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A greenhouse modeling and control using deep neural 
networks
Latifa Belhaj Salah and Fathi Fourati

Control and Energy Management Laboratory (CEM-Lab), University of Sfax, Sfax, Tunisia

ABSTRACT
Deep learning approaches have attracted a lot of interest and 
competition in a variety of fields. The major goal is to design an 
effective deep learning process in automatic modeling and control 
field. In this context, our aim is to ameliorate the modeling and 
control tasks of the greenhouse using deep neural network tech-
niques. In order to emulate the direct dynamics of the system an 
Elman neural network has been trained and a deep multi-layer 
perceptron (MLP) neural network has been formed in order to 
reproduce its inverse dynamics and then used as a neural control-
ler. This later was been associated in cascade with the deep Elman 
neural model to control the greenhouse internal climate. After 
performing experiments, simulation results show that the best 
performances were obtained when we have used a neural con-
troller having two hidden layers and an Elman neural model with 
two hidden and context layers.
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Introduction

ANNs have presented an active research domain over the past decades 
(Yang and Wang 2020). To produce a standard Neural Network (NN), it 
is necessary to use neurons providing real-valued activations besides, by 
adjusting the weights, the NNs is trained. However, the process of 
learning a NN requires long causal chains of computational steps 
depending on the problems. Backpropagation using gradient descent 
algorithm has performed an essential role in NNs since 1980 (Kaviani 
and Sohn 2020).

ANN, NARX, and RNN-LSTM models were developed in order to 
predict changes in temperature, humidity, and CO2 that have a direct 
impact on greenhouse crop growth. As result, RNN-LSTM was the more 
performant in this task. In addition, various training conditions were 
analyzed and the prediction performance was determined for time steps 
from 5 to 30 min. Simulation results prove the potential of applying deep- 
learning-based prediction models to precision greenhouse control (Jung 
et al. 2020).

CONTACT Latifa Belhaj Salah latifa.belhadjsalah@enis.tn Control and Energy Management Laboratory (CEM- 
Lab), University of Sfax, Sfax, Tunisia

APPLIED ARTIFICIAL INTELLIGENCE                    
2021, VOL. 35, NO. 15, 1905–1929 
https://doi.org/10.1080/08839514.2021.1995232

© 2021 Taylor & Francis 

http://orcid.org/0000-0003-2559-9059
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1995232&domain=pdf&date_stamp=2022-03-08


Feed-forward artificial neural networks were developed to link cuticle 
cracking in pepper and tomato fruit to greenhouse and crop conditions. All 
data were collected from seven commercial greenhouses in British Columbia, 
Canada, over a 26-week period. The study proves that artificial neural net-
works can predict cuticle cracking in greenhouse peppers and tomatoes up to 4 
weeks before harvest (Ehret et al. 2008).

A new fault detection method for the wind turbine gearbox was presented. 
An SVM classifier was implemented to detect the gear fault. To verify the 
proposed fault detection method, ten-year experimental data from three wind 
farms in Canada was investigated. Test results prove the accuracy of the 
proposed fault detection method using the RBF kernel comparing to other 
kernels and to the MLP network (Kordestani et al. 2020).

An ensemble-based fault isolation scheme was developed to detect and 
classify faults in a single-shaft industrial gas turbine. To identify the system, 
a variety of Wiener models based on Laguerre/FIR filters and neural networks 
were developed. The obtained results show that the presented FDI scheme is 
correct and accurate (Mousavi et al. 2020).

Adam Glowacz described fault diagnosis method based on analysis of 
thermal images. Features of thermal images of three electric impact drills 
(EID) were extracted using the BCAoID. The computed features were ana-
lyzed using the Nearest Neighbor classifier and the backpropagation neural 
network. The recognition results of the performed analysis were in the range 
of 97.91–100% (Glowacz 2021). He also used the same technique for analysis 
and classification to evaluate the working condition of angle grinders by means 
of infrared (IR) thermography and IR image processing. The classification of 
feature vectors was carried out using two classifiers: Support Vector Machine 
and Nearest Neighbor. Total recognition efficiency for 3 classes (TRAG) was 
in the range of 98.5–100% (Glowacz 2021).

