

British Journal of Mathematics & Computer Science

6(5): 435-443, 2015, Article no.BJMCS.2015.089

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: falblooshi@uob.edu.bh;

Software Design Concerns Associated with Simulating
Multiple Inheritance in Java for Implementation Purposes

Fawzi Albalooshi1*

1
Department of Computer Science, College of Information Technology, University of Bahrain,

Bahrain.

Article Information

DOI: 10.9734/BJMCS/2015/15476
Editor(s):

(1) Ke-Lin Du, Chief Scientist, Enjoyor Labs, Hangzhou, China and Department of Electrical and Computer Engineering,
Concordia University, Canada.

Reviewers:
(1) M. Bhanu Sridhar, Department of CSE & IT, GVP College of Engineering for Women, India.

(2) James A. Rodger, Indiana University of Pennsylvania, USA.
(3) Anonymous, India.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=735&id=6&aid=7757

Received: 27 November 2014
Accepted: 03 January 2015
Published: 13 January 2015

Abstract

OO software development has become the dominant development approach with Java as the
common implementation language. A well-known drawback in Java is its limitation in
implementing multiple inheritance which is considered by many researchers a fundamental
concept in OO. Approaches in simulating multiple inheritance in Java have been thought of and
implemented. In this paper some of these approaches are presented and their negative side
effects on the developed software are highlighted. The paper addresses important aspects
related to implementing multiple inheritance in Java that may be neglected by developers, and
proposes two additional steps in the development life cycle when implementing a system with
multiple inheritance relationship(s) in Java. This proposed solution as illustrated with examples
ensures proper software development practice throughout the development stages even if there
are specific requirements to implement multiple inheritance in Java.

Keywords: Software engineering, object-oriented software development, java programming,
multiple inheritance.

1 Introduction

According to Booch [1] “inheritance is a relationship among classes wherein one class shares the
structure and/or behavior defined in one (single inheritance) or more (multiple inheritance) other
classes”. Inheritance is a fundamental mechanism that distinguishes object-oriented (OO) method

Original Research Article

of software development than more traditional ones. The benefits of inheritance include
information sharing between a subclass and its super class(es) and software reuse that ultimately
results to reduced development tim

There are two types of inheritance single and multiple. Single inheritance is the ability of a class to
inherit the features of a single super class with more than a single inheritance level i.e. the super
class could also be a subclass inh
ability of a class to inherit from more than a single class. For example, a graphical image could
inherit the properties of a geometrical shape and a picture as shown in
that multiple inheritance allows a user to combine independent concepts represented as classes
into a composite concept represented as a derived class. For example, a user might specify a new
kind of window by selecting a style of window interact
and a style of appearance from a set of display defining classes.

Fig. 1. Multiple

There is wide debate on the usefulness of multiple inheritance and whether the complexities
associated with it worthwhile considering it though some researchers such as Stroustrup [2] are
convinced that it can easily be implemented. He states that multiple inheritance avoids replication
of information that would be experienced with single inherit
combined concepts from more than one class. Booch [1] finds inheritance to be like a parachute in
that it is good to have it on hand when you need it. According to Booch there are two problems
associated with multiple inheritance and they are; the first, how to deal with name collisions from
super classes? And the second, how to handle repeated inheritance? He presents solutions to
these two problems. Other researchers [3] suggest that there is a real need for multiple inhe
for efficient object implementation. They justify their claim referring to the lack of multiple subtyping
in the ADA 95 revision which was considered as a deficiency that was rectified in the newer
version [4].

It is clear that multiple inheritance is a fundamental concept in many systems and the ability to
incorporate it in system design and implementation will better structure the description of objects
modeling their natural status and enabling further code reuse to that benefited from
inheritance. Java is currently the most widely used OO programming language due to many
reasons including its network-centric independent platform and powerful collection of libraries of
classes known as Java APIs (Application Programming Interface
limitation when it comes to implementing multiple inheritance which motivated researchers to think
of ways to overcome as discussed in section 2 in this paper. Section 3 addresses the drawback of
the solutions discussed in section 2 from a software engineering prospective. Section 4 addresses
the stages of development with emphasis on multiple inheritance and presents an approach to
extend the development activities to overcome the gap discussed in section 3. Concluding r
are presented in section 5.

