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Strip Steel Defect Classification Using the Improved GAN 
and EfficientNet
Shengqi Guan a, Jiang Chang a, Hongyu Shib, Xu Xiaoa, Zhenhao Lia, Xu Wanga, 
and Xizhi Wanga

aSchool of Mechanical and Electronic Engineering, Xi’an Polytechnic University, Xi’an, China; bSchool of 
Computer Science, Xi’an Polytechnic University, Xi’an, China

ABSTRACT
In recent years, deep-learning detection algorithms based on 
automatic feature extraction have become the focus of defect 
detection. However, limited by industrial field conditions, the 
insufficient number of images in the collected dataset restricts 
the detection effect of deep learning. In this paper, an algorithm 
of strip steel defect classification using the improved GAN and 
EfficientNet was proposed. First, the label deconvolution net
work is constructed, where the image labels were deconvolved 
layer by layer to obtain the conditional masks that were super
imposed into the generator and discriminator to form Mask- 
CGAN. Then, the mode-seeking generative adversarial networks 
(MSGAN) were improved and used to solve the problem of 
mode collapse. Finally, the EfficientNet was improved and 
trained on the dataset expanded by Mask-CGAN, which 
achieved the classification of strip steel defects. Experiments 
showed that Mask-CGAN proposed in this paper can generate 
true-to-life images and solve the problem of insufficient sam
ples in deep learning. The improved EfficientNet with fewer 
parameters can accurately and efficiently classify strip steel 
defects.
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Introduction

Strip steel is one of the important raw materials in automotive, marine, aero
space, and other industries. The quality of strip steel directly affects the final 
performance of industrial products. In the production process of strip steel, 
various defects such as holes, scratches, rolling, cracks, and pits will occur due 
to different raw material sources, different processing techniques, and different 
rolling equipment (Neogi, Mohanta, and Dutta 2014). These defects in strip 
steel not only affect the appearance but also reduce the wear resistance, 
corrosion resistance, fatigue resistance, and other physical properties of indus
trial products, thus leading to the existence of huge potential safety hazards in 
industrial products. Therefore, it is of great significance to study the defect 
detection of strip steel.
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In recent years, the performance of deep learning in the field of image 
recognition is getting higher and higher (Kiani, Keshavarzi, and Bohlouli 2020; 
Yang et al. 2019; Zhuang et al. 2019). In this paper, deep learning was used to 
classify strip steel defects. However, there are few samples of strip steel defect 
dataset, which brings difficulties to the training of deep learning. Therefore, an 
algorithm of strip steel defect classification using the improved GAN and 
EfficientNet was proposed in this paper. Firstly, in order to generate various 
kinds of strip steel defect images, the image generation model GAN was 
improved. The label deconvolution network was constructed and integrated 
into the generator and discriminator to form Mask-CGAN. In order to solve 
the problem of mode collapse, the mode-seeking generative adversarial net
works (MSGAN) were introduced and improved. Then, strip steel defect 
images were generated by Mask-CGAN and used to expand the dataset. 
Finally, in order to improve the accuracy and real-time of strip steel defect 
classification, the image classification network EfficientNet was improved and 
trained on the expanded dataset.

China is the world’s largest manufacturing country, China’s industrial 
products production in the world’s first 220 kinds of production, including 
crude steel production has been the world’s first for many years, in 2020 
China’s total crude steel production accounted for 57% of the world, of 
which strip steel production has been accounting for most of the total produc
tion, has reached 50% of the total production. With the rapid progress of 
national modernization and the increasing consumption level of downstream 
users, the demand for strip steel is also increasing, which also puts forward 
higher requirements on the quality of strip steel products. Therefore, the 
research on the defect detection of strip steel is of great significance. It can 
help manufacturers to better grasp the quality of their products, to separate 
them according to different quality levels, to provide downstream users with 
products that meet their quality requirements, to establish the image and 
reputation of strip steel producers, and to reflect the image of a manufacturing 
power. The contributions of this research work are as follows:

The image labels were deconvoluted layer by layer to form the label decon
volution network, which was integrated into GAN to generate various kinds of 
strip steel defect images.