Several methods of failure prognosis for condition-based monitoring are 
described including model-based, data-driven, knowledge-based, and hybrid 
prognosis methods, which could achieve relatively high accuracy (Mojtaba 
Kordestani et al. 2019).

Mojtaba Kordestani et al., present a survey of the most common large-scale 
systems (LSS) architectures. Conventional control schemes, including decen-
tralized, distributed, and hierarchical structures for these LSSs are discussed 
(Kordestani et al. 2021).

The origin of deep learning came from Artificial Neural Networks (ANNs) 
study (Hinton, Osindero, and Teh 2006).

Before 2006, it was very difficult to train deep architectures. The main 
reason, which explains this problem, is the gradient-based optimization with 
random initialization of weight matrices that has bad results (Bengio et al. 
2007). In 2006, GE.Hinton et al. have discovered an effective method for 
forming deep neural networks, named greedy layer-wise training (Hinton, 
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Osindero, and Teh 2006). This last work opened the first research for 
machine learning (ML) with deep neural architectures that require deep 
learning.

Deep learning (DL) is a class of classical machine learning (ML) but with 
more depth and complexity into the model as well as processing the data using 
different functions that give a hierarchical representation of the data, through 
large levels of abstraction (Chen et al. 2020).

Deep learning (DL), support vector machine (SVM), and artificial neural 
network (ANN) algorithms were used in order to forecast greenhouse gases 
(GHG) emissions (CO2, CH4, N2O, F-gases, and total GHG) from the elec-
tricity production sector in Turkey. According to the results, all algorithms 
used in the study produce independently satisfying results for forecasting 
GHG emissions in Turkey (Bakay and Ağbulut 2021).

The most important advantage of Deep Learning is characteristics learning, 
i.e the Deep learning is able to extract the characteristics from raw data, the 
characteristics from higher levels being treated by the characteristics of the 
lower level (LeCun, Bengio, and Hinton 2015).

DL is able to solve more complex problems in particular quickly and well, 
because of using of more complex models, which allow massive parallelization 
(Pan and Yang 2010). These complex models used in DL can improve classi-
fication accuracy or decrease error in regression problems, if the data sets are 
large enough to describe the problem.

Deep Learning has become more popular in recent years due to the devel-
opment of the ability of processing units to compute, although the reducing of 
the cost: DL algorithms require many computation efforts .The strong com-
putational ability and the low cost allow to perform, train, and implement DL 
algorithms more fast and easy (Adam P. Piotrowski, Napiorkowski, and 
Piotrowska 2020).

DL composed of various components (e.g. gates, fully connected layers, 
activation functions, encode/decode schemes, pooling layers, convolutions, 
memory cells, etc.), depending on the network architecture used (i.e. 
Recursive Neural Networks, Unsupervised Pre-trained Networks, 
Recurrent Neural Networks, Convolutional Neural Networks) (Pan and 
Yang 2010).

DL architectures such as Deep Boltzmann Machine (DBM), 
Convolutional Neural Network (CNN), Deep Belief Network (DBN), 
Recurrent Neural Network (RNN) and Stacked Autoencoder (SAE), have 
been used successfully in many domains such as medical image analysis 
(Greenspan, van Ginneken, and Summers 2016; Xu et al. 2014), computer 
vision (Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al. 2017), driver-
less car (Chen et al. 2015), and machine health monitoring (Tamilselvan and 
Wang 2013) and natural language processing (Collobert and Weston 2008; 
Mikolov et al. 2011).
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Deep learning methods have known a great interest and have won several 
competitions in many domains. Therefore, the most essential task and the 
principal goal is to create a performant deep learning process in automatic 
control field. In this context, deep neural network tools are developed in order 
to improve nonlinear system modeling and control tasks.

The main contributions and novelty of this article are stated as follows.

(1) The novelty of this paper is to ameliorate a greenhouse control task 
using a Deep Elman neural network and a Deep multilayer feed forward 
neural network.

(2) Comparing and discuss the results given in (Fourati and Chtourou 
2007) in order to show the accuracy and the efficiency of the proposed 
technique of the greenhouse modeling and control.