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.20

of software development than more traditional ones. The benefits of inheritance include
information sharing between a subclass and its super class(es) and software reuse that ultimately
results to reduced development time and effort.

There are two types of inheritance single and multiple. Single inheritance is the ability of a class to
inherit the features of a single super class with more than a single inheritance level i.e. the super
class could also be a subclass inheriting from a third class and so on. Multiple inheritance is the
ability of a class to inherit from more than a single class. For example, a graphical image could
inherit the properties of a geometrical shape and a picture as shown in Fig. 1. Stroustrup [
that multiple inheritance allows a user to combine independent concepts represented as classes
into a composite concept represented as a derived class. For example, a user might specify a new
kind of window by selecting a style of window interaction from a set of available interaction classes
and a style of appearance from a set of display defining classes.

Fig. 1. Multiple inheritance example

There is wide debate on the usefulness of multiple inheritance and whether the complexities
associated with it worthwhile considering it though some researchers such as Stroustrup [2] are
convinced that it can easily be implemented. He states that multiple inheritance avoids replication
of information that would be experienced with single inheritance when attempting to represent
combined concepts from more than one class. Booch [1] finds inheritance to be like a parachute in
that it is good to have it on hand when you need it. According to Booch there are two problems

ritance and they are; the first, how to deal with name collisions from
super classes? And the second, how to handle repeated inheritance? He presents solutions to
these two problems. Other researchers [3] suggest that there is a real need for multiple inhe
for efficient object implementation. They justify their claim referring to the lack of multiple subtyping
in the ADA 95 revision which was considered as a deficiency that was rectified in the newer

inheritance is a fundamental concept in many systems and the ability to
incorporate it in system design and implementation will better structure the description of objects
modeling their natural status and enabling further code reuse to that benefited from
inheritance. Java is currently the most widely used OO programming language due to many

centric independent platform and powerful collection of libraries of
classes known as Java APIs (Application Programming Interface) [5]. Nevertheless, it has a major
limitation when it comes to implementing multiple inheritance which motivated researchers to think
of ways to overcome as discussed in section 2 in this paper. Section 3 addresses the drawback of

in section 2 from a software engineering prospective. Section 4 addresses
the stages of development with emphasis on multiple inheritance and presents an approach to
extend the development activities to overcome the gap discussed in section 3. Concluding r

; Article no.BJMCS.2015.089

436

of software development than more traditional ones. The benefits of inheritance include
information sharing between a subclass and its super class(es) and software reuse that ultimately

There are two types of inheritance single and multiple. Single inheritance is the ability of a class to
inherit the features of a single super class with more than a single inheritance level i.e. the super

eriting from a third class and so on. Multiple inheritance is the
ability of a class to inherit from more than a single class. For example, a graphical image could

1. Stroustrup [2] states
that multiple inheritance allows a user to combine independent concepts represented as classes
into a composite concept represented as a derived class. For example, a user might specify a new

ion from a set of available interaction classes

There is wide debate on the usefulness of multiple inheritance and whether the complexities
associated with it worthwhile considering it though some researchers such as Stroustrup [2] are
convinced that it can easily be implemented. He states that multiple inheritance avoids replication

ance when attempting to represent
combined concepts from more than one class. Booch [1] finds inheritance to be like a parachute in
that it is good to have it on hand when you need it. According to Booch there are two problems

ritance and they are; the first, how to deal with name collisions from
super classes? And the second, how to handle repeated inheritance? He presents solutions to
these two problems. Other researchers [3] suggest that there is a real need for multiple inheritance
for efficient object implementation. They justify their claim referring to the lack of multiple subtyping
in the ADA 95 revision which was considered as a deficiency that was rectified in the newer