The image similarity calculation of MSGAN was transferred from image 
space to feature space, which made the similarity calculation more robust. The 
improved MSGAN was used to solve the problem of mode collapse.

This paper improved EfficientNet so that its parameter amount and pre
dicted time were greatly reduced, which can accurately and efficiently classify 
strip steel defects.

The structure of the rest of this paper is as follows: Section 2 introduces the 
related works of strip steel defect detection and GAN. Section 3 introduces the 
improved EfficientNet and the improved GAN respectively. Section 4 contains 
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the experimental results and analysis of GAN training and strip steel defect 
classification. Section 5 summarizes the work of this paper and looks forward 
to the future research.

Related Works

Manual detection of strip steel defects is easily affected by experience and 
subjective factors, and the detection efficiency is low, so it is difficult to meet 
the needs of online detection. With the development of machine vision, 
various detection algorithms based on machine vision have been widely used 
in strip steel defect detection. Sharifzadeh et al. (2008) used image processing 
algorithm to detect four kinds of common strip steel defects, with an accuracy 
of 90%. Ghorai et al. (2013) proposed a defect segmentation method based on 
texture threshold. The problem of low detection rate of small defects on strip 
steel surface was solved by extracting the wavelet features of image area by 
block. Aghdam and Amid (2012) extracted LBP features of strip steel defect 
image and classified them by decision tree, and achieved good results. Guan 
(2015) achieved the image segmentation of strip steel defects by constructing 
saliency maps. Jiawei Zhang, et al. (2020) estimated the degree of defects in 
each gray level of strip images by membership function, and used the max
imum value of fuzzy connected area to locate defects, with detection accuracy 
as high as 96.8%. HuaiLiang Zhang et al. conducted preliminary detection of 
surface defects of ceramic tiles by significance, and then conducted secondary 
detection of image sub-blocks of defect areas, with the final detection accuracy 
up to 98.75%. The feature extraction of classical algorithm for strip steel defect 
detection is based on the artificial experience. However, it is difficult to obtain 
the detection methods matching with strip steel by using the artificial experi
ence. How to automatically extract features to adapt to different types of defect 
detection has become an urgent problem.

Deep learning can automatically learn image features and its performance 
in many fields is significantly higher than traditional algorithms. In recent 
years, more and more researchers have introduced deep learning to solve the 
detection problem that traditional machine vision is difficult to solve 
(Haselmann and Gruber 2019; Lin et al. 2020; Wang and Guan 2017). Park 
et al. (2016) established and tested several depth networks with different depth 
and layer node number to select the appropriate network structure for surface 
defect detection. Faghih-Roohi et al. (2016) classified five kinds of rail defects 
by convolution neural network, with the highest accuracy of 93.04%. 
Youkachen et al. (2019) realized image segmentation of strip steel defects 
through convolution automatic encoder and convolution image processing. 
He et al. (2020) used multilevel feature fusion network and region proposal 
network to detect strip steel defects, with an accuracy of 92%. Xinglong Feng, 
Gao, and Luo (2021) proposed the RepVGG algorithm and its combination 
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with the spatial attention mechanism, and the accuracy of the algorithm 
reached 95.10%. Sebastian Meister, Mahdieu Wermes et al. (2021) proposed 
a parallel classification method for convolutional neural networks (CNN) and 
support vector machines, with an average classification rate of 86.0% for 
convolutional neural networks (CNN) and up to 70% for support vector 
machines. The deep learning algorithms trained on many samples can effec
tively solve the problem of defect detection. Due to the constraints of indus
trial field data collection conditions and data collection costs, the number of 
samples in the dataset often cannot meet the needs of training, which leads to 
problems such as underfitting and affects the detection effect. How to expand 
the dataset with few samples needs further study (Perez and Wang 2017).

