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Abstract
We consider the DC conic programming in locally convex Hausdorff vector spaces. By using the
infimal convolution of the conjugate functions, we present a new regularity condition, which turns
out to be weaker than the regularity conditions given so far in the literature. Moreover, it provides a
sufficient and necessary condition for the stable Lagrange duality for the DC conic programming.
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1 Introduction
Let X and Y be real locally convex Hausdorff vector spaces and C ⊆ X be a nonempty convex set.
Let S ⊆ Y be a closed convex cone and S⊕ the positive dual cone of S. Let f, g : X → R̄ :=
R ∪ {+∞} be proper functions and h : X → Y be an S-convex mapping with respect to the cone S.
Consider the following DC conical programming:

(P )
Min f(x)− g(x),
s. t. x ∈ C, h(x) ∈ −S.

This problem has been studied in [1],[2],[3],[4],[5] and also studied in [6],[7],[8],[9] for the special case
when g = 0. Following [1], the Lagrange dual problem of (P ) is defined by

(D) inf
u∗∈dom g∗

sup
λ∈S⊕

{g∗(u∗)− (f + δC + λh)∗(u∗)}.

Let v(P ) and v(D) denote the optimal values of problems (P ) and (D), respectively. Obviously, if
g is lower semicontinuous, then problems (P ) and (D) satisfy the so-called weak duality, i.e., v(p) ≥
v(D), but a duality gap may occur, that is, we may have v(P ) > v(D). A challenge has been to
give sufficient conditions which guarantee the Lagrange duality, the situation when v(P ) = v(D). As
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mentioned in [10], the question of finding condition, which ensures the Lagrange duality, is not only
important for understanding the fundamental feature of convex programming but also for the efficient
development of numerical schemes.

Over the years, numerous conditions have been given in the literature ensuring the Lagrange
duality for the special case when g = 0 (cf. [10],[11],[12]). In particular, the authors in [10] presented
some constraint qualifications which completely characterize the Lagrange duality for convex programming
problems in Banach spaces and they established necessary and sufficient dual conditions for the
stable Lagrange duality in [12] under the assumptions that C = X and h is continuous. For the
case when g 6= 0, some duality results for problems (P ) and (D) have been established in many
paper, (see [1],[4] and the references therein). For example, Dinh et.al. established in [4] the strong
Lagrange duality via a closedness condition and Fang presented in [1] a new constraint qualification
which completely characterizes the stable Lagrange duality for problems (P ) and (D).

In this paper, we continuous to study the Lagrange duality for problems (P ) and (D). We
first introduce a new regularity condition, which is formulated by using the infimal convolution of
the conjugate functions and turns out to be weaker than the conditions that has been given in [1].
Moreover, it generalizes the condition introduced by Jeyakumar and Li in [10],[12]. Then we succeed
to obtain a sufficient and necessary condition which guarantees the Lagrange duality between problem
(P ) and its Lagrange dual problem.

The rest of the paper is organized as follows. In Section 2 we present basic notations and
preliminary results. A weaker regularity condition is introduced and the stable Lagrange duality
between (P ) and (D) is considered in Section 3.

2 Notations and preliminary results.

The notations used in the present paper are standard (cf. [13]). In particular, we assume throughout
the whole paper that X and Y are real locally convex Hausdorff topological vector spaces, and let
X∗ denote the dual space of X, endowed with the weak∗-topology w∗(X∗, X). By 〈x∗, x〉, we shall
denote the value of the functional x∗ ∈ X∗ at x ∈ X; i.e., 〈x∗, x〉 = x∗(x). Let Z be a set in X. The
closure and interior of Z are denoted by clZ and intZ, respectively. Thus if W ⊆ X∗, then clW
denotes the weak∗-closure of W . For the whole paper, we endow X∗ × R with the product topology
of w∗(X∗, X) and the usual Euclidean topology.

The indicator function δA of the nonempty set A is defined by

δA(x) :=

{
0, ifx ∈ A,
+∞, otherwise.

Let f : X → R̄ be a proper convex function. The effective domain, the epigraph and the conjugate
function of f are denoted by dom f , epi f and f∗, respectively; they are defined by

dom f := {x ∈ X : f(x) < +∞},

epi f := {(x, r) ∈ X × R : f(x) ≤ r},

and
f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗.