This paper is organized as follows: the considered greenhouse is described in 
section 2. The greenhouse modeling using a Deep Elman neural network is 
explained in section 3. The greenhouse control strategy using a Deep feed forward 
neural controller is presented in section 4. The simulations results of the control 
step are illustrated in section 5. Finally, the conclusion is presented in section 6.

Greenhouse Presentation

The presented greenhouse is classical, it is composed with glasses armatures, 
its surface is 40 m2 and its volume is 120 m3. The measurements of internal 
and external climate of the process are done using sensors. The internal 
hygrometry and internal temperature present the internal climate and the 
greenhouse outputs. The greenhouse is constituted of actuators that are 
a sprayer, a curtain defined by a length that varies between 0 and 3 m, 
a sliding shutter that defined by an opening between 0° and 35° and a heater 
that works in the on/off mode with 5 kw power.

The considered greenhouse is a complex system with multi-inputs, multi- 
outputs (MIMO), uncertainty and disturbances. The physical quantities that 
define its functioning are (Gaudin 1981; Oueslati 1990; Souissi 2002):

● Measurable and controllable input: Om (“curtain”), Ov (“sliding shutter”), 
Ch (“heating input), Br (“sprayer”).

● Measurable but not controllable input: He (“external hygrometry”),Te 
(“external temperature”), Vv (“wind speed”), Rg (“global radiant”).

● Outputs: Ti (“internal temperature”), Hi (“internal hygrometry”).

Measurements that define the greenhouse parameters have been taken with 
1 minute sampling time through 1 day. This allowed to establish a datafile 
(database) with 1440 rows, each row is constituted with eight columns that 
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present, the internal temperature TiðkÞ, the external temperature TeðkÞ, the 
internal hygrometry HiðkÞ, the external hygrometry HeðkÞ, the sliding shutter 
OvðkÞ, the wind speed VvðkÞ, the shade OmðkÞ, the global radiant RgðkÞ, the 
sprayer BrðkÞ and the heater ChðkÞ . The measurements had begun at 0 h 
(0 min) and finished at 23 h and 59 min (1440 min).

Figure 1 presents a descriptive bloc diagram of the greenhouse.

Figure 2 shows the evolution of actuators parameters: Heating (Ch), sliding 
shutter (Ov), curtain (Om) and sprayer (Br).

Figure 1. Descriptive bloc diagram of the greenhouse.

Figure 2. Evolution of (Heating (Ch), sliding shutter (Ov), curtain (Om) and the sprayer (Br).
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Figure 3 shows the evolution of the external climate: (external temperature 
(Te), external humidity (He), Wind speed (Vv) and global radiant (Rg).

Figure 4 shows the evolution of the greenhouse outputs (the internal 
climate): Internal temperature (Ti) and Internal humidity (Hi)).

Figure 3. Evolution of (external temperature (Te), external hygrometry (He), Wind speed (Vv) and 
global radiant (Rg).

Figure 4. Evolution of internal temperature (Ti) and internal hygrometry (Hi)).
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Deep Neural Greenhouse Modeling

Greenhouse is a complex system, it requires an efficient tool to be well 
modeled. For this we have chosen Deep Elman neural network.

Deep Elman Neural Network Architecture

Elman neural network (ENN) was created by Elman in 1990. It is a typical dynamic 
recurrent network; comparing to traditional neural networks it is particularly 
composed by an input layer, an output layer, a context layer, a hidden layer 
(Wang 2020). The principal advantage of ENN resides in the memorization of 
the previous activations of the nodes hidden by the context nodes, which explains 
the success of ENN in various fields citing prediction control and dynamic system 
identification (Chong et al. 2016). The Elman neural network can approximate 
functions with fast training, large dynamic memory and a limited time (Li et al. 
2019). In Elman recurrent neural network (ERNN), the outputs of the hidden layer 
are used to fed back the information via a recurrent layer (Wang et al. 2019). This 
feedback makes ERNN to generate, recognize and learn spatial models, as well as 
temporal models. Each hidden neuron is linked to a single context layer neuron. 
Consequently, the recurrent layer is in practice a copy of the state of the hidden 
layer a moment before. As a result, the number of recurrent neurons is equal to the 
number of hidden neurons. Each layer is constituted by one or more neurons, 
which send information from one layer to another, by calculating a non-linear 
function of their weighted sum of inputs (Hongping et al. 2019; Guoa et al. 2019; 
Yang et al. 2019).