inheritance is a fundamental concept in many systems and the ability to
incorporate it in system design and implementation will better structure the description of objects
modeling their natural status and enabling further code reuse to that benefited from single
inheritance. Java is currently the most widely used OO programming language due to many

centric independent platform and powerful collection of libraries of
) [5]. Nevertheless, it has a major

limitation when it comes to implementing multiple inheritance which motivated researchers to think
of ways to overcome as discussed in section 2 in this paper. Section 3 addresses the drawback of

in section 2 from a software engineering prospective. Section 4 addresses
the stages of development with emphasis on multiple inheritance and presents an approach to
extend the development activities to overcome the gap discussed in section 3. Concluding remarks

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.2015.089

437

2 Multiple Inheritance and Java

In Java, a class inherits from its superclass and direct super-interfaces all methods that are public
and protected. Classes can only support single inheritance from another class in which the child
class can inherit the implementations of a super class. Java does not support multiple inheritance,
however the language supports multiple inheritance of interfaces [6]. According to [7] a strong
reason that prevents Java from extending more than one class is to avoid issues related to
multiple inheritance of attributes from more than one level which is referred at as the ‘diamond
problem’. In which a sub-class inherits from two or more super classes that share the same
ancestor resulting to more than one instance of the same ancestor state (attribute) present in the
child class at the lower level of the inheritance hierarchy thus raising the issue of which instance of
the ancestor state is valid and should be accessed? On the other hand, interfaces do not have
state, thus do not pose such a threat, and the more recent Java 8 compiler resolves the issue of
which default method a particular class uses. To overcome this difficulty, researchers investigated
compromised solutions. Two of the reported work in the literature have a similar approach with
minor differences are discussed in the following two paragraphs.

Thirunarayan et al. [8] investigated approximating multiple inheritance in Java by enabling a
subclass C to inherit from a single superclass A and to implement an interface IB that is
implemented by a class B in an effort to simulate multiple inheritance in Java. The example in Fig.
2 outlines the authors’ solution to approximating multiple inheritance in Java. The class B is then
incorporated as an inner class (with composition relationship) in the class C. The authors initially
present three main difficulties with their solution. The first is that code reuse would be limited, but it
is possible. The second is polymorphism and the third is overriding. Polymorphism could not be
fully supported due to the fact that class C may not support all methods in B. Amendments to class
B will require changes to the interface IB and to the class C. Overriding is a fundamental concept
of inheritance but cannot easily be implemented with inner classes such as B and may require the
modification of the parent class. The authors conclude that multiple inheritance can be simulated
by the use of forwarding to achieve code reuse, interfaces to achieve polymorphism, and back-
referencing to approximate overriding.

Tempro and Biddle [9] highlight the two main benefits of inheritance as code reuse and protocol
conformance. Code defined in the parent class is reused by the child class and the child class
responds to the message similarly to the parent class and can substitute it, thus achieving protocol
conformance. The authors suggest that delegation can be used to simulate multiple inheritance in
Java, but there are two main setbacks. The first is that in some cases the amount of code needed
to achieve reuse is almost as much as the code being reused. The second is the difficulty in
accessing objects imposed by the solution which renders classes to be highly coupled and with
low cohesion. Their solution is similar to that presented by Thirunarayan et al. [8] as shown in Fig.
2 in which the class B is incorporated as an inner class within C and declaring an object b to
implement it. In their paper they demonstrate that protocol conformance can be achieved by single
inheritance and the use of Java’s capability which allows the multiple implementation of Java
interface classes. The technique they use is called ‘interface-delegation’ which require a child
class to inherit from a single parent class and implements and delegates to as many interface
classes resulting to the child class reusing all the parent classes. In addition to the two main
drawbacks highlighted above the solution suffers from the following: first, protected fields and
methods of the delegation object are only accessible to extending classes; second, the
programmer does not have control over class libraries such as Java Core API thus creating
interfaces for such classes is not possible; and third, delegation can be problematic in the
presence of self-calls. The authors recommend that every class intended for reuse by inheritance
(such as Java Core API library of classes) should also have a matching interface to enable such
an approach in simulating multiple inheritance to be applicable.