It is well known and easy to verify that epi f∗ is weak∗-closed. The lsc hull of f , denoted by cl f ,
is defined by epi (cl f) = cl (epi f). Then f∗ = (cl f)∗ (cf. [13]). If cl f is proper and convex, then
f∗∗ = cl f. By definition, the Young-Fenchel inequality below holds:

f(x) + f∗(x∗) ≥ 〈x, x∗〉 for each pair (x, x∗) ∈ X ×X∗. (2.1)
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In particular, let p ∈ X∗. Define a function on X that p(x) := 〈p, x〉, for each x ∈ X. Then, for any
a ∈ R and any function h : X → R̄,

(h+ p+ a)∗(x∗) = h∗(x∗ − p)− a for each x∗ ∈ X∗;

epi (h+ p+ a)∗ = epih∗ + (p,−a).

If g, h are proper, then
epi g∗ + epih∗ ⊆ epi (g + h)∗, (2.2)

g ≤ h⇒ g∗ ≥ h∗ ⇔ epi g∗ ⊆ epih∗. (2.3)

Moreover, if g is convex and lsc on domh, then, by [14, Lemma 2.3],

epi (h− g)∗ =
⋂

x∗∈dom g∗

(epih∗ − (x∗, g∗(x∗))). (2.4)

Finally, we define the infimal convolution of g and h as the function g�h : X → R ∪ {±∞} given by

(g�h)(a) := inf
x∈X
{g(x) + h(a− x)}.

If g and h are lsc and dom g ∩ domh 6= ∅, then by [13], we have that

(g�h)∗ = g∗ + h∗, (g + h)∗ = cl (g∗�h∗), (2.5)

and
epi g∗ + epih∗ ⊆ epi (g∗�h∗) ⊆ cl (epi g∗ + epih∗). (2.6)

We end this section with a lemma, which is known in [13] and [15].

Lemma 2.1. Let g, h : X → R̄ be proper convex functions satisfying dom g ∩ domh 6= ∅.
(i) If g, h are lsc,then

epi(g + h)∗ = cl(epi g∗ + epih∗).

(ii) If either g or h is continuous at some point of dom g ∩ domh, then

epi(g + h)∗ = epi g∗ + epih∗.

3 New regularity condition for the Stable Lagrange Duality
Throughout this section, let X,Y be locally convex spaces and C ⊆ X be a nonempty convex set.
Let S ⊆ Y be a closed convex cone. Its dual cone S⊕ is defined by

S⊕ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 for each y ∈ S}.

Define an order on Y by saying that y ≤S x if y − x ∈ −S. We attach a greatest element ∞ with
respect to ≤S and denote Y • := Y ∪ {+∞}. The following operations are defined on Y •: for any
y ∈ Y, y +∞ = ∞ + y = ∞ and t∞ = ∞ for any t ≥ 0. Let f, g : X → R̄ be proper convex
functions such that cl g and f −g are proper, and h : X → Y • be S-convex in the sense that for every
u, v ∈ domh and every t ∈ [0, 1],

h(tu+ (1− t)v) ≤s th(u) + (1− t)h(v),

(see [16]). Let λ ∈ S⊕ and let domh := {x ∈ X : h(x) ∈ Y } 6= ∅. As in [15], we define for each
λ ∈ S⊕,

(λh)(x) :=

{
〈λ, h(x)〉, if x ∈ domh,

+∞, otherwise.
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It is easy to see that h is S-convex if and only if (λh)(·) : X → R̄ is a convex function for each λ ∈ S⊕.
Following [10], we define the function h� : X∗ → R̄ by

h�(x∗) = inf
λ∈S⊕

(λh)∗(x∗) for each x∗ ∈ X∗.

Let h−1(−S) := {x ∈ dom g : h(x) ∈ −S} and let A denote the solution set of the system {x ∈ C :
h(x) ∈ −S}, that is, A := {x ∈ C : h(x) ∈ −S}. To avoid trivially, we always assume that A 6= ∅.
Recall that f is said to be star lsc if λf is lsc on X for each λ ∈ S⊕.

The following lemma, which is taken from [10], will be useful in our study.

