p300 forms allows to predict the rate of the tumor growth and the 
metastatic spread of the disease; 

- RIP140 or Nuclear Receptor-Interacting Protein 1 (NRIP1), which is another nuclear protein that modulates 
the transcriptional activity of a variety of factors (including the estrogen receptor) in heart, skeletal-muscle, 
and liver tissues, contributing to regulation of the metabolism of lipids and glucose. 

Once the heterodimer AhR/ARNT with the entire battery of co-activators binds the regulatory regions containing 
the sequences DRE/XRE, the corresponding genes are transcriptionally activated and the synthesis of 
functionally distinct proteins begins. Among others, they include different enzymes that metabolize xenobiotics 
(mostly, belonging to the cytochrome P450 system, such as CYP1A1) (Watson & Hankinson, 1992; Hoffer, 
Chang, & Puga, 1996) as well as the AP-1 protein and the proto-oncogene products (c-Fos and c-Jun), which in 
turn act as well-known transcriptional regulators (Puga, Nebert, & Carrier, 1992; Suh et al., 2002). 
2.1 AhR Polymorphism 
Genetic polymorphisms may modulate an individual’s response to DNA-damaging agents derived from diet, life 
style, and environment. The most common genetic variation is represented by a single nucleotide polymorphism 
(SNP), occurring with a frequency of about 1 in 500-800 nucleotides. Several SNPs have been demonstrated to 
affect health outcomes caused by environmental exposure, being considered as important susceptibility factors. In 
the human genome, a mixture of high-penetrant/less-prevalent and low-penetrant/more-prevalent genetic variants 
can be detected. Experimental in vitro (human cell lines) and in vivo (animals) studies as well as epidemiological 
investigations conducted in populations accidentally exposed to dioxins, have revealed that the toxic responses are 
species-specific and may be related to AhR polymorphisms. 
The AhR gene, encompassing about 50 kilobases at the genomic level, is thus expected to contain about 60-100 
SNPs. Thus far, 120 SNPs have been identified within the coding regions of the AhR gene and included into the 
public database by the National Center for Biotechnology Information (NCBI) at www.ncbi.nlm.nih.gov/SNP. 
Distribution of SNPs within the open reading frame of the human AhR gene is presented in Table 1.  
 
Table 1. Single-nucleotide polymorphisms (SNPs) in coding regions of the AhR gene 

Domain Exon 
Total 

number of 
SNPs 

SNP code 

UTR-5’ 1 1 rs201368737 
bHLH 2 11 rs140254348, rs368818841, rs371321791, rs17779352, rs374827293, rs41273054, 

rs137949518, rs200664307, rs142412199, rs148360742, rs377294595 
PAS 3 7 rs141518984, rs190138857, rs200324493, rs377724396, rs150911949, rs199498192, 

rs374791470 
PAS 4 6 rs201276430, rs141667112, rs35966236, rs143848352, rs368194312, rs200257782 
PAS 5 6 rs371996593, rs147237881, rs140821416, rs374428849, rs368615071, rs372336741 
PAS 6 6 rs371991449, rs182857825, rs375293250, rs149809382, rs201831181, rs145760036 

PAS-LBD 7 5 rs148672036, rs142158496, rs113673253, rs140380733, rs374545462 
PAS-LBD 8 4 rs201806511, rs376505668, rs190667274, rs181963856 
PAS-LBD 9 7 rs369460923, rs370578969, rs200384399, rs145249237, rs146411430, rs140788225, 

rs374246059 
TAD 10 65 rs150125891, rs61730147, rs201080105, rs368011626, rs201852502, rs190159217, 

rs138430398, rs372142705, rs200300821, rs199841463, rs377014052, rs199672191, 
rs149412835, rs138465254, rs182847559, rs201246266, rs79550121, rs75519181, 
rs191715848, rs371015222, rs61755968, rs138562518, rs374994764, rs367940403, 
rs372146849, rs374243337, rs375539934, rs72552768, rs140760845, rs372172692, 