Figure 5 presents a Deep Elman network architecture.

Figure 5. Deep Elman neural network architecture.
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The parameters of the Deep Elman neural network are described as follows:
VElðkÞpresent the total input layer of the network, ymðkÞ is the total output 

layer of the network, x1
i ðkÞpresent the total input of first hidden layer of the 

network, x11
i ðkÞis the total output of first hidden layer of the network, Vc

j ðkÞis 
the total output of first context layer of the network, x2

iiðkÞpresent the total 
input of second hidden layer of the network, x22

ii ðkÞis the total output of second 
hidden layer of the network, Vc2

jj ðkÞ present the total output of second context 
layer of the network, xn� 1

i::i ðkÞ is the total input of the (n-1) th hidden layer of 
the network, xðn� 1Þðn� 1Þ

i::i ðkÞpresent the total output of the (n-1) th hidden layer 
of the network, Vcn� 1

j::j ðkÞ is the total output of (n-1) th context layer of the 
network, xn

i::iiðkÞ present the total input of the n th hidden layer of the network, 
xnn

i::iiðkÞis the total output of the n th hidden layer of the network, Vcn
j::jjðkÞ

present the total output of the n th context layer of the network, xs
mðkÞis the 

total input of the output layer of the network.
wVE

l;i ð:Þpresent the connection weight which connect the the first hidden 
layer and the input layer, wy

i::ii;mð:Þis the connection weight of the output layer 
and the nth hidden layer, wc1

j;ið:Þ present the connection weight thats define the 

links between the first hidden layer and the first context layer, wx2

i;iið:Þ present 
the connection weight of the second hidden layer’ and ‘the first hidden layer, 
wc2

jj;iið:Þ is the connection weight that connects the second hidden layer’ and 
‘the second context layer, wxn

i::i;i::iið:Þ is the weight connection of the (n-1)th 
hidden layer’ and ‘the nth hidden layer, wcn

j::jj;i::iið:Þ present the connection 
weight that defines the links between the nth hidden layer’ and ‘the nth context 
layer.

Greenhouse Direct Dynamics Modeling

The training of the deep Elman neural network to reproduce the direct 
dynamics of the system needs to decrease the squared error criterion presented 
in (1) as follows: 

Ek ¼
1
2

Xns

m¼1
ðydmðkÞ � ymðkÞÞ2 (1) 

ydðkÞ present the desired output.
The connection weights of the Elman network are adjusted by the using of 

the back propagation algorithm to model complex systems.
Figure 6 shows the training procedure of a Deep Elman neural network to 

reproduce the direct dynamics of the considered system (Pham and Liu 1995; 
Psaltis, Sideris, and Yamamura 1988; Hunt et al. 1992).
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In the case of many hidden layers, the following equations hold: 

x1
iðkÞ ¼

Xnc

j¼1
wc

j;iðk � 1ÞVc
j ðkÞ þ

XnVE

l¼1
wVE

l;i ðk � 1ÞVElðkÞ (2) 

x11
iðkÞ ¼ f ðx1

iÞ (3) 

Vc
j ðkÞ ¼ x11

jðk � 1Þ (4) 

x2
iiðkÞ ¼

Xnh

i¼1
wx2

i;iiðk � 1Þx11
iðkÞ þ

Xnc1

jj¼1
wc1

jj;iiðk � 1ÞVc1
jj ðkÞ (5) 

x22
iiðkÞ ¼ f ðx2

iiðkÞÞ (6) 

Vc1
jj ðkÞ ¼ x22

jjðk � 1Þ (7) 

xn
i::iiðkÞ ¼

Xnhn� 1

i::i¼1
wxn

i::i;i::iiðk � 1Þxðn� 1Þðn� 1Þ
i::i ðkÞ þ

Xncn

j::jj¼1
wcn

j::jj;i::iiðk � 1ÞVcn
j::jjðkÞ (8) 

xnn
i::iiðkÞ ¼ f ðxn

i::iiðkÞÞ (9) 