Goodfellow et al. (2014) proposed a generative adversarial network (GAN) 
model, which includes generator and discriminator. The generator tries to 
generate fake images that deceive the discriminator. The discriminator tries to 
distinguish between real and fake images. The generator and discriminator 
continuously conduct confrontation training. Finally, the generator can gen
erate some true-to-life samples according to the characteristics of the original 
data. Mirza and Osindero (2014) proposed conditional generative adversarial 
networks (CGAN), which can generate various kinds of images at the same 
time. Radford, Metz, and Chintala (2016) introduced convolutional neural 
networks into GANs and proposed deep convolutional generative adversarial 
networks (DCGAN), which laid the foundation for generating higher resolu
tion images. In recent years, many scholars have used GANs to expand 
datasets and achieved good results. Frid-Adar et al. (2018) used GANs to 
generate calculated topography images to expand the dataset, which increased 
the specificity from 88.4% to 92.4%. Xuan et al. (2019) used GAN to generate 
multi-view pearl images, and trained multistream structural network on the 
expanded dataset to significantly reduce the error of pearl classification. Yi and 
Cho (2020) used GAN to expand the pedestrian detection dataset and achieved 
good results. Sebastian Meister, Nantwin Moller et al. (2021) show that a 
conditional deep convolutional generative adversarial network combined 
with a previous geometric transformation is well suited to generate a large 
realistic dataset from less than 50 actual input images.

Proposed Method

The Improved EfficientNet

In this paper, image classification network in deep learning was used to realize 
strip steel defect classification. Some classic image classification networks can 
achieve high accuracy by increasing the network depth and other operations 
that complicate the network. However, the complex network structure will 
lead to too many parameters, take up a lot of memory, and slow prediction 
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speed. In recent years, many scholars began to study lightweight neural net
works (Howard et al. 2017; Zhang et al. 2018). On the premise of high 
accuracy, the network architecture was simplified as much as possible, so 
that it can run in devices with limited performance such as mobile phones.

While classical classification networks are usually deflated by one dimension 
to achieve higher accuracy, the Lightweight Neural Network EfficientNet (Tan 
and Le 2019) searches for the optimal network architecture by adjusting the 
depth, width, and resolution of the network, comprehensively considering the 
accuracy and real-time. The author of EfficientNet first obtained the baseline 
network through the network structure search, that is, EfficientNet-B0, and 
then scaled it in the three dimensions of depth, width, and resolution to obtain 
a series of models from EfficientNet-B1 to EfficientNet-B8. From B0 to B8, the 
number of parameters gets larger and larger, and the accuracy gets higher and 
higher. The image classification performance of EfficientNet is better than most 
existing image classification networks, and the improved EfficientNet light
weight network is compared with the classical image classification network, 
the original EfficientNet, and the original ShuffleNetV2 lightweight classifica
tion network, respectively. The results are shown in Table 3. The improved 
EfficientNet network in this paper has fewer parameters and faster prediction 
speed, which can meet the requirements of industrial applications. Therefore, 
EfficientNet is used to classify strip defects in this paper.

The original strip steel defect dataset contains six kinds of defects, each 
kind of defect contains 300 images, each image is a gray image with a 
resolution of 64 × 64. Some examples of the original strip steel defect images 
are shown in Figure 1. Each column is a kind of strip steel defect, the first 
column is the crazing defect, the second column is the inclusion defect, the 
third column is the patch defect, the fourth column is the pitted surface 
defect, the fifth column is the rolled in scale defect, and the sixth column is 
the scratch defect.

The original EfficientNet was trained on the ImageNet dataset containing 
color images with a resolution of 224×224. The strip steel defect images used in 
this paper are much less complex and much less difficult to identify, so 
EfficientNet-B0 with low parameter quantity was used. For the convenience of 
expression, EfficientNet mentioned below refers to EfficientNet-B0. The original 
EfficientNet was improved to reduce the number of parameters and increase the 
operation speed, which is more suitable for the classification of strip steel defects.

Reference the original EfficientNet show way, the structure of the improved 
EfficientNet is shown in Table 1. “Resolution” is the input resolution, and 
“Channels” is the number of output channels. Some redundant structures of 
the original EfficientNet were removed on the premise of retaining the key 
modules. For example, the out channels in the penultimate row of Table 1 
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were changed from 1280 to 240. MBConv6 layers were deleted and two layers 
of MBConv5 were added. Other improvements in Table 1 can be compared in 
detail with the original EfficientNet.