rs141403259, rs2066853, rs139289489, rs370044719, rs4986826, rs77985859, rs146230260, 
rs200030191, rs202073016, rs202053172, rs371295244, rs374810935, rs369161400, 
rs75850162, rs139422560, rs146989897, rs372915488, rs114489761, rs149039873, 

rs138094242, rs376674830, rs369817097, rs142052003, rs200831347, rs373271883, 
rs377480831, rs151173074, rs200221005, rs373123275, rs377432596, rs372109927, 

rs140164845, rs72552769, rs76326113, rs138444833 
UTR-3’ 11 2 rs372313569, rs146912085 
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Considering the SNPs within introns as well as those located within the 5'- and 3'-untranslated regions the total 
amount of SNPS identified in the AhR gene is thus three-four times higher than expected.  
In the human AhR gene, SNP variants occur predominantly in exon 10, a region that encodes a major portion of the 
transactivation domain of the receptor that is responsible for regulating expression of target genes (Harper, Wong, 
Lam, & Okey, 2002). The other regions of the AhR gene comprehending functional SNPs are represented by exons 
2 (which includes the bHLH domain), 4 (PAS domain), and 7 (PAS and LBD domains). Thus far, however, only a 
limited amount of genetic variants in AhR gene have been evaluated for exerting a functional role, leading to 
substantial differences in sensitivity to the biochemical and toxic effects of TCDD and related compounds (Table 
2).  
 
Table 2. Functionally investigated AhR single-nucleotide polymorphisms (SNPs) 

SNP code Codon DNA position Protein position Designation 
rs7796976 5'-UTR c.-459 A>G - -459A>G 

rs17779352 44 c.132 T>C p.Asn44Asn N44N 
rs41273054 50 c.150 G>A p.Leu50Leu L50L 
rs35966236 132 c.396 T>C p.Asp132Asp D132D 
rs61730147 398 c.1192 C>A p.Arg398Arg R398R 
rs61755968 490 c.1468 A>G p.Met490Val M490V 
rs72552768 517 c.1549 C>T p.Pro517Ser P517S 
rs2066853 554 c.1661 G>A p.Arg554Lys R554K 
rs4986826 570 c.1708 G>A p.Val570Ile V570I 