Lemma 3.1. Suppose that h is a proper star lsc and S-convex mapping with h−1(S) 6= ∅. Then
(i) h� is a proper convex function on X∗.
(ii) epih� is a convex cone.
(iii) epi δ∗h−1(−S) = cl(epih�) and epi δ∗A = cl(epi δ∗C + epih�).

Let p ∈ X∗. Consider the primal problem

(Pp)
Min f(x)− g(x)− 〈p, x〉,
s.t. x ∈ C, h(x) ∈ −S. (3.1)

Define the Lagrange dual problem by

(DL
p ) inf

u∗∈dom g∗
sup
λ∈S⊕

{g∗(u∗)− (f + δC + λh)∗(p+ u∗)}, (3.2)

and its Fenchel-Lagrange dual problem by

(DFL
p ) inf

u∗∈dom g∗
sup
λ∈S⊕

{g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2)}. (3.3)

Let v(Pp), v(DL
p ) and v(DFL

p ) denote the optimal values of problems (Pp), (DL
p ) and (DFL

p ), respectively.
Let r ∈ R. By the definition of conjugate function, we have that

(p, r) ∈ epi(f − g + δA)∗ ⇔ v(Pp) ≥ −r. (3.4)

Moreover, if g is lsc, then for each x ∈ X,

g(x) = g∗∗(x) = sup
x∗∈dom g∗

{〈x∗, x〉 − g∗(x∗)}. (3.5)

Thus, it is easy to see that the following inequalities hold:

v(DFL
p ) ≤ v(DL

p ) ≤ v(Pp) for each p ∈ X∗, (3.6)

that is, the stable weak Lagrange duality and stable weak Fenchel-Lagrange duality hold. However,
(3.6) does not necessarily hold in general as showed by [1, Example 3.2]. The following lemma is
taken from [1, Lemma 3.3] which gives a sufficient condition to ensure the stable weak Lagrange
duality and stable weak Fenchel-Lagrange duality.

Lemma 3.2. Suppose that the following condition holds:

epi(f − g + δA)∗ = epi(f − cl g + δA)∗. (3.7)

Then (3.6) holds.

This section is devoted to the study of the stable Lagrange duality and stable Fenchel-Lagrange
duality between (P ) and (D), which is defined as follows.
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Definition 3.1. It is said that
(a) the stable Lagrange duality holds between (P ) and (D) if for each p ∈ X∗, v(Pp) = v(DL

p ).
(b) the stable Fenchel-Lagrange duality holds between (P ) and (D) if for each p ∈ X∗, v(Pp) =

v(DFL
p ).

Below we definite a new constraint qualification to characterize the stable Lagrange duality.

Definition 3.2. It is said that the family {f, g, δC , h} satisfies the weaker constraint qualification
((WCQ) in brief) if

epi(f − g + δA)∗ ⊆
⋂

u∗∈dom g∗

(epi((f + δC)∗�h�)− (u∗, g∗(u∗))). (3.8)

The following proposition provides an equivalent condition to ensure (WCQ) holds.

Proposition 3.1. Suppose that (3.7) holds (e.g., g is lsc) and that

f is lsc, h is star lsc, C is closed. (3.9)

Then the family {f, g, δC , h} satisfies (WCQ) if and only if

epi (f − g + δA)∗ =
⋂

u∗∈dom g∗

(epi ((f + δC)∗�h�)− (u∗, g∗(u∗))). (3.10)

Proof. To show the equivalence of (WCQ) and (3.10), it suffices to show⋂
u∗∈dom g∗

(epi ((f + δC)∗�h�)− (u∗, g∗(u∗))) ⊆ epi (f − g + δA)∗. (3.11)

To do this, by (3.9), (2.6) and Lemma 2.1(i), it is easy to see that

epi ((f + δC)∗�h�) ⊆ cl (epi (f + δC)∗ + epih�)

⊆ cl (cl (epi f∗ + epi δ∗C) + epih�)

= cl (epi f∗ + epi δ∗C + epih�);

while, by Lemma 3.1(iii), one has that

cl(epi f∗ + epi δ∗C + epih�) = cl(epi f∗ + epi δ∗A) = epi(f + δA)∗,

where the second equality holds by Lemma 2.1(i). Thus, by (2.4) and (3.7),⋂
u∗∈dom g∗

(epi((f + δC)∗�h�)− (u∗, g∗(u∗))) ⊆
⋂

u∗∈dom g∗

(epi(f + δA)∗ − (u∗, g∗(u∗)))

= epi(f − cl g + δA)∗

= epi(f − g + δA)∗.