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.2015.089

438

The above two approaches in simulating multiple inheritance in Java proposed by the researchers
is adopted and recommended by many Java developers as it is evident in online Java forums and
posts. An approach recommended by Venners [10] uses composition (also referred at as inner
class/object) instead of inheritance especially if code reuse is the goal. On the other hand, Lagorio
et al. [11] completely replace inheritance with composition as presented in their framework titled
Feather Jigsaw.

class A { // The primary class to be inherited
 public string a() { return a1();}
 protected string a1() {return “A”;}
}

interface IB { // Second class to be inherited declared as an interface
 public string b(IB self);
 public string b1();
}

class B implements IB { // Implementation class for the interface IB
 public string b(IB self) {return self.b1(); }
 protected string b1() {return “B”;}
}

class C extends A implements IB { // Subclass inheriting from A and
 // implementing IB’s interface

B b; // Innerclass as composition relationship
 public string b(IB self) {return b.b(this); }
 protected string b1() {return “C”;}
 protected string a1() {return “C”;}
}

Fig. 2. Approximating multiple inheritance in java

3The Problem - OO Design Vs Java-Oriented Design

One of the fundamental concepts in software engineering is that implementation must be based on
design, but when attempting to implement a design that uses multiple inheritance as part of the
solution we are faced with a dilemma when using Java as the programming language. The design
is violated to enable a compromised solution to implement multiple inheritance which does not only
affect the classes associated with the multiple inheritance relationship, but may affect other
classes in the design. In effect it requires a redesign; an extended design; or more precisely a
Java-oriented design. To clarify this claim let us consider the problem raised by Tempro and Biddle
[9]. The class diagram shown in Fig. 3.1 represents a graph composed of vertices (nodes in the
graph) represented as the class Vertex. VisualVertex (is a visually displayed graphical icon
representing a Vertex) inherits from the classes Vertex and Component (a class borrowed from
java.awt to provide graphical representation capabilities). If we wish to allow the graph edges to be
observers of vertices they are attached to, so that when a vertex changes position all edges
attached to it are notified in order to react to the change. The standard design pattern Observer
[12-13] would be used. It requires the VisualEdge class (a visually displayed graphical icon
representing an edge (it is not shown in Fig. 3.1 in order not to complicate the figure)) to implement
the Observer interface and the VisualVertex class to extend the class Observable. Implementing
the Observer interface is possible since Java allows multiple interface implementations, but
extending (directly inheriting) the Observable class by VisualVertex is not possible. Because
VisualVertex will now need to inherit from three classes: Vertex, Component, and Observable. It is

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.2015.089

439

possible to inherit from Vertex (since it is a user-defined class) using interface-delegation as
discussed in section two, but Component and Observable are pre-defined classes and can only be
extended to be used. Nevertheless, one of them must to be inherited using interface-delegation
which is the heart of the problem. If we attempt to apply this technique on the Observable class we
are faced with a difficulty. The implementation of the Observer interface would expect an argument
that conforms to Observable and if VisualVertex implements Observable as an interface it would
not conform and could not be passed as an argument. The Observable class and Observer
interface depend on each other and must be used as specified by the pattern. Furthermore, an
attempt to use interface-delegation to inherit from the Component class in order to extend (directly
inherit from) the Observer to overcome the obstacle will cause nonconformance with the use of the
Component class and its related AWT classes. As a solution to this problem we are forced to write
our own version of the Observer pattern considering the fact it can easily be written, but this act
raises a serious issue of rewriting code already available for reuse.

