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Abstract

This paper presents an approximate analytical solution of the nonlinear Fornberg-Whitham
equation using the new iterative method (NIM). A comparison is made between the NIM results,
homotopy perturbation transform method (HPTM) and the Adomian's decomposition method
(ADM).  The solution procedure reveals that NIM is a reliable, simple and effective. The
proposed technique solves nonlinear problems without using Adomian's polynomials and He's
polynomials which is a clear advantage of it over the decomposition method. The results reveal
that the proposed algorithm is very efficient, simple and can be applied to other nonlinear
problems.

Keywords: New iterative method; Homotopy perturbation transform method; Nonlinear Fornberg-
Whitham equation.

1 Introduction

The Fornberg-Whitham equation [1] given as

,3 xxxxxxxxxxtt uuuuuuuuu  (1.1)

has a type of traveling wave solution called a kink-like wave solution and anti kink-like wave
solutions. Such kinds of traveling wave solutions have never been found for the Fornberg-
Whitham equation. Eq. (1.1) was used to study the qualitative behaviour of wave-breaking [2,3].

Many important phenomena occurring in various fields of engineering and science are frequently
modeled through linear and nonlinear differential equations. However, it is still very difficult to
obtain closed-form solutions for most models of real-life problems. A broad class of analytical
methods and numerical methods were used to handle such problems.
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In recent years, various methods have been proposed such as homotopy perturbation method
[4,11] finite difference method [12,13] Adomian decomposition method [14–19], variational
iteration method [20–23], weighted finite difference techniques [24], Laplace decomposition
method [25], but all these methods have some limitations. It is worth mentioning that the
homotopy perturbation method is applied without any discretization, restrictive assumption or
transformation and is free from round off errors. The Laplace transform is totally incapable of
handling nonlinear equations because of the difficulties that are caused by the nonlinear terms.

In the present paper, we use both the new iterative method, proposed first by Gejji and Jafari [26]
and homotopy perturbation transform method, proposed by Madani at el. [27], Khan and Wu [28].
The first method has proven useful for solving a variety of nonlinear equations such as algebraic
equations, integral equations, ordinary and partial differential equations of integer and fractional
order and systems of equations as well. New iterative method is simple to understand and easy to
implement using computer packages and yield better results than the existing Adomain
decomposition method [14], homotopy perturbation method [4] and variational iteration method
[20]. The second method is an elegant combination of the Laplace transformation, the homotopy
perturbation method, and He's polynomials. The proposed algorithm provides the solution in a
rapid convergent series which may lead to the solution in a closed form. The advantage of this
method is its capability of combining two powerful methods for obtaining exact solutions for
linear and nonlinear partial differential equations.

The motivated by the ongoing research in this area, we use the new iterative method and
homotopy perturbation transform method in solving the Fornberg-Whitham equation.

2 Basic Idea of NIM

To describe the idea of the NIM, consider the following general functional equation [26-30]:

)),(()()( xuNxfxu  (2.1)

where N is a nonlinear operator from a Banach space B→B and f is a known function. We are
looking for a solution u of (2.1) having the series form
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The nonlinear operator N can be decomposed as follows
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From Eqs. (2.2) and (2.3), Eq. (2.1) is equivalent to
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We define the recurrence relation:

,0 fu  (2.5a)

),( 01 uNu  (2.5b)

.,...3,2,1),...()...( 110101   nuuuNuuuNu nnn (2.5c)

Then:
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If N is a contraction, i.e.