Hence, (3.11) holds and the proof is complete.

Remark 3.1. To study the Lagrange duality and the Fenchel-Lagrange duality, the author in [1]
introduced the following condition (CQ):

epi(f − g + δA)∗ =
⋂

u∗∈dom g∗

(epi(f∗�δ∗C�h
�)− (u∗, g∗(u∗))). (3.12)

The following proposition shows that (WCQ) is weaker than (CQ).
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Proposition 3.2. Suppose that f is lsc and C is closed. Then

(CQ)⇒ (WCQ)

Proof. Suppose (CQ) holds. By (2.5), we have that

(f + δC)∗ = cl(f∗�δ∗C) ≤ f∗�δ∗C .

and
(f + δC)∗�h� ≤ f∗�δ∗C�h�.

Combing this with (2.3), we see that

epi(f∗�δ∗C�h
�) ⊆ epi((f + δC)∗�h�).

This together with (CQ) implies that (WCQ) holds and the proof is complete.

The following example shows that (WCQ) is strictly weaker than (CQ).

Example 3.1. Let X = Y := R and C = S := [0,+∞). Let f, g, h : R → R̄ be defined by
g := 0, h(x) := x2 and

f(x) :=


+∞, x > 0,

2, x = 0,

0, x < 0.

Then A := {x ∈ C : h(x) ∈ −S} = {0} and for each x∗ ∈ R,

f∗(x∗) =

{
0, x∗ ≥ 0,

+∞, x∗ < 0,
and (λh)∗(x∗) =

{
(x∗)2

4λ
, λ > 0,

δ{0}(x
∗), λ = 0.

Hence, h� = 0. Note that (f + δC)∗ = (f + δA)∗ = −2. It follows that

epi(f + δA)∗ = epi((f + δC)∗�h�) = R× [−2,+∞).

This implies that (WCQ) holds. However, (CQ) does not hold because

epi(f∗�δ∗C�h
�) = R× [0,+∞) 6= epi(f + δA)∗.

The following theorem shows that the condition (CQ) is equivalent to the stable Fenchel-Lagrange
duality.

Theorem 3.1. Suppose that (3.7) and (3.9) hold. Then the stable Fenchel-Lagrange duality holds
between (P ) and (D) if and only if the family {f, g, δC , h} satisfies (CQ).

Proof. Suppose that the stable Fenchel-Lagrange duality holds. Let (p, r) ∈ epi(f − g + δA)∗. Then,
by (3.4), v(Pp) ≥ −r and v(DFL

p ) ≥ −r, that is,

inf
u∗∈dom g∗

sup
λ∈S⊕,x∗1 ,x

∗
2∈X∗

{g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2)} ≥ −r,

This implies that for each u∗ ∈ dom g∗,

sup
λ∈S⊕,x∗1 ,x

∗
2∈X∗

{g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2)} ≥ −r.

Let u∗ ∈ dom g∗ and let ε > 0. Then there exist λ ∈ S⊕ and x∗1, x∗2 ∈ X∗ such that

g∗(u∗) + r + ε ≥ f∗(x∗1) + δ∗C(x∗2) + (λh)∗(p+ u∗ − x∗1 − x∗2);
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while, by the definition of the infimal convolution function, we have that

f∗(x∗1) + δ∗C(x∗2) + (λh)∗(p+ u∗ − x∗1 − x∗2) ≥ (f∗�δ∗C�(λh)∗)(p+ u∗)

≥ (f∗�δ∗C�h
�)(p+ u∗).

Hence,
g∗(u∗) + r + ε ≥ (f∗�δ∗C�h

�)(p+ u∗).

Letting ε→ 0. we have that
(f∗�δ∗C�h

�)(p+ u∗) ≤ g∗(u∗) + r, (3.13)

which implies that
(p+ u∗, g∗(u∗) + r) ∈ epi(f∗�δ∗C�h

�),

that is,
(p, r) ∈ (epi(f∗�δ∗C�h

�)− (u∗, g∗(u∗))).