Vcn
j::jjðkÞ ¼ xnn

j::jjðk � 1Þ (10) 

Figure 6. Direct dynamics neural modeling.
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xs
mðkÞ ¼

Xnhn

i::ii¼1
wy

i::ii;mðk � 1Þxnn
i::iiðkÞ (11) 

ymðkÞ ¼ f ðxs
mÞ (12) 

where nVE is the number of neurons of the input layer, nh present the 
number of unit of the first hidden layer, nc;is the number of neurons of the 
first context layer, nc1 present the number of units of the second context 
layer, nh1 is the number of neurons of the second hidden layer, nhn� 1 present 
the number of units of the (n-1) th hidden layer, ncn is the number of 
neurons of the n th context layer and nhnpresent the number of units of 
the n th hidden layer.

In the gradient descent method, the general weight adjustment is presented 
as follows: 

Δw ¼ � ε
@Ek

@w
(13) 

where ε is the learning rate.
The greenhouse datafile is defined in (Fourati and Chtourou 2007). It is 

divided into two parts, for each parts we have 720 rows. The first part is 
considered for the learning task and the second part is considered for the 
validation task.

Here, the input vector is VEðkÞ ¼ ½ChðkÞ;OmðkÞ;OvðkÞ;BrðkÞ;HeðkÞ;
TeðkÞ;VvðkÞ;RgðkÞ�T , and the output vector is yðkÞ ¼ ½TiðkÞ;HiðkÞ� .We 
consider three neural network structures constituted, respectively, with 
one single hidden layer, two hidden layers and three hidden layers.

After many tests, we have chosen four units for each hidden and context 
layers. The learning rate was taken equal to 0.4 (ε ¼ 0:4). After the training 
step, the neural network will able to reproduce the greenhouse behavior, then 
it will be used to accomplish a feed-back control loop.

In order to compare the three neural networks structures we considered the 
following criterion. 

Et ¼
Xnb

k¼1
EðkÞ (21) 

Here, nb = 720.
Figures 7 and 8 present the real internal climate evolution (temperature and 

hygrometry) where lines are blue and continuous and the outputs of one 
hidden layer neural network where lines are red and dashed and the consid-
ered data file is for the validation task.

1914 L. BELHAJ SALAH AND F. FOURATI



In this case, Et ¼ 88:7962
Figures 9 and 10 present the real internal climate evolution (temperature 

and hygrometry) where lines are blue and continuous and present the outputs 
of two hidden layers neural network where lines are red and dashed and the 
considered data file is for the validation task.

Figure 7. Internal temperature evolution.

Figure 8. Internal hygrometry evolution.

Figure 9. Internal temperature evolution.

APPLIED ARTIFICIAL INTELLIGENCE 1915



In this case, Et ¼ 82:4499
Figures 11 and 12 present the real internal climate evolution (temperature 

and hygrometry) where lines are blue and continuous and present the outputs 
of three hidden layers neural network where lines are red and dashed and the 
considered data file is for the validation task.

Figure 10. Internal hygrometry evolution.

Figure 11. Internal temperature evolution.

Figure 12. Internal hygrometry evolution.
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In this case, Et ¼ 90:5219
The above results show that the neural Elman model with two hidden and 

context layers has emulated ″perfectly″ the direct dynamics of the system. It 
can be used to the control task efficiently.

Deep Neural Greenhouse Control Strategy

In this section, the real greenhouse is changed by the Deep Elman neural 
network model defined previously. The controller that we need must has 
the capacity to take with the non-linearity of the process in order to 
control the greenhouse. For this reason, The Deep multilayer feed- 
forward neural network constituted with an input layer, an output 
layer and n hidden layers present a solution to control such system 
(Pham and Liu 1995; Psaltis, Sideris, and Yamamura 1988; Hunt et al. 
1992).

Deep Neural Controller Structure

Psaltis et al.’s multilayered neural network controller has known a great 
success on neural control. It is a feed forward neural network. It gives 
a large architecture for control and it is defined by its capacity to learn 
complexes input-output relationships from data (Wang et al. 2018).