The original strip steel defect dataset contains six kinds of defects, each 
kind of

Figure 1. Some examples of the original strip steel defect images.

Table 1. Structure of the improved EfficientNet.
Stage Operator Resolution Channels Layers

1 Conv3x3 64x64 16 1
2 MBConv1, k3x3 32x32 48 2
3 MBConv5, k5x5 16x16 72 2
4 MBConv5, k5x5 8x8 96 1
5 Conv1x1 & Pooling 8x8 240 1
6 Full Connection 1 6 1
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defect contains 300 images. The original strip steel defect dataset was 
divided into training set and testing set. Each kind of defect in the training 
set contained 200 images, and each kind of defect in testing set contained 100 
images. The test set was only used for evaluation and did not participate in 
neural network training. The improved EfficientNet was pre-trained on the 
train set. After 100 epochs, the accuracy on the test set reached 90.02%, which 
initially proved the effectiveness of the improved EfficientNet in strip steel 
defect classification. More complete experiments will be done in section 4.

The Improved GAN

In order to expand the strip steel defect dataset, an improved GAN model 
combining conditional control advantage of CGAN with convolution advan
tage of DCGAN was proposed in this paper, which can generate various kinds 
of strip steel defect images. Firstly, the label deconvolution network was 
constructed, and the image labels were deconvoluted layer by layer to get the 
feature maps of different sizes, which were called conditional masks. Then, the 
conditional masks and the feature maps of the corresponding size in the 
generator of DCGAN were superposed. Finally, the conditional masks and 
the feature maps of the corresponding size in the discriminator of DCGAN 
were superposed. In this way, Mask-CGAN was formed. The specific training 
flow chart is shown in Figure 4, which also reflects the novelty of combining a 
supervised deep learning model with an unsupervised GAN model. This part 
first introduces the label deconvolution network, then analyzes the generator 
network and the discriminator network in detail.

The Label Deconvolution Network
The structure of the label deconvolution network is shown in the dotted line 
part of Figures 2 and 3. “Labels” refers to image tags, and “classes” refers to the 
number of image categories. “Conv transpose 4 × 4” refers to the deconvolu
tion operation with the convolution kernel size of 4 × 4. All dashed arrows are 
deconvolution operations of the label deconvolution network. “4 × 4x512” 
refers to the size of a set of feature maps, “4 × 4” refers to the width and height, 
respectively, “512” refers to the number of channels, and so does other similar 
texts such as “8 × 8 x 256.” The “Mask” in Mask-CGAN refers to the condi
tional masks, that is, the feature maps of different sizes (dotted boxes in 
Figures 2 and 3) obtained through the label deconvolution network.

First, the original image labels are encoded by one-hot to get 1 × 1 x classes 
image labels. There are six kinds of strip steel defect images, so “classes” is 6. 
Then, the image labels are deconvoluted to obtain 4 × 4 x 512,8 × 8 x 256,16 × 
16 x 128,32 × 32 x 64 conditional masks in turn. The activation function of 
each layer of the label deconvolution network is LeakyReLU. Except for the 
input layer, the other layers are processed by batch normalization.
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The Generator Network
The generator network structure is shown in Figure 2. “Noises” in Figure 2 refers 
to a group of random numbers that follow a standard normal distribution, also 
called Gaussian white noise. “Conv transpose 4 × 4” refers to the deconvolution 
operation with the convolution kernel size of 4 × 4. The solid arrows in Figure 2 
are all deconvolution operations. “Channels” refers to the number of channels of 
the final generated images. The generator is mainly composed of the noise 
deconvolution network (solid-line part in Figure 2) and the label deconvolution 
network (dotted line part in Figure 2). The inputs of the generator are random 

Figure 2. Generator network structure.

1894 S. GUAN ET AL.



noises and image labels, and the outputs are images with resolution of 64 × 64. 
The strip steel defects to be generated are grayscale images, so “channels” is 1. 
The specific steps of the generator operation are as follows:

The input random noises are deconvolved into 4 × 4 × 512 feature maps, 
and then added to the corresponding size of conditional masks and decon
volved to obtain 8 × 8 × 256 feature maps.