By the arbitrary of u∗, we can get that

(p, r) ∈
⋂

u∗∈dom g∗

(epi(f∗�δ∗C�h
�)− (u∗, g∗(u∗))).

Thus
epi(f − g + δA)∗ ⊆

⋂
u∗∈dom g∗

(epi(f∗�δ∗C�h
�)− (u∗, g∗(u∗))).

Therefore, by [1, Proposition 3.7] (CQ) holds.
Conversely, suppose that the family {f, g, δC , h} satisfies (CQ). Let p ∈ X∗. If v(Pp) = −∞,

then the stable Fenchel-Lagrange duality holds between (P ) and (D) trivially. Below we assume that
r := v(Pp) ∈ R. Then by (3.4), (p,−r) ∈ epi(f − g + δA)∗ and

(p,−r) ∈
⋂

u∗∈dom g∗

(epi(f∗�δ∗C�h
�)− (u∗, g∗(u∗))),

thanks to (CQ). Let u∗ ∈ dom g∗. Then

(p+ u∗, g∗(u∗)− r) ∈ epi(f∗�δ∗C�h
�),

and hence
inf

x∗1 ,x
∗
2∈X∗

{f∗(x∗1) + δ∗C(x∗2) + h�(p+ u∗ − x∗1 − x∗2)} ≤ g∗(u∗)− r.

Take ε > 0. Then there exist x∗1, x∗2 ∈ X∗ such that

f∗(x∗1) + δ∗C(x∗2) + h�(p+ u∗ − x∗1 − x∗2) ≤ g∗(u∗)− r +
ε

2
; (3.14)

while, by the definition of the function h�, there exists λ ∈ S⊕ such that

(λh)∗(p+ u∗ − x∗1 − x∗2) ≤ h�(p+ u∗ − x∗1 − x∗2) +
ε

2
.

This together with (3.14) implies that

f∗(x∗1) + δ∗C(x∗2) + (λh)∗(p+ u∗ − x∗1 − x∗2) ≤ g∗(u∗)− r + ε,

that is,
r − ε ≤ g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2).

Therefore,

r − ε ≤ sup
λ∈S⊕x∗1∈X∗x∗2∈X∗

{g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2)}.
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and

r − ε ≤ inf
u∗∈dom g∗

sup
λ∈S⊕x∗1∈X∗x∗2∈X∗

{g∗(u∗)− f∗(x∗1)− δ∗C(x∗2)− (λh)∗(p+ u∗ − x∗1 − x∗2)},

since u∗ ∈ dom g∗ is arbitrary. Consequently, by the definition of v(DFL
p ), one has that v(DFL

p ) ≥
r − ε and v(DFL

p ) ≥ r by the arbitrary of ε. Moreover, by Lemma 3.2, v(DFL
p ) ≤ v(Pp). Thus,

v(Pp) = v(DFL
p ) and so the stable Fenchel-Lagrange duality holds since p ∈ X∗ is arbitrary. The

proof is complete.

Theorem 3.2. Suppose that (3.7) holds. Consider the following statements.
(i) The family {f, g, δC , h} satisfies (WCQ).
(ii) The stable Lagrange duality holds between (P ) and (D).

Then (i)⇒ (ii). Furthermore, (i)⇔ (ii) if the following condition holds:

epi(f + δC + λh)∗ = epi(f + δC)∗ + epi(λh)∗ for each λ ∈ S⊕. (3.15)

Proof. Suppose that (i) holds. Let p ∈ X∗. If v(Pp) = −∞, then the stable Lagrange duality holds
between (P ) and (D) trivially. Below we assume that r := v(Pp) ∈ R. Then by (3.4), we have that
(p,−r) ∈ epi(f − g + δA)∗ and that

(p,−r) ∈
⋂

u∗∈dom g∗

(epi((f + δC)∗�h�)− (u∗, g∗(u∗))),

thanks to (WCQ). Let u∗ ∈ dom g∗ be arbitrary. Then

(p+ u∗, g∗(u∗)− r) ∈ epi((f + δC)∗�h�).

This implies that
inf

x∗∈X∗
{(f + δC)∗(x∗) + h�(p+ u∗ − x∗)} ≤ g∗(u∗)− r.