4 Design Issues for Multiple Inheritance

Inheritance is mostly recognized in the analysis stage as part of the system in the real world and
designers make use of such a situation to benefit from it for software reuse purposes and the
mapping of information and functionality according to the system domain. Typically, designers
build on such a relationship in the design documents without constraining themselves with
implementation issues. Therefore, class diagrams for the inheritance related classes are drawn
and attributes, operations, and relationships are decided based on it. According to Blaha and
Rumbaugh [14] inheritance has three purposes, firstly to support polymorphism, secondly to
structure the description of objects, and thirdly to enable code reuse. Overriding a super class
feature by a subclass may also be necessary in some cases in order to specify a behavior specific
to the sub-class to tighten the specification or improve performance. As class design progresses
adjustments may be made to increase inheritance by rearranging classes and operations,
abstracting common behavior for a group of classes, and using delegation to share behavior. In
the late detailed design stage prior to implementation it is considered good practice to fine tune
classes with inheritance relationships to ensure proper implementation.

Multiple inheritance is a fundamental OO concept that is applied in early software development
stages and developers should not constrain themselves with the limitations of the programming
language to be used in early stages and should freely apply multiple inheritance concepts in order
to design a proper OO system. In other words, regardless of the programming language
capabilities to support multiple inheritance or not, ideally the analysis and design documents
should clearly and freely include specifications for multiple inheritance concepts if found suitable
for the system under development. However, if such design concepts are not supported by the
programming language special implementation classes could be defined to overcome such
difficulties. We recommend that implementation decisions related to the programming language to
be used be carefully assessed and separate implementation language specific design documents
be created that clearly indicate their purpose. Such classes and associated code will most likely
need special testing arrangements to ensure multiple inheritance issues are properly implemented
such as code reuse, polymorphism, dynamic binding, and overriding. Whether to use single
inheritance, interface-delegation, inner class, or a combination of the three it is important that a
proper OO software development approach is followed in order to analyse and design the software
system independent of the implementation language especially the classes and their relationships,
such documents should be left intact showing the exact OO nature of the system in case future
enhancements become necessary or for it to be implemented in an alternative programming
language. Fig. 4 below shows our two proposed amendments to the development process. The
first is a special design stage to cater for a system that uses multiple inheritance and it is to be
implemented in a programming language that does not support such a mechanism such as Java.
The second is related to amendments to existing systems. Systems undergo continues

developments for improvements as it is clearly evident in a study carried out by Nasseri et al
in which they observed that the number of classes in four live Java systems of different sizes have
continually increased (in some cases more than four times) as improved versions of the software
were released. Classes within systems were continuously moved across the same inherit
hierarchy. Modifications to a system are inevitable, therefore, we strongly believe that future
modifications to a system must properly be analysed to ensure that design documents are kept up
to-date, the new modifications are properly integrated, and
approach is followed.

For example, if it is required to implement the system discussed in section 3 and shown in
C++ the classes and their relationships shown in
However, if it is required to implement it in Java we would have to implement the classes shown in
Fig. 3.2 which were especially modified to suit Java but at the same time simulate (as much as
possible) the design shown in 3.1 and were developed to accommodate th
implementing multiple inheritance in Java. Therefore, the class model shown in
and is a more accurate OO representation and design for the problem. We would face OO design
shortcomings if the design was specially developed for Java implementation, thus rendering the
more accurate version never to be thought of and the
enhancements would be carried-
design and implementation difficulties and flaws.

Fig. 3. Typical

As another example consider the programme shown in
multiple inheritance the code for the same programme would be written as shown in
The code in Fig. 2 was actually wri
5, thus strongly supporting the suggestions presented in
analysed and designed with multiple inheritance in mind and then if the implementation language
does not support multiple inheritance necessary simulation modifications must be planned and

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.20

developments for improvements as it is clearly evident in a study carried out by Nasseri et al
at the number of classes in four live Java systems of different sizes have

continually increased (in some cases more than four times) as improved versions of the software
were released. Classes within systems were continuously moved across the same inherit
hierarchy. Modifications to a system are inevitable, therefore, we strongly believe that future
modifications to a system must properly be analysed to ensure that design documents are kept up

date, the new modifications are properly integrated, and a proper software engineering

