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ABSTRACT 
 

Aim:  This study investigated the impact of MPTP induced Parkinson’s disease (PD) and the 
protective and/or curative effects of green tea on the retina. 
Study Design:  Twenty-five adult male mice (Mus musculus) weighing between 20-30 grams were 
used for this study. The mice were randomly placed into five groups of five mice each: A (Control; 
mice pellets), B (1Methyl -4-phenyl-2, 3, 6-tetrahydropyridine (MPTP) 10 mg/kg, IP), C (MPTP + 
Green tea (GT); 300 mg/kg GT orally), D (GT + MPTP), E (GT; 300 mg/kg).  
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Methodology: At the end of the experimental protocols, the eyes were excised weighed and 
processed to determine the neurotransmitter [Dopamine, Gamma amino butyric acid (GABA) and 
calcium ion (CA2+)] levels in the retina spectrophotometrically and histology of the retina using 
Hematoxylin and Eosin (H&E) stain. 
Results: The results showed significant (P<0.005) reduction in the relative eye to body weight and 
increase in the retinal diameter in the MPTP group when compared with the control. Whereas 
treatments with green tea did not significantly (P<0.005) increase the relative eye to body weight 
but intake of green tea alone does, while the retinal diameter is significantly reduced by pre-
treatment with green tea. The concentration of Calcium was significantly increased by MPTP and 
significantly reduced by green tea intake, whereas only the green tea alone and green tea co-
treated groups significantly increased dopamine levels. 
Conclusion: From our results we can preliminary conclude that green tea conferred protection on 
the retina against the adverse effects of MPTP in mice model of Parkinson’s disease. 
 

 
Keywords: Parkinson’s disease; Retina; MPTP; neurotransmitters. 
 
1. INTRODUCTION 
 
Parkinson’s disease (PD) is the second most 
common neurodegenerative disorder in the 
developed world, after Alzheimer’s disease, with 
a prevalence of 0.3% and an estimated incidence 
of 8–18 per 100 000 person years [1]. It is a 
multi-system disorder with a wide variety of 
motor and non-motor features. Prominent among 
the non-motor aspects of Parkinson’s disease 
are mood disturbance [2-4], cognitive decline and 
dementia [5-8], sleep disorders [9], hyposmia 
[10] and autonomic failure [11-13]. In addition, 
visual symptoms are common, ranging from 
complaints of dry eyes and reading difficulties, 
through to perceptual disturbances (feelings of 
presence and passage) and complex visual 
hallucinations [14-18]. Such visual symptoms are 
a considerable cause of morbidity in Parkinson’s 
disease [19] and, with respect to visual 
hallucinations, are an important predictor of 
cognitive decline as well as institutional care and 
mortality [20-23]. Evidence exists of visual 
dysfunction at several levels of the visual 
pathway in Parkinson’s disease. This includes 
psychophysical, electrophysiological and 
morphological evidence of disruption of retinal 
structure and function. In agreement with the 
hypothesis that PD results from an imbalance of 
dopamine, it seems that visual deficits in PD are 
also caused by dopaminergic deficiency, 
resulting at least in part from reduced expression 
of tyrosine hydroxylase—the rate limiting enzyme 
in dopamine synthesis [24,25]. Indeed, some of 
the visual deficits experienced by patients with 
PD can be ameliorated by treatment with 
levodopa [26]. Environmental factors such as 
coffee drinking and smoking have been 
demonstrated to lower the risk of PD [27-29]. 
Several epidemiological studies have addressed 

the influence of drinking tea (Camellia sinensis) 
on the risk of PD. A case-control study of 
Chinese PD patients showed that regular tea 
drinking protects against PD [30]. Another study 
complimented the Chinese PD study showing a 
reduced risk for PD with tea consumption (two 
cups/day) [31]. Similarly, a large prospective 
study showed a reduced risk of incident PD in 
subjects who habitually drank three or more cups 
of tea per day [32]. A retrospective study 
associated drinking of more than three cups of 
tea per day with a delayed onset of motor 
symptoms in Israeli PD patients [33]. The effects 
of tea consumption on PD risk are currently the 
subject of considerable scientific debate as tea 
components, such as polyphenols, caffeine and 
theanine, have been demonstrated to be neuro-
protective in PD [34,35]. The benefits of tea 
drinking are of relevance to PD as tea is one of 
the main contributors of dietary polyphenols in 
Western countries due to its regular consumption 
[36]. Thus, any evidence of the neuro-protective 
effects of polyphenols on PD could have a 
significant impact on public health. The work 
investigated the impact of MPTP induced 
Parkinson’s disease and the protective and 
suppressive effects of green tea polyphenols on 
the retina. 
 
2. METHODOLOGY 
 
2.1 Experimental Animals 
 
Twenty-five adult male mice (Mus musculus) 
weighing between 20-30 grams were used for 
this study. The animals’ were housed in clean 
plastic cages, well ventilated environment with 
temperature ranging between 24-28ºC in 12 
hours light and 12 hours dark cycle. The animals 
were given standard mice pellets and water ad 
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libitum, and were allowed to acclimatize for four 
weeks before commencing the experimental 
protocols. MPTP was bought from Adooq 
Bioscience, while Lindberg Standardized Green 
Tea Extract purchased from Nutrition Express, 
CA, USA was used for the study. Each capsule 
contained 500 mg of decaffeinated green tea 
extract standardized to contain 200 mg of EGCG, 
95% polyphenols, 75% catechins, 40% EGCG. 
The extract was dissolved in distilled water to 
obtain a concentration of 300 mg/kg (300 
mg/1000 g) body weight of the animal. While 
MRM Vegetarian Quercetin Extract was also 
used in the study to supplement the GTE and 
increase its bioavailability; It was purchased from 
Nutrition Express Torrance, CA, USA. Each 
capsule standardized to contain 500 mg of 
QU995 (The world’s purest Quercetin) which 
ensures superior bioavailability. The capsule was 
dissolved in distilled water to obtain a 
concentration of 6 mg/kg (1:5; Quercetin: GTE) 
[37]. 
 
The institutional committee on Animal Care and 
Use in Research, Education and Testing 
(ACURET) approval was obtained and the 
animal experiments were conducted according to 
the NIH Guide on Laboratory Animals for 
Biomedical Research (NIH, 1978) and ethical 
guidelines for investigation of experimental pain 
in conscious animals [38]. 
 
2.2 Experimental Design 
 
Following the four weeks of acclimatization, the 
animals were randomly divided into five (5) 
groups of five (5) animals each as follows: 
 

• Group A:  (Positive Control Group) Mice 
were given dry food pellet and clean water 
ad libitum. 

• Group B:  (Negative Control Group) Mice 
were given 10 mg/kg of 1Methyl -4-phenyl-
2,3,6-tetrahydropyridine (MPTP) per body 
weight intraperitoneally for 2 consecutive 
days; Four times per day with two hour 
intervals 

• Group C:  (Curative Group) Mice were 
given 10 mg/kg of MPTP per body weight 
intraperitoneally for 2 consecutive days 
followed by a seven (7) day oral treatment 
with 300 mg/kg of Green Tea Extract 
supplemented with 6mg/kg of Quercetin 
(GT). 

• Group D:  (Protective Group) Mice were 
given 300 mg/kg of Green Tea Extract 
orally supplemented with 6 mg/kg of body 

weight of Quercetin for seven (7) days 
consecutively followed by a two (2) day 
administration of 10 mg/kg of MPTP 
intraperitoneally four (4) times per day with 
a\ two (2) hour intervals. 

• Group E:  (Treatment group) Mice were 
given 300 mg/kg of Green Tea Extract 
supplemented with 6 mg/kg of body weight 
of Quercetin orally for 7 consecutive days. 

 

2.3 Tissue Sample Preparation 
 
At the end of four weeks the rats were 
euthanized by administering 10 g/kg body weight 
of Pentobarbital. The mice eyes were carefully 
dissected out and weighed, some were fixed in 
10% formal-saline for routine histological 
procedures while retinal specimen were excised 
homogenized and centrifuge at 3500rpm for 15 
minutes and the supernatant collected for 
neurotransmitters analyses. 
 
2.3.1 Removing the eye  
 

1.  The mice were placed on a flat, dry and 
smooth surface. 

 2.  Sterilized forceps with a curved, serrated 
tip were used.  

3.  The canthus was gently pressed with the 
forceps until the eyeball was displaced 
from the socket and the optic nerve was 
reachable.  

4.  The forceps was guided to the back of the 
eye, to pressed and hold the optic nerve 
firmly. This helped to lift the globe from the 
socket and to clamp the complete optic 
nerve. 

 5.  The hand was made to move in circular 
pattern while holding the forceps in the 
direction with the least resistance while the 
mouse remains on the flat surface.  

6.  This action was performed with gradual 
increased speed until the optic nerve is 
constricted in two. Hence, the detached 
eyeball is removed. 

7.  The adhering fats and fascia were gently 
removed with the forceps. 

 
2.3.2 Protocol for the dissection of retinas  
 

1.  The retinas were carefully dissected from 
the removed eyeballs.  

2.  The eyes were placed in a dish filled with 
D-PBS. The binocular dissecting 
microscope was used for the following 
steps.  

3.  For dissection of a retina, the anterior part 
of the eye, i.e. the lens and cornea, was 
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first cut off. In order to facilitate the 
insertion of the scissors, the eyeball was 
fixed with tweezers and a hypodermic 
needle was used to make a small hole to 
indicate the incision starting point. 

4.  The short portion of the optic nerve on the 
posterior side of the eye was fixed by 
tweezers. 

5.  The eyeballs were squeezed in the 
opposite direction with another pair of 
tweezers to make the retina float out of the 
sclera.  

6.  Thin layer containing blood vessels was 
removed while the retinas was transferred 
into a fixative. 

 
2.4 Preparation of Histological Slides 
  
Tissue preparation was carried out using the 
conventional paraffin embedding method. Tissue 
sections were stained with Haematoxylin and 
Eosin (H&E) to determine the general 
morphology [39]. 
 

2.5 Procedure for the determination of 
neurotransmitters 

 
2.5.1 Sample used: Retina  
 
2.5.1.1 Procedure 
 

• Two grams of the sample was weighed in 
digestion tubes.  

• One tablet of the selenium catalyst was 
added into the tube 

• Ten milliliters of concentrated perchloric 
acid and concentrated nitric acid were 
added in the ratio of 1:1 

• The tubes were placed in the digestion 
block and allowed to digest slowly. 

• The digest was washed in a 1000 ml 
volumetric flask and made up with distilled 
water. 

• The washed samples were read with an 
Atomic Absorption Spectrophotometer 
(Spectronic 21D) using their respective 
lamp and wavelength [40]. 
Dopamine 520 nM; GABA 470 nM; 
Calcium 600 nM. 

 
Calculation: meter reading x slope x dilution 
factor 

 
2.6 Photomicrography 
 
Photomicrographs were taken using Omax led 
digital Microscope. 

2.7 Statistical Analysis 
 
Data were analysed by comparing values for 
different treatment groups with the values for 
individual controls. Results were expressed          
as mean ± SE. The significant differences              
among values were analysed using                      
Graph Pad version 7 at P-value < 0.05. 
 
3. RESULTS AND DISCUSSION 
 
Parkinson’s disease is a progressive, 
degenerative disorder of the central nervous 
system, resulting from the loss of dopamine-
producing brain cells, of which there is presently 
no cure. While the current treatments for 
Parkinson’s are associated with serious side 
effects [41]. The results of our study revealed 
that PD significantly affected the relative eye 
weight (F (4, 5) =58.51, p=0.0002) (See Fig. 1). 
Relative eye weight is a factor of body and eye 
weights; decrease in body weight or increase in 
eye weigh will results in increased relative organ 
weigh and vice versa. The lack of significance 
differences between the MPTP and the treated 
groups were due to the insignificant change in 
the body and eye weights between the groups. 
While the green tea only group showed 
significant increase in the relative weight of the 
eye when compared with the MPTP group. This 
increase in relative weight could be due to the 
observed decrease in body weight caused by 
green tea intake. Previous studies have shown 
that dietary EGCG at 1% in C57BL/6 mice for 5 
months [42], and at 0.5% and 1% in NZB mice 
for 4 weeks [43] prevented high fat diet-induced 
gain in body weight and fat mass. In both 
studies, food intake was the same between mice 
fed high fat and high fat plus EGCG. The 
inhibitory effect of EGCG on body weight and fat 
mass in high fat-induced mice has also been 
convincingly reported by other investigators [44, 
45].The mechanisms appear to involve 
decreased energy/lipid absorption and 
lipogenesis, and increased fat oxidation             
[42-45]. 
 
We further investigated the morphology and 
morphometry of the retina and the results 
showed significant retinal hypertrophy as a result 
of the effect of the treatments (F (4, 10) =75.42, 
p<0.0001), while Tukey’s multiple comparisons 
test at α < 0.05 showed significant increase in 
the retinal diameter between the Control versus 
MPTP and Control versus MPTP +GT; While 
there was a lesser significant decrease in the 
retinal diameter between Control versus GT+ 



MPTP [Plate 1, Fig. F]. Significance differences 
were also observed between the MPTP group 
and the intervention groups (GT+ MPTP and 
GT+ MPTP). The retinal hypertrophy noticed in 
our study could be due to cellular adaptation
response to adverse effect of MPTP, which
involves an increase in intracellular 
than intracellular fluid. While the group pretreated 
with 300 mg/kg of Green Tea extract 
supplemented with 6mg/kg of Quercet
conferred a significant protection on the integrity 
of the retinal morphology. This protection has 
been attributed to the antioxidant activity and 
iron-chelating properties which prevent iron and 
alpha-synuclein accumulation in MPTP
mice [46]. 
 

 
Fig. 1. Graph showing the mean relative eye 

weight 
Fig. 1 shows the mean ± SE of relative eye weight of 

groups A (control) (0.039 ± 0.007), B (MPTP) (0.035 ± 
0.007), C (MPTP +GT) (0.035 ± 0.007), D (GT+ 

MPTP) (0.036 ± 0.007), E (GT) (0.0395 ± 0.007). The 
results of the one way ANOVA showed a significant 

effect of the treatments on the relative organ weight of 
the eye (F (4, 5) =58.51, p=0.0002), while Tukey’s 

multiple comparisons test at α < 0.05 showed 
significant weight decrease between the Control 

(0.039 ± 0.007) versus MPTP (0.035 ± 0.007); Control 
(0.039 ± 0.007) versus MPTP +GT (0.035 ± 0.007) 

and Control (0.039 ± 0.007) versus GT + MPTP (0.036 
± 0.007). Significance differences were not observed 
between the MPTP group and the intervention groups 

(GT+ MPTP and GT+ MPTP).
 

In addition the study also assessed the retinal 
concentrations of dopamine, GABA and Ca
results of the one way ANOVA showed a 
significant effect of the treatments on the 
dopamine concentration in the eye (F 
=49.07, p=0.0003), while Tukey’s multiple 
comparisons test at α < 0.05 showed significant 
increase in dopamine concentration between the 
Control versus MPTP +GT; Control versus GT+ 
MPTP. Significance differences were also 
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than intracellular fluid. While the group pretreated 

mg/kg of Green Tea extract 
supplemented with 6mg/kg of Quercetin 
conferred a significant protection on the integrity 
of the retinal morphology. This protection has 
been attributed to the antioxidant activity and 

chelating properties which prevent iron and 
synuclein accumulation in MPTP-treated 

 

Fig. 1. Graph showing the mean relative eye 

Fig. 1 shows the mean ± SE of relative eye weight of 
groups A (control) (0.039 ± 0.007), B (MPTP) (0.035 ± 

0.007), C (MPTP +GT) (0.035 ± 0.007), D (GT+ 
MPTP) (0.036 ± 0.007), E (GT) (0.0395 ± 0.007). The 
results of the one way ANOVA showed a significant 
fect of the treatments on the relative organ weight of 

p=0.0002), while Tukey’s 
 < 0.05 showed 

significant weight decrease between the Control 
(0.039 ± 0.007) versus MPTP (0.035 ± 0.007); Control 

39 ± 0.007) versus MPTP +GT (0.035 ± 0.007) 
and Control (0.039 ± 0.007) versus GT + MPTP (0.036 
± 0.007). Significance differences were not observed 
between the MPTP group and the intervention groups 

(GT+ MPTP and GT+ MPTP). 

essed the retinal 
concentrations of dopamine, GABA and Ca2+.The 
results of the one way ANOVA showed a 
significant effect of the treatments on the 
dopamine concentration in the eye (F (4, 5) 

p=0.0003), while Tukey’s multiple 
0.05 showed significant 

increase in dopamine concentration between the 
Control versus MPTP +GT; Control versus GT+ 
MPTP. Significance differences were also 

observed between the MPTP group and the 
intervention groups (GT+ MPTP and GT+ MPTP) 
(Fig. 2). 
 

 
Fig. 2. Graph showing the dopamine levels in 

the homogenate of retina of mice
Fig. 2 shows the mean ± SE of Dopamine 

concentration in the eye of groups A (control) (0.107 ± 
0.001), B (MPTP) (0.119 ± 0.003), C (MPTP +GT) 
(0.125 ± 0.003), D (GT+ MPTP) (0.141
(GT) (0.147 ± 0.003). The results of the one way 

ANOVA showed a significant effect of the treatments 
on the dopamine concentration in eye (F 
p=0.0003), while Tukey’s multiple comparisons test at 
α < 0.05 showed significant increase in dopamine 
concentration between the Control (0.107 ± 0.003) 

versus MPTP +GT (0.125 ± 0.003); Control (0.107 ± 
0.003) versus GT+ MPTP (0.141 ± 0.003). 

Significance differences were also observed between 
the MPTP group and the intervention groups (MPTP
GT and GT+ MPTP) and between GT+ MPTP versus 

GT+ MPTP and GT+ MPTP versus GT.
 
The increase in dopamine noticed in the MPTP 
group could be due to the fact that dopamine is 
believed to contribute to the degeneration of 
dopamine-containing neurons in the 
elevated extracellular dopamine recorded in this 
study may not be unconnected to inactivation of 
the dopamine transporter gene which is 
necessary for the sporadic development of 
severe symptoms of dyskinesia concomitant with 
apoptotic death of striatal dopamine
γ-aminobutyric acidergic neurons
advancement of the “triple hit” hypothesis 
assumes that too much calcium, plus a build
of α-SNCA and increased dopamine within the 
cells, may trigger neuronal death in PD. 
Experimental observations confirmed that an 
increase in calcium concentration inside neurons 
when accompanied by intracellular accumulation 
of misfolded proteins, initiate apoptosis when a 
certain physiological threshold is crossed. The 
process of programmed cell death may be also 
accelerated by excitotoxicity due to excessive 
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intervention groups (GT+ MPTP and GT+ MPTP) 

 

Fig. 2. Graph showing the dopamine levels in 
the homogenate of retina of mice  

Fig. 2 shows the mean ± SE of Dopamine 
concentration in the eye of groups A (control) (0.107 ± 

0.001), B (MPTP) (0.119 ± 0.003), C (MPTP +GT) 
(0.125 ± 0.003), D (GT+ MPTP) (0.141 ± 0.003), E 
(GT) (0.147 ± 0.003). The results of the one way 

ANOVA showed a significant effect of the treatments 
on the dopamine concentration in eye (F (4, 5) =49.07, 
p=0.0003), while Tukey’s multiple comparisons test at 

ase in dopamine 
concentration between the Control (0.107 ± 0.003) 

versus MPTP +GT (0.125 ± 0.003); Control (0.107 ± 
0.003) versus GT+ MPTP (0.141 ± 0.003). 

Significance differences were also observed between 
the MPTP group and the intervention groups (MPTP + 
GT and GT+ MPTP) and between GT+ MPTP versus 

GT+ MPTP and GT+ MPTP versus GT. 

The increase in dopamine noticed in the MPTP 
group could be due to the fact that dopamine is 
believed to contribute to the degeneration of 

containing neurons in the brain. The 
elevated extracellular dopamine recorded in this 
study may not be unconnected to inactivation of 
the dopamine transporter gene which is 
necessary for the sporadic development of 

symptoms of dyskinesia concomitant with 
triatal dopamine-responsive 

aminobutyric acidergic neurons [47]. The 
advancement of the “triple hit” hypothesis 
assumes that too much calcium, plus a build-up 

SNCA and increased dopamine within the 
cells, may trigger neuronal death in PD. 

firmed that an 
increase in calcium concentration inside neurons 
when accompanied by intracellular accumulation 
of misfolded proteins, initiate apoptosis when a 
certain physiological threshold is crossed. The 

th may be also 
accelerated by excitotoxicity due to excessive 



neurotransmitter level [48]. While green tea 
intake also increased dopamine levels in all the 
treated groups. These increase could be due to 
theanine, which makes up 1–2% of the dry 
weight of green tea, because drinking two to four 
cups of green tea every day is equivalent to 
taking approximate 50–200 mg of l-
L-theanine is able to exert its effect on dopamine 
because of its ability to cross the blood
barrier and increase dopamine levels in the brain 
[50]. It has also been shown to exert 
neuroprotective effects in animal models possibly 
through its antagonistic effects on group 
1metabotrophic glutamate receptors [51].
 
We also observed significant effect of the 
treatments on the GABA concentration in
(F (4, 5) =7.114, p=0.027) (See Fig. 3). Our results 
showed that green tea significantly increase 
GABA level in the mice that took green tea only 
 

 

Plate 1. Showing the photomicrographs of mice retina stained  with H&E X400: (a) Retina of 
control group showing 1. Pigment epithelium and pho toreceptor cells layers

Outer nuclear layer, outer plexiform layer and inner nucl ear layer (blue band); 3. Inner 
plexiform layer (red band); 4. Ganglion cell layer

limiting membrane (yellow band). (b) Retina of MPTP  
nuclear layers and disrupted inner limiting membran e. (c)Retina of MPTP+GT treated mice with 

hypertrophied/ diffused nuclear layers, increased g anglion cell layer density and disrupted 
inner limiting membrane. (d) Retina of GT+MPTP treated mice with preserved and r elatively 

shrinked nuclear layers and intact inner limiting m embrane.(e)Retina of GT treated mice with 
preserved and significantly shrinked nuclear layers  and intact inner limiting membrane.(f) 

Scattered d iagram showing the mean diameter of the retina of e xperimental groups; 
(control) (56 ±6.8), B (MPTP) (98 ±6.8), C (MPTP +G T) (132 ± 6.8), D (GT+ MPTP

The results of the one way ANOVA showed a significant effect of th
=75.42,p<0.0001), while Tukey’s multiple comparisons test at 
diameter between the Control (56 ±6.8) versus MPTP (98 ±6.8) and

there was a lesser significant decrease in the retinal diameter between Control(56 ±6.8) versus GT+ MPTP (32 ± 
6.4). Significance differences were also observed between the MPTP group and the intervention groups (GT+ 
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While green tea 
intake also increased dopamine levels in all the 
treated groups. These increase could be due to 

2% of the dry 
een tea, because drinking two to four 

cups of green tea every day is equivalent to 
-theanine [49]. 

theanine is able to exert its effect on dopamine 
because of its ability to cross the blood-brain 

mine levels in the brain 
has also been shown to exert 

neuroprotective effects in animal models possibly 
through its antagonistic effects on group 
1metabotrophic glutamate receptors [51]. 

We also observed significant effect of the 
e GABA concentration in the eye 

p=0.027) (See Fig. 3). Our results 
showed that green tea significantly increase 

in the mice that took green tea only 

and those that took green tea before Parkinson’s 
disease induction (pre-treated group). These
results are in agreement with previous p
clinical studies that suggested that L
increases a number of neurotransmitters 
including GABA level [52, 53 and 54]. 
lack of significant increase noticed in the MPTP 
and the post-treated groups in this study could 
be due to the fact that the concentration of GABA 
in Parkinson’s disease depends on the amount 
that is synthesized and released, as well as on 
the activity of enzymes and cofactors involved in 
its processing [55].In neurodegenerative disease 
the excessive neuronal activity is firstly tuned by 
increased GABA inhibition [56-58].This acts as a 
physiological control mechanisms within the 
nervous system, and that deficiency in this 
mechanism may be responsible for the
progressive decline in brain function and 
neurodegeneration.  

Showing the photomicrographs of mice retina stained  with H&E X400: (a) Retina of 
control group showing 1. Pigment epithelium and pho toreceptor cells layers  (green band); 2. 

nuclear layer, outer plexiform layer and inner nucl ear layer (blue band); 3. Inner 
plexiform layer (red band); 4. Ganglion cell layer  (black band); 4. Nerve fibre layer and inner 

limiting membrane (yellow band). (b) Retina of MPTP  treated mice with hypertrophied/ diffused 
nuclear layers and disrupted inner limiting membran e. (c)Retina of MPTP+GT treated mice with 

hypertrophied/ diffused nuclear layers, increased g anglion cell layer density and disrupted 
Retina of GT+MPTP treated mice with preserved and r elatively 

shrinked nuclear layers and intact inner limiting m embrane.(e)Retina of GT treated mice with 
preserved and significantly shrinked nuclear layers  and intact inner limiting membrane.(f) 

iagram showing the mean diameter of the retina of e xperimental groups; 
(control) (56 ±6.8), B (MPTP) (98 ±6.8), C (MPTP +G T) (132 ± 6.8), D (GT+ MPTP) (32 ± 6.4), E 

(GT) (42 ± 6.6) 
The results of the one way ANOVA showed a significant effect of the treatments on the retinal diameter (F 

p<0.0001), while Tukey’s multiple comparisons test at α < 0.05 showed significant increase in the retinal 
diameter between the Control (56 ±6.8) versus MPTP (98 ±6.8) and Control (56 ±6.8) versus MPTP 

there was a lesser significant decrease in the retinal diameter between Control(56 ±6.8) versus GT+ MPTP (32 ± 
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Fig. 3. Graph showing GABA concentration in 

the homogenate of retina of mice
Fig. 3 shows the mean ± SE of GABA concentration in 

the eye of groups A (control) (0.116 ± 0.0029), B 
(MPTP) (0.