Hence, for each ε > 0, there exists x∗ ∈ X∗ such that

(f + δC)∗(x∗) + h�(p+ u∗ − x∗) ≤ g∗(u∗)− r +
ε

2
; (3.16)

while, by the definition of h�, one sees that

(λh)∗(p+ u∗ − x∗) ≤ h�(p+ u∗ − x∗) +
ε

2
.

Thus,
(f + δC)∗(x∗) + (λh)∗(p+ u∗ − x∗) ≤ g∗(u∗)− r + ε.

This together with the Young-Fenchel inequality (2.1) implies that for each x ∈ X,

r − ε ≤ g∗(u∗)− (f + δC)∗(x∗)− (λh)∗(p+ u∗ − x∗)
≤ g∗(u∗)− 〈x, x∗〉+ f(x) + δC(x)− 〈p+ u∗ − x∗, x〉+ (λh)(x)

= g∗(u∗)− 〈p+ u∗, x〉+ (f + δC + λh)(x).

Note that the above inequalities and the equality hold for each x ∈ X. It follows that

r − ε ≤ g∗(u∗)− sup
x∈X
{〈p+ u∗, x〉 − (f + δC + λh)(x)}

= g∗(u∗)− (f + δC + λh)∗(p+ u∗).

Thus, by the definition of v(DFL
p ), we have that v(DFL

p ) ≥ r − ε and v(DFL
p ) ≥ r by the arbitrary of

ε. Hence, v(Pp) = v(DL
p ) since v(DL

p ) ≤ v(Pp) by Lemma 3.2. Therefore, by the arbitrary of p ∈ X∗,
(ii) holds.
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Suppose that (3.15) holds. Below we show (ii)⇒(i). To do this, assume that (ii) holds. Let
(p, r) ∈ epi(f − g+ δA)∗. By (3.4), we see that v(Pp) ≥ −r and v(DL

p ) ≥ −r. Let u∗ ∈ dom g∗. Then

sup
λ∈S⊕

{g∗(u∗)− (f + δC + λh)∗(p+ u∗)} ≥ −r.

Thus, for each ε > 0, there exists λ ∈ S⊕ such that

g∗(u∗)− (f + δC + λh)∗(p+ u∗) ≥ −r − ε.

Let ε > 0. Then

(p+ u∗, r + g∗(u∗) + ε) ∈ epi(f + δC + λh)∗ = epi(f + δC)∗ + epi(λh)∗, (3.17)

where the equality holds by (3.15). Note by (2.6) that

epi(f + δC)∗ + epi(λh)∗ ⊆ epi((f + δC)∗�(λh)∗) ⊆ epi((f + δC)∗�h�).

If follows from (3.17) that

(p+ u∗, r + g∗(u∗) + ε) ∈ epi((f + δC)∗�h�).

Thus,
((f + δC)∗�h�)(p+ u∗) ≤ r + g∗(u∗) + ε.

Letting ε → 0. We get ((f + δC)∗�h�)(p + u∗) ≤ r + g∗(u∗) and so (p, r) ∈ (epi((f + δC)∗�h�) −
(u∗, g∗(u∗))). Therefore,

(p, r) ∈
⋂

u∗∈dom g∗

(epi(f + δC)∗�h� − (u∗, g∗(u∗))).

since u∗ ∈ dom g∗ is arbitrary. Which implies that (WCQ) holds. The proof is complete.

Remark 3.2. Recall that the author in [1, Theorem 3.12] established the stable Lagrange duality
under the assumptions that the condition (CQ) holds and one of the following conditions holds:

(a) contf ∩A 6= ∅ and conth ∩A 6= ∅,
(b) conth ∩A ∩ intC 6= ∅,

where contf (resp. conth) denotes the set of all points at which f (resp. h) is continuous. Note by
Lemma 2.1(ii) that the condition (a) or (b) implies that (3.15) holds; while, by Proposition 3.2, (WCQ)
is weaker than (CQ). Thus, our Theorem 3.2 improves the corresponding result in [1, Theorem 3.12].

4 Conclusions
In this paper, we introduce a new regularity condition which is weaker than the condition in [1] and
show that this new condition is equivalent to the stable Lagrange duality for the primal problem and
its dual problem. Moreover, we obtain a sufficient and necessary condition which guarantees the
Fenchel-Lagrange duality.
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