For example, if it is required to implement the system discussed in section 3 and shown in
C++ the classes and their relationships shown in Fig. 3.1 would be implemented as they are.

if it is required to implement it in Java we would have to implement the classes shown in
3.2 which were especially modified to suit Java but at the same time simulate (as much as

possible) the design shown in 3.1 and were developed to accommodate the difficulties in
implementing multiple inheritance in Java. Therefore, the class model shown in Fig. 3.1 is the base
and is a more accurate OO representation and design for the problem. We would face OO design
shortcomings if the design was specially developed for Java implementation, thus rendering the
more accurate version never to be thought of and therefore future modifications and

-out on an inaccurate OO design which may result to unseen
design and implementation difficulties and flaws.

Fig. 3.1. Typical OO design

Fig. 3.2. Java-oriented design

Fig. 3. Typical OO design vs Java-oriented design

As another example consider the programme shown in Fig. 2 if we assume that Java supports
multiple inheritance the code for the same programme would be written as shown in

2 was actually written based on the multiple inheritance concept as shown in
5, thus strongly supporting the suggestions presented in Fig. 4 in that a system must first be
analysed and designed with multiple inheritance in mind and then if the implementation language

oes not support multiple inheritance necessary simulation modifications must be planned and

; Article no.BJMCS.2015.089

440

developments for improvements as it is clearly evident in a study carried out by Nasseri et al. [15]
at the number of classes in four live Java systems of different sizes have

continually increased (in some cases more than four times) as improved versions of the software
were released. Classes within systems were continuously moved across the same inheritance
hierarchy. Modifications to a system are inevitable, therefore, we strongly believe that future
modifications to a system must properly be analysed to ensure that design documents are kept up-

a proper software engineering

For example, if it is required to implement the system discussed in section 3 and shown in Fig. 3 in
3.1 would be implemented as they are.

if it is required to implement it in Java we would have to implement the classes shown in
3.2 which were especially modified to suit Java but at the same time simulate (as much as

e difficulties in
3.1 is the base

and is a more accurate OO representation and design for the problem. We would face OO design
shortcomings if the design was specially developed for Java implementation, thus rendering the

refore future modifications and
out on an inaccurate OO design which may result to unseen

2 if we assume that Java supports
multiple inheritance the code for the same programme would be written as shown in Fig. 5 below.

tten based on the multiple inheritance concept as shown in Fig.
4 in that a system must first be

analysed and designed with multiple inheritance in mind and then if the implementation language
oes not support multiple inheritance necessary simulation modifications must be planned and

designed before being implemented. Keeping both designs eases the implementation of future
modifications to the system. For example, if we introduce a minor change
such as to the name of the function ‘
class C will need to be updated for the change. However, the same change in the same function in
the implementation shown in Fig.
system after implementation must be addressed in early stages as shown in

Fig. 4. Extending the software development stages

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.20

designed before being implemented. Keeping both designs eases the implementation of future
modifications to the system. For example, if we introduce a minor change to the code in
such as to the name of the function ‘public string b(IB self)’ in the class B. The interface

will need to be updated for the change. However, the same change in the same function in
Fig. 5 will require no change in the class C. Modifications to the

system after implementation must be addressed in early stages as shown in Fig. 4.