The Deep feed forward neural network composed with an input layer, an 
output layer, and n hidden layer has the capacity to take with the non-linearity 
to control the greenhouse.

Figure 13 presents the architecture of a Deep feed forward neural network.
The parameters of the Deep feed forward neural network are described as 

follows:

Figure 13. Architecture of a Deep feed-forward neural network.
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InlðkÞ present the total input of the network, OumðkÞis the total output of 
the network, In1

i ðkÞpresent the total input of first hidden layer of the network, 
In11

i ðkÞ is the total output of first hidden layer of the network, In2
iiðkÞpresent 

the total input of second hidden layer of the network, Inn� 1
i::i ðkÞ is the total 

input of (n-1th) hidden layer of the network, Inðn� 1Þðn� 1Þ
i::i ðkÞ present the total 

output of (n-1th) hidden layer of the network, Inn
i::iiðkÞis the total input of 

(n th) hidden layer of the network, Innn
i::iiðkÞ present the total output of (n th) 

hidden layer of the network, Ins
mðkÞ is the total input of output layer of the 

network.
wIn

l;ið:Þpresent the connection weight which define the links between the the 
input layer’ and ‘the first hidden layer, wOu

i::ii;mð:Þ is the connection weight of the 
the output layer’ and ‘the (n th) hidden layer, wIn2

i;ii ð:Þ is the connection weight 
that connects the second hidden layer’ and ‘the first hidden layer, wInn

i::i;i::iið:Þ

present the connection weight of the (n-1)th hidden layer’ and ‘the nth hidden 
layer.

Deep Neural Controller Training

In this step, the training structure used is like to an offline learning to emulate 
the inverse dynamics of the greenhouse. The used neural network is a Deep 
feed forward neural network kind (Wang et al. 2018; Cabera and Narendra 
1999; Levin and Narendra 1993). Figure 14 presents the training method of the 
neural controller.

Here, In(k) present the input vector of the controller is:
InðkÞ ¼

InðkÞ ¼ ½Tiðkþ 1Þ;Hiðkþ 1Þ;TiðkÞ;HiðkÞ;TeðkÞ;HeðkÞ;VvðkÞ;RgðkÞ�T

Ou(k) is the output vector (control law): 

OuðkÞ ¼ UðkÞ ¼ ½BrðkÞ;ChðkÞ;OvðkÞ;OmðkÞ�T 

Figure 14. Deep feed-forward neural controller training.
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The neural network is trained for minimizing the quadratic error criterion 
E (k) (22) between the greenhouse input U(k) and the output estimated by the 
neural network Û (k). 

EðkÞ ¼
1
2
ðUðkÞ � ÛðkÞÞ2 (22) 

The neural network is presented by the following equations: 

In1
i ðkÞ ¼

XnIn

l¼1
wIn

l;iðk � 1ÞInlðkÞ (23) 

In11
i ðkÞ ¼ f ðIn1

i ðkÞÞ (24) 

In2
iiðkÞ ¼

Xnh

i¼1
wIn2

i;ii ðk � 1ÞIn11
i ðkÞ (25) 

In22
ii ðkÞ ¼ f ðIn2

iiðkÞÞ (26) 

Inn
i::iiðkÞ ¼

Xnhn� 1

i::i¼1
wInn

i::i;i::iiðk � 1ÞInðn� 1Þðn� 1Þ
i::i ðkÞ (27) 

Innn
i::iiðkÞ ¼ f ðInn

i::iiðkÞÞ (28) 

Ins
mðkÞ ¼

Xnhn

i::ii¼1
wOu

i::ii;mðk � 1ÞInnn
i::iiðkÞ (29) 

OumðkÞ ¼ f ðIns
mðkÞÞ (30) 

where nIn is the number of neurons of the input layer, nh present the number 
of unit of the first hidden layer, nh1 is the number of units of the second hidden 
layer, nhn� 1 present the number of neurons of the (n – 1) th hidden layer and 
nhn is the number of units of the nth hidden layers.

f is a sigmoidal function: 

f ðxÞ ¼
1

1þ e� x (31) 