rs72552769 786 c.2356 A>G p.Met786Val M786V 
 
The most widely studied polymorphism is that at codon 554 (R554K); however, the interpretation of the 
phenotypic effects of this polymorphism is complicated. Harper and colleagues have shown that R554K exerts a 
strong effect on the AHR-mediated response by reducing the receptor function (Harper et al., 2002). The R554K 
has been reported to also segregate through linkage disequilibrium (such a genetic phenomenon is defined as the 
association between allelic variants that occurs more often than would be expected by chance) with other two 
SNPs in the same genomic region associated with transactivation of other genes in exon 10: P517S and V570I 
(Wong, Okey, & Harper, 2001). Genotypes including each single polymorphism (at codon 554 or 570 or 571) as 
well as haplotypes combining all three polymorphisms (P517S-R554K-V570I) or two of them (R554K-V570I) 
failed to however exert a significant TCDD-dependent induction of CYP1A1 expression in in vitro experiments on 
cancer cell lines, even though these variants were found to maintain the ability to bind the TCDD as well as to 
interact with the aryl hydrocarbon response effectors (e.g. CYP1A1, CYP1A2, CYP1B1, ALDH3A1, NQO1 and 
UGT1A1) (Wong et al., 2001; Mandal, 2005). As a confirmation of this, none of such common polymorphisms 
(P517S, R544K, V570I, and R544K/V570I) was demonstrated to significantly enhance the TCDD-dependent 
regulation of CYP1A1 or CYP1B1 gene expression and activity in AhR-deficient human breast cancer cells 
transfected with the above-mentioned AhR variants (Celius & Matthews, 2010). In this in vitro model, however, 
the lack of CYP1A1/B1 induction could be due to the occurrence of a marked ligand-independent activation of 
AhR target genes.  
In addition to the polymorphisms in the transactivation domain of the human AhR, several SNPs have been 
reported in the 5′-flanking sequence, but none of these seems to modify receptor expression or function (Cauchi et 
al., 2001; Racky, Schmitz, Kauffmann, & Schrenk, 2004). Recently, an intronic polymorphism in the AhR gene, 
IVS1+4640 G/A, has been associated with the risk of non-Hodgkin lymphoma in a case-control study also 
evaluating the level of exposure to organochlorines (Ng et al., 2010). Although none of the investigated AhR 
variants seems to display an altered ability to modulate TCDD-dependent gene expression, all the same studies 
confirmed that the interaction of the TCDD ligand with AhR acts as a strong activator of transcription of the AhR 
target genes.  
The functional effects of amino acid variations have been studied for only a few sites within the AHR protein. 
Therefore, additional strategies (i.e. gene-specific knockout in different cell lines or non-murine knockout animals) 
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- as previously proposed (Porteus & Carroll, 2005) should be employed in order to demonstrate the real functional 
impact of the different AhR gene variants. Nevertheless, additional molecular epidemiologic studies are awaited to 
effectively evaluate the impact of the different AhR polymorphisms on human health and cancer risk. 
3. Considerations and Perspectives on Environmental Pollution  
Recently, PCBs and dioxin-like PCBs were classified in Group 1 on the basis of extensive evidence of an 
AhR-mediated mechanism of carcinogenesis that is similar to that of TCDD as well as sufficient evidence of 
carcinogenicity in experimental animals (Lauby-Secretan et al., 2013). TCDD and its congeners have been 
released from industrial and incinerators over the last century, causing widespread contamination of food and 
significant toxic body burdens in nearly all living organisms. These molecules are extremely stable and spread 
rapidly through the environment, especially via the soil and water, inevitably polluting the food chain and 
accumulating in fatty tissues and milk as a result of their liposolubility (Wittsiepe et al., 2007; Todaka et al., 2011; 
Focant et al., 2013). Although tolerable daily intake (TDI) is set at 2 picograms/kg/day in Europe, it must be 
remembered that dioxins have a half-life in humans of 7 to 11 years, suggesting that this ‘limit’ does not safeguard 
against a potential accumulation within the body (Schecter et al., 2006; Thompson & Anthony, 2008). The 
increased accumulation occurs in the fatty tissues and consequently in milk, potentially putting at risk younger 
generations. In fact, it can be assumed that a body accumulating Dioxins may have a permanently activated AhR 
protein, resulting in a continuous and uninterrupted state of immunosuppression (Ridolfi, Guidoboni, & Ridolfi, 
2010). Furthermore, the continuous activation of AhR could have an important role on inducing stem cells and, 
consequently, on development and progression of cancer (Gasiewicz, Singh, & Bennett, 2014). 
In the areas of greatest environmental pollution where, among other pollutants, high levels of Dioxins are found in 
soil, water, and food chain, a significant increase in the incidence of all types of cancer is recorded. Out of 23 Sites 
of Interesting Italian National (SIN) areas considered at environmental risk and followed by a tumor registry - 
encompassing a total population of about 2 million individuals, the incidence of cancer increased by 9% in men 