The 8 × 8 × 256 feature maps are added to the corresponding size of 
conditional masks and deconvolved to obtain 16 × 16 x 128 feature maps.

The 16 × 16 × 128 feature maps are added to the corresponding size of 
conditional masks and deconvolved to obtain 32 × 32 × 64 feature maps.

Figure 3. Discriminator network structure.
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The 32 × 32 × 64 feature maps are added to the corresponding size of 
conditional masks and deconvolved to obtain the generated images of 
64 × 64 × channels.

Other important configurations of the generator network are as follows: except 
for the Tanh activation function of the output layer, the activation function of the 
other layers is LeakyReLU. Except for the input layer and the output layer, the 
other layers are processed by batch normalization to speed up convergence.

Figure 4. Training flow chart.
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Ideally, when the same image labels and different random noises are input to 
the generator, the strip steel defect images with slightly different features will be 
generated. But in actual training, GAN is prone to mode collapse. When the 
same image labels and different random noises are input, the generated images 
are very similar. Mode collapse can reduce the diversity of the generated 
samples and even cause image distortion. Mao et al. (2019) conducted research 
from this perspective and proposed mode seeking generative adversarial net
works (MSGAN). As shown in Equation (1), MSGAN adds a mode seeking loss 
(Lms) to the loss function of the generator. Lms is shown in Equation (2). 

Lnew ¼ Lori þ λmsLms (1) 

where λms is the custom weight and Lori is the original loss of the generator. 

Lms ¼ max
G

dI G c; z1ð Þ;G c; z2ð Þð Þ

dz z1; z2ð Þ

� �

(2) 

where G refers to the generator, c refers to the image labels, and z1 and z2 refer 
to two sets of random noises. dI refers to the L1 distance of two groups of 
images, and dz refers to the L1 distance of two groups of random noises. The 
optimization goal of Lms is to maximize the ratio of the distance between G(c, 
z1) and G(c, z2) with respect to the distance between z1 and z2.

MSGAN encourages the generator to generate diversified images to avoid 
mode collapse through Lms, which has a good effect. But there is one detail that 
can be improved. MSGAN judges the similarity of two groups of images by 
calculating L1 distance in image space, which is easily interfered by back
ground, brightness, and other factors. For example, the features of two groups 
of images are very similar, but one group of images is generally bright, and the 
other group of images is generally dark. In this case, the diversity is not ideal, 
but it is difficult to distinguish in the image space. Therefore, this paper 
proposed to judge the similarity of two groups of images in the feature 
space. The convolution neural network is used to extract the feature maps of 
the two groups of images, and then the L1 distance of the two groups of feature 
maps is calculated. The improved Lms is shown in Equation (3). 

Lms ¼ max
G

dF G c; z1ð Þ;G c; z2ð Þð Þ

dz z1; z2ð Þ

� �

(3) 

where dF denotes the L1 distance between two groups of images in the feature 
space.

The first part of this section has completed the improvement and pretrain
ing of EfficientNet. Although the sample number of test set used in the 
pretraining is not large, after the test in this paper, the EfficientNet after the 
pretraining is enough to extract the feature maps of strip steel defects. When 
comparing image similarity in feature space, if the size of feature maps is too 
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large, it will inevitably be mixed with background and other interference 
factors. If the size is too small, it cannot reflect the defect features. 
Therefore, the 16×16 feature maps of the images are extracted by the pre
trained EfficientNet, and then the similarity of the two groups of images is 
judged in the feature space.

The Discriminator Network
The discriminator network structure is shown in Figure 3. “Conv 4 × 4” refers 
to the convolution operation with a convolution kernel size of 4 × 4. The 
discriminator is mainly composed of the image convolution network (solid- 
line part in Figure 3) and the label deconvolution network (dotted line part in 
Figure 3). The inputs of the discriminator are images with a resolution of 
64 × 64 and image labels, and the outputs are floating values representing the 
result of the discrimination. The specific steps of the discriminator operation 
are as follows:

(1) The input images are convoluted into 32 x 32 x 64 feature maps, and 
then added with the corresponding size of conditional masks and 
convoluted to obtain 16 × 16 x 128 feature maps.