The learning step requires to adjust the connection weights using the back 
propagation algorithm by decreasing the criterion (21) by the gradient method. 

wðtÞ ¼ wðt � 1Þ þ Δw (32) 

and 

APPLIED ARTIFICIAL INTELLIGENCE 1919



Δw ¼ � η
@Ek

@w
(33) 

Control Structure

After training, the deep neural controller has the ability to give an accurate 
UðkÞ to the greenhouse when the desired output is specified. In Figure 16 
The Deep neural controller is located in cascade with the considered green-
house, where the whole system is a feedback control. The desired output 
isSdðkÞ ¼ ½TidðkÞ;HidðkÞ�T ¼ ½11; 70�T . An hygrometry HidðkÞ ¼ 70% and 
a temperature TidðkÞ ¼ 11oC are the references represented from 
agriculturists.

The control strategy has been done to the greenhouse described by the 
Elman neural network model. Figures 15 and 16 show, respectively, the 
controller bloc diagram and the used neural control strategy.

Figure 15. Controller bloc diagram.
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Simulations Results

We consider three neural network structures constituted, respectively, with 
one single hidden layer, two hidden layers and three hidden layers.

We use the criterion (21) in order to compare results given from the three 
neural network structures.

The evolution of the greenhouse outputs and actuators actions using 
a neural controller and an Elman neural network model with one hidden 
layer are given in Figures 17-20.

In this case, Et ¼ 136:75

Figure 16. Neural control strategy.

Figure 17. Internal humidity evolution.
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Figure 19. Evolution of the heater and the sliding shutter actuators.

Figure 18. Internal temperature evolution.

Figure 20. Evolution of the sprayer and curtain actuators.
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The evolution of the greenhouse outputs and actuators actions using 
a neural controller and an Elman neural network model constituted with 
two hidden layers are given in Figures 21-24.

Figure 22. Internal temperature evolution.

Figure 23. Evolution of the heater and the sliding shutter actuators.

Figure 21. Internal humidity evolution.
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In this case, Et ¼ 129:89
The evolution of the greenhouse outputs and actuators actions using 

a neural controller and an Elman neural network model constituted with 
three hidden layers are given in Figures 25-28.

In this case, Et ¼ 133:45
From the previous results, we conclude that the error criterion is lower 

when we use a neural controller and an Elman neural network constituted 
with two hidden layer, adding to that the greenhouse outputs seem more 
suitable and stable.

Figure 25. Internal humidity evolution.

Figure 24. Evolution of the sprayer and curtain actuators.
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Figure 27. Evolution of the heater and the sliding shutter actuators.

Figure 28. Evolution of the sprayer and curtain actuators.

Figure 26. Internal temperature evolution.
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In comparison to (Fourati and Chtourou 2007), they used an Elman-type 
RNN to simulate greenhouse dynamics. In addition, for greenhouse control, 
they created an FFNN with an inverse learning process. In the greenhouse 
control, they connected both NNs in a cascade, resulting in a lower criterion 
error (Et = 344.12), whereas in our case Et = 129.89 for the network with two 
hidden layers. As a result, the error criterion decreases by using deep neural 
networks methods. Therefore, the proposed technique adapt well and it is used 
to enhance greenhouse control.

Conclusion

In this paper, we used a Deep Elman neural network to model the 
greenhouse. This neural model is then used to simulate the direct 
dynamics of the greenhouse under consideration. Then, to simulate the 
greenhouse inverse dynamics, a Deep multilayer feed forward neural 
network was trained. Both deep neural networks were linked together 
in a cascade to achieve deep neural control of the greenhouse. The 
simulation results show that the adopted control strategy was improved 
by using an Elman neural network and a feed forward neural controller 
composed each of them of two hidden layers. In fact, the evaluation 
error criterion Et was weaker in this case than in all others. Therefore, 
the main advantage of the proposed method resides in the accuracy and 
efficiency of the obtained results of modeling and control of the 
greenhouse.

More than one perspective is given, influenced by the results of this study. 
These perspectives can be summarized as follows:

● Multiple deep neural control
● Control with specialized learning
● Control with generalized learning
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