and 7% in women (Pirastu et al., 2011). In Taranto, site of the major steel plant in South Italy - where a disastrous 
pollution with accumulation of dioxins in soil and food chains has been documented over the years, data from the 
Istituto Superiore di Sanità (Rome) indicate an overall increase of all cancers of about 30%, in comparison with 
incidence from other Italian Cancer Registries (Pirastu et al., 2013a).  
While a documented serious increase in tumors caused by pollution and dioxins are thus observed, there are 
however workers and inhabitants of the same polluted areas that are less susceptible to cancer. This may lead one 
to speculate that there might be a different personal predisposition to action of pollutants, perhaps also linked to 
several metabolic capabilities of individuals to recruit, retain, and concentrate toxic substances.  
Coming back to the possible actions of the binding AhR-TCDD, other hypotheses that could explain this 
differential susceptibility may be: a) a different effect of the binding capacity, on the basis of receptor 
polymorphisms; or b) an attenuation or elimination of the effectiveness of the binding due to a competition of 
endogenous or exogenous ligands with antagonist action. Our review relates to studies on human AhR 
polymorphisms and does not seem to indicate that there are individual genetic variants that may modulate the 
activity of the AhR receptor. While the AhR receptor is always strongly activated by the TCDD binding, data from 
literature do not indicate that human AHR polymorphisms may somehow interfere with the dioxin stimulation. 
One could argue that the high level of such an activation may be independent on the polymorphic changes 
occurring into the different functional tasks or domains of the AhR protein. Harper reports: “All current 
phenotyping methods can be confounded by factors other than genetic variation that alters the structure of the 
AHR itself” (Harper et al., 2002); therefore, we can assume that many other variables may play a role in 
determining both activation and function of the receptor. Overall, the different concentrations of TCDD in the 
plasma (or tissue), the duration of toxic stimuli (given the long half-lives of dioxin in the human body), the age of 
beginning of the stimulation, and/or the possible interference with antagonistic factors in the diet may all 
contribute to functionally modulate the AhR activity. 
There are still too many questions awaiting for answers toward a full comprehension of the true role of the AhR 
protein in determining tumor disease in humans when activated by toxic pollutants. Further studies on 
polymorphisms of the gene regions mainly involved in the activation of AHR protein are warranted. Firstly, from 
the genetic point of view - with particular attention at the transactivation domain: frequency and prevalence of 
gene variants in different populations, in order to both identify those most characterizing the different groups of 
individuals and limit the number of them to be addressed to functional analyses. Then, from the biological point of 
view: preparation and analysis of the expression constructs in order to assess in vitro cellular models. It might be 
conceivable a case-control study on subjects living in heavily polluted sites compared to others who live in 
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"healthier" geographical areas, evaluating the frequency of all AhR polymorphisms and the different susceptibility 
to cancer, as well as the possible interference of factors with antagonistic activity on the receptor. 
4. Conclusions 
The incidence of cancer continuously and progressively increases; such an increase seems to be particularly more 
evident in the most polluted geographical areas (Belpomme et al., 2007; Rossi et al., 2013; Pirastu et al., 2013b). 
The AhR protein represents the receptor which mostly binds toxic pollutants such as TCDD and its congeners; the 
high-affinity binding induces a strong agonistic activity of the receptor. Therefore, the activation of the 
TCDD-AhR axis is strongly involved in the process of carcinogenesis (Schecter et al., 2006; Feng et al., 2013). 
Many issues are yet to be determined about the manner in which individuals, although exposed to the same risk, are 
more or less susceptible to the development of cancer. On this regard, various factors should be encountered: the 
role of polymorphisms in specific regions of AhR, the plasma or tissue concentrations of Dioxins, the coexistence 
of AhR antagonists. Finally, the increasing incidence of childhood cancers as well as the onset of tumors in 
individuals at younger age are both particularly worrisome, especially in Italy. This may correlate with the findings 
recently reported in the literature about the accumulation of pollutants in the fetus through the umbilical cord and 
placenta (Soto & Sonnenschein, 2010; Terracini & Masera, 2013; Leino et al., 2013; Vizcaino, Grimalt, 
Fernández-Somoano, & Tardon, 2014). An appeal is thus coming from several parts: we need new research work 
that may clarify too many obscure points on such issues (Christiani, 2011; Hanahan, 2014). Investigations in this 
field can be no longer delayed, and appear essential for leading a true primary prevention that protects the 
environment and the health of future generations.   
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