The 16 ×16 x 128 feature maps are added to the corresponding size of 
conditional masks and convoluted to obtain 8 × 8 x 256 feature maps.

The 8 × 8 x 256 feature maps are added to the corresponding size of 
conditional masks and convoluted to obtain 4 × 4 x 512 feature maps.

The 4 × 4 x 512 feature maps are added to the corresponding size of 
conditional masks and convoluted to obtain the discrimination results.

Other important configurations of the discriminator network are as follows: 
except for the Sigmoid activation function of the output layer, the activation 
function of the other layers is LeakyReLU. Except for the input layer and the 
output layer, the other layers are processed by batch normalization to speed up 
convergence.

Results and Analysis

All the experiments of this section were completed on the same server. The 
main configuration is as follows: CPU is i7-7820x, graphics cards are two 
Geforce RTX 2080Ti, operating memory is 32 G, 512 G solid-state hard disk.

This section is divided into two experiments, the parameters used in the 
GAN image generation experiment and the classification experiment are 
shown in Table 2.
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GAN Training Effect Analysis

In this paper, MSGAN was improved and used to solve the problem of mode 
collapse. Its specific training flow chart is shown in Figure 4. In the original 
MSGAN, the image similarity calculation is in the image space, and the 
improved one is in the feature space. In order to verify which space is more 
suitable for image similarity calculation, the Lms is removed from the generator 
loss function, and then the Mask-CGAN is trained for 500 epochs, and Lms is 
calculated according to Equations (2) and (3) every 10 epochs, respectively. 
Finally, the line graph shown in Figure 5 was obtained. In Figure 5, the dotted 
line represents the image space, and the solid line represents the feature space. 

Table 2. Experimental parameter setting.
Networks Batch size Optimizer Learning rate Training epochs

GAN series of image generation experiments 64 Adam 0.0002 500
Defect classification experiment 64 SGD 0.1 100

Table 3. Image classification of different networks.

Networks Parameter amount (millions) Predicted time (ms)
Accuracy 

(%) F1 score

ShuffleNetV2 1.29 302 93.00 0.93
The original EffieientNet 4.01 292 92.05 0.92
The improved EffieientNet 0.22 231 95.50 0.95
VGG16 17.35 327 93.81 0.94
ResNet34 21.28 323 91.16 0.91
DenseNet121 6.95 320 94.24 0.94

Figure 5. Mode seeking losses in different spaces.

APPLIED ARTIFICIAL INTELLIGENCE 1899



The vertical coordinate loss (Lms) in Figure 5 is equivalent to the evaluation 
index of the diversity of the generated images. The lower the Lms, the stronger 
the diversity.

In general, the fluctuation trend of Lms curve in image space and feature 
space is basically consistent. However, the overall Lms curve in the image 
space is much higher than the feature space. Lms in the feature space 
fluctuates around 1 with a small fluctuation range, and Lms in the image 
space fluctuates around 7 with a large fluctuation range. Corresponding Lms 
curve to the actual images, when the diversity of the generated images is 
poor or good, it can be indicated in both image space and feature space. 
When the diversity of the generated images is general, the indication of 
feature space is stable, while the indication of image space fluctuates greatly. 
This is because the calculation of similarity in image space will be interfered 
by background, brightness and other factors, resulting in larger losses and 
fluctuation. In a word, it is more robust to calculate image similarity in 
feature space.

After verifying the effectiveness of the improved MSGAN, the Lms of 
Equation (3) is multiplied by the weight λms and added to the loss function 
of the generator. λms is set to 1.0 with reference to the original MSGAN. The 
original strip defect image is shown in Figures 1, 6(a,b and c) are image 
generation results of the 100th, 300th, and 500th epochs of Mask-CGAN 
training, respectively. From the 100th to the 500th epoch, the image genera
tion effect is getting better and better and the model has converged by the 
500th epoch. That is to say, Figure 6(c) is the final image generation effect of 
Mask-CGAN, which is very close to the original images of Figure 1. Therefore, 
the Mask-CGAN proposed in this paper is suitable for expanding strip steel 
defect dataset.