)()( yNxN  ≤ ,10,  kyxk

then:

)...()...( 110101   nnn uuuNuuuNu (2.7)

≤ nuk ≤ …≤ ,...,2,1,00 nuk n

and the series 


0i
iu absolutely and uniformly converges to a solution of (2.1) [31], which is

unique, in view of the Banach fixed point theorem [32]. The k-term approximate solution of (2.1)

and (2.2) is given by 
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2.1 Reliable Algorithm

After the above presentation of the NIM, we introduce a reliable algorithm for solving nonlinear
partial differential equations using the NIM. Consider the following nonlinear partial differential
equation of arbitrary order:
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,),,(),(),( NntxBuuAtxuD n
t  (2.8a)

with the initial conditions

,1,...,2,1,0),()0,( 
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 nmxhxu
t mm

m

(2.8b)

where A is a nonlinear function of u and  u (partial derivatives of u with respect to x and t) and
B is the source function. In view of the integral operators, the initial value problem (2.8a) and
(2.8b) is equivalent to the following integral equation
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Where
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and

,)( AIuN n
t (2.11)

where n
tI t is an integral operator of n fold. We get the solution of (2.9) by employing the

algorithm (2.5).

3 Basic Idea of Homotopy Perturbation Method (HPM)

Consider the following nonlinear differential equation [3-10]:

,,0)()(  rrfuA (3.1)

with the boundary conditions of
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where A, B, f(r) and г are a general differential operator, a boundary operator, a known analytic
function and the boundary of the domain Ω, respectively. The operator A can generally be divided
into a linear part L and a nonlinear part N. Equation (3.1) may therefore be written as.
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,0)()()(  rfuNuL (3.2)

By the homotopy technique, we construct a homotopy Rprv  ]1,0[:),( which satisfies

    ,0)()()()()1(),( 0  rfvApuLvLppvH (3.3)

or

  ,0)()()()()(),( 00  rfvNpupLuLuLpvH (3.4)

where  1,0p is an embedding parameter, while 0u is an initial approximation of (3.1), which
satisfies the boundary conditions. Obviously, from (3.3) and (3.4) we will have

,0)()()1,(
,0)()()0,( 0


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(3.5)

The changing process of p from zero to unity is just that of ),( prv from 0u to )(ru . In

topology, this is called deformation, while )()( 0uLvL  and )()( rfvA  are called
homotopy. If the embedding parameter p is considered as a small parameter, applying the classical
perturbation technique, we can assume that the solution of (3.3) and (3.4) can be written as a
power series in p:
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Setting p = 1 in (2.6), we have

....lim 32101
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(3.7)

The combination of the perturbation method and the homotopy method is called the HPM, which
eliminates the drawbacks of the traditional perturbation methods while keeping all its advantages.
The series (3.7) is convergent for most cases. However, the convergent rate depends on the
nonlinear operator )(vA .Moreover, He [3], made the following suggestions.

(1) The second derivative of )(vN with respect to v must be small because the parameter
may be relatively large; that is, p → 1.

(2) The norm of )(1

v
NL

 must be smaller than one so that the series converges.
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4 Basic Idea of HPTM

To illustrate the basic idea of this method, we consider a general nonlinear non-homogeneous
partial differential equation with initial conditions of the form [33,34]

),,().(),(),( txgtxNutxRutxDu  (4.1)
with the boundary conditions of

),()0,(),()0,( xfxuxhxu t 

where D is the second order linear differential operator 2

2

t
D
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 , R is the linear differential

Operator of less order than D, N represents the general non-linear differential operator and g(x, t)
is the source term. Taking the Laplace transform (denoted throughout this paper by L) on both
sides of Eq. (4.1):

)].,([)],([)],([)],([ txgLtxNuLtxRuLtxDuL  (4.2)

Using the differentiation property of the Laplace transform, we have
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Operating with the Laplace inverse on both sides of Eq. (4.3) gives
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where G(x, t) represents the term arising from the source term and the prescribed initial
conditions. Now, we apply the homotopy perturbation method
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and the nonlinear term can be decomposed as
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for some He’s polynomials nH (see [35,36]) that are given by
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Substituting Eqs. (4.6) and (4.5) in Eq. (4.4), we get
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which is the coupling of the Laplace transform and the homotopy perturbation method using He’s
polynomials. Comparing the coefficient of like powers of p, the following approximations are
obtained
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5 Numerical Applications

In this section, we apply NIM and HPTM to solve the nonlinear Fornberg-Whitham equation.
Consider the following nonlinear Fornberg-Whitham equation [37]:

,3 xxxxxxxxxxtt uuuuuuuuu  (5.1a)

with the initial condition

.)0,( 2
x

exu  (5.1b)

Then, the exact solution is given by:

3
2

2),(
tx

etxu






British Journal of Mathematics & Computer Science 4(9), 1213-1227, 2014

1220

By NIM:

From (2.5a) and (2.10) we obtain
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Therefore, from (2.9), the initial value problem (5.1) is equivalent to the following integral
equations:
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 xxxtxxxxxxxt uuuuuuuuIuN  3)(

Therefore, from (2.5), we can obtain easily the following .first few components of the new
iterative solution for the equation (5.1):
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and the rest of the components of iteration formula (4.7) are obtained. The approximate solution
which involves few terms is given by
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Table 1. The absolute errors for differences between the exact solution and 5th-order NIM,
when t=5

By HPTM:

By applying the aforesaid method subject to the initial condition, we have
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The inverse of the Laplace transform implies that
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Now, we apply the HPM
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where )(),(),( uHuHuH nnn  are He’s polynomials [35, 36] that represents the nonlinear
terms. So, the He’s polynomials are given by

xxx
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The first few, components of He’s polynomials, are given by

,)()( 000 xxxuuuH 
,)()()( 01101 xxxxxx uuuuuH  (5.8)

,)()()()( 0211202 xxxxxxxxx uuuuuuuH 
.
.
.

ix exactu NIMu NIMexact uu 
-4                              0.0048279499                         0.0031719207 1.65602E-3
-2 0.0131237287                         0.0086221743 4.50155E-3
0                              0.0356739933                         0.0234374990 1.22364E-2
2                              0.0969719679                         0.0637097231 3.32622E-2
4                              0.2635971382                         0.1731809521 9.04161E-2
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for )(uH n we find that
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and the rest of the components of iteration formula (4.7) are obtained. The approximate solution
which involves few terms is given by
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Table 2. The absolute errors for differences between the exact solution and 5th-order HPTM
when t=5

which are the absolute errors in Table 1 by NIM the same results obtained by HPTM in Table 2
and ADM [37]. The obtained results prove that the NIM described method is very simple and easy
method compared with the other methods and give the approximate solution in series form, this
series in closed form gives the corresponding exact solution of the given problem.

In Fig.1 the approximate solutions obtained by the 7-order of NIM and  HPTM have been plotted,
It is very remarkable to see that the surfaces of the two approximate solutions are in high
agreement with the surface of the exact solution

Fig. 1.a

Fig. 1.b Fig. 1.c

Fig. 1. The behavior of the solutions obtained by (Fig.1.a) NIM, ( Fig. 1.b) HPTM, (Fig. 1c )
Exact solution, with different values of x, t, for 10:,55:  tx .

ix exactu HPTMu HPTMexact uu 
-4                                 0.0048279499                         0.0031719207                         1.65602E-3
-2                                 0.0131237287                         0.0086221743 4.50155E-3
0                                 0.0356739933                         0.0234374990                         1.22364E-2
2                                 0.0969719679                         0.0637097231                         3.32622E-2
4 0.2635971382                         0.1731809521                         9.04161E-2
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In Fig. 2 the approximate solutions obtained by the 7-order of NIM and  HPTM have been plotted,
which coincide with the exact solution.

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

Fig. 2. Comparison between approximate solution by NIM, HPTM and Exact solution of
),( txu in case 10:,1  tx

6 Conclusions

In this paper, the NIM and HPTM were successfully applied for finding the approximate solutions
of the nonlinear Fornberg-Whitham equation with initial conditions. The fact that the HPTM solve
nonlinear problems without using Adomian's polynomials but the NIM solve nonlinear problems
without using Adomian's polynomials and He's polynomials is a clear advantage of this technique
over the decomposition method. The results show that the two methods are powerful and efficient
techniques in finding exact and approximate solutions for nonlinear differential equations.
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