Fig. 4. Extending the software development stages

; Article no.BJMCS.2015.089

441

designed before being implemented. Keeping both designs eases the implementation of future
to the code in Fig. 2

. The interface IB and the
will need to be updated for the change. However, the same change in the same function in

. Modifications to the

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.2015.089

442

class A { // The primary class to be inherited
public string a() { return a1();}
protected string a1() {return “A”;}

}
class B { // The primary class to be inherited

public string b() { return b1();}
protected string b1() {return “B”;}

}
Class C extends A, B {//
 protected string b1() {return “C”};
 protected string a1() {return “C”};
}

Fig. 5. Java classes with multiple inheritance

5 Conclusion

OO software development methodology has become the most popular development paradigm in
use nowadays. Many systems are being developed using Java due to its rich collection of readily
available well-designed set of classes known as Java APIs and many other benefits such as the
availability of a common network-centric platform, its security features, dynamic-ability, and
extensibility. A major deficiency in Java its limitation to implement multiple inheritance which
motivated many researchers to suggest solutions to overcome them as reviewed in section 2.
Though such solutions are possible there is a cost on the developed software that developers
must endure as discussed in section 3. A higher cost a Java system will endure would be on the
design side if special care is not practiced, that may have negative effects on implementation as
explained in section 4 in which the authors suggest a slightly modified software development life-
cycle by which such costs and difficulties are reduced to the minimum.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Booch Grady. Object-oriented analysis and design with applications. 2nd Edition. Published

by Addison-Wesley in December; 1998.

[2] Stroustrup Bjarne. Multiple inheritance for C++. The C/C++ Users Journal. May 1999.

[3] Ducournau R, Morandat F, Privat J. Emprical assessment of object-oriented

implementations with multiple inheritance and static Typing. OOPSLA 2009, October 25-29,
2009, Orlando, Florida, USA. ACM, 2009.

[4] Taft ST, Duff RA, Brukardt RL, Ploedereder E, Leroy P, editors. Ada 2005 reference manual:

language and standard libraries. LNCS 4348. Springer, 2006.

[5] Flanagan David. Java in a NUTSHELL. 3rd Edition. Published by O’Reilly & Associates, Inc.;

November 1999.

[6] Gosling James, Joy Bill, Steele Guy, Bracha Gilad, and Buckley Alex. The Java language

specification – Java SE. 7
th
 Edition. Oracle America, Inc.; 2013.

Albalooshi; BJMCS, 6(5): 435-443, 2015; Article no.BJMCS.2015.089

443

[7] Oracle 2014. Multiple inheritance of state, implementation, and type. Accessed 15th
December 2014.
Available: http://docs.oracle.com/javase/tutorial/java/landl/multipleinheritance.html

[8] Thirunarayan Krishnaprasad, Kniesel Gunter, Hampapuram Haripriyan. Simulating multiple
inheritance and generics in Java. Computer Languages, Volume 25, Issue 4, December
1999, Pages 189-210, Published by Elsevier Science Ltd.

[9] Tempro Ewan, Biddle Robert. Simulating multiple inheritance in Java. The Journal of

Systems and Software. 2000;55:87-100. Published by Elsevier Science Inc.

[10] Venners B. Inheritance versus composition: Which one should you choose? JavaWorld, Inc.

Accessed 23rd July 2014.
Available:http://www.javaworld.com/article/2076814/core-java/inheritance-versus-
composition--which-one-should-you-choose-.html

[11] Lagorio Giovanni, Servetto Marco, Zucca Elena. Featherweight Jigsaw – Replacing

inheritance by composition in Java-like languages. Information and Computation.
2012;214:86-111. Published by Elsevier Inc.

[12] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-

oriented software, Addison-Wesley Professional Computing Series. Addison-Wesley,
Reading, MA; 1995.

[13] JavaWorld, Inc. 2014. Observer and observable: an introduction to the observer interface

and observable class using the Model/View/Controller architecture as a guide. Accessed
23rd July 2014.
Available:http://www.javaworld.com/article/2077258/learn-java/observer-and-
observable.html

[14] Blaha Micheal, Rumbaugh James. Object-oriented modeling and design with UML. 2nd
Edition. Pearson Education Inc. United States of America; 2005.

[15] Nasseri E, Counsell S, Shepperd M. Class movement and re-location: An empirical study of

Java inheritance evolution. The Journal of Systems and Software. 2010;83:303-315.
Published by Elsevier Inc.

__
© 2015 Albalooshi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=735&id=6&aid=7757