Strip Steel Defect Classification Effect Analysis

Based on 200 images of each defect in the training set, 1000 images of strip 
steel defects are generated by using the trained Mask-CGAN. The expanded 
training set contains 1200 images for each defect, while the test set still 
contains 100 images for each defect. In order to verify the effectiveness of 
the improved EfficientNet in strip steel defect classification, the original 
EfficientNet, the improved EfficientNet, VGG16, ResNet34, and 
DenseNet121 were used to train 100 epochs on the dataset expanded by Mask- 
CGAN. Except the networks are different, the other training parameters are 
the same. The strip steel defect images used in this paper are not very complex 
and not very difficult to identify, so no more complicated networks are used 
for comparison. The experimental results are shown in Table 3. “Predicted 
Time” refers to the average time taken to complete the prediction of 600 
images in the test set.
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Common indicators for evaluating image classification include accuracy, precision, 
recall, F1 Score, etc., among which accuracy is the most commonly used, measuring the 
proportion of correctly classified samples to the total samples. F1 Score combines 
precision and recall to evaluate the comprehensive performance of classification. 
Therefore, this paper selects accuracy and F1 score to evaluate the classification effect. 
The Accuracy and F1 Score shown in Table 3 are the average of the corresponding 
indicators of each class of image in the test set.

Figure 6. Some examples of Mask-CGAN training process.
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(1) In terms of parameter amount, the improved EfficientNet is 0.22 mil
lion, about 1/18 of the original EfficientNet, about one-sixth of the 
original ShuffleNetV2 and 1/97 to 1/32 of other networks.

(2) In terms of predicted time, the improved EfficientNet takes 231 ms, 61 
ms faster than the original EfficientNet, 71 ms faster than the original 
ShuffleNetV2 and about 90 ms faster than other networks.

(3) In terms of accuracy, the improved EfficientNet is 95.50%, 3.45% higher 
than the original EfficientNet, 2.5% higher than the original ShuffleNetV2 
and 1.26% to 4.34% higher than other networks.

(4) In terms of F1 Score, the improved EfficientNet is 0.95, 0.03 higher than 
the original EfficientNet, 0.02 higher than the original ShuffleNetV2 and 
0.01 to 0.04 higher than other networks.

Based on the analysis of the results, all the indicators of the improved 
EfficientNet are better than other networks. This is because the image complexity 
of strip steel defects is lower than natural images such as animals and plants, and 
the detection effect is not good if the neural network structure is too complex. 
This paper used the lightweight neural network EfficientNet and further simpli
fied it, so that it can classify strip steel defects quickly and accurately.

Conclusion

In order to realize the automatic classification of strip steel defects, the light
weight image classification network EfficientNet was introduced and improved. 
In order to provide sufficient training samples for EfficientNet, this paper 
proposed an image generation model called Mask-CGAN. Firstly, the image 
labels were deconvoluted layer by layer, and the label deconvolution network 
was constructed. Then, the feature maps of different sizes (conditional masks) in 
the label deconvolution network were superposed with the feature maps of 
corresponding sizes in the generator and discriminator to form Mask-CGAN. 
Then, MSGAN was improved and used to solve the problem of mode collapse. 
Finally, the improved EfficientNet was trained based on the dataset expanded by 
Mask-CGAN to realize the efficient classification of strip steel defects. The 
Mask-CGAN proposed in this paper combined image labels and GAN skillfully, 
which can generate various kinds of images and be used to expand the strip steel 
defect dataset. The improved EfficientNet with fewer parameters can accurately 
and efficiently classify strip steel defects.

The Mask-CGAN proposed in this paper can only generate low-resolution images 
for the time being, and further research on higher-resolution image generation will be 
conducted later. This paper improved EfficientNet in the way of simplifying network 
architecture, and will try other new improvement methods in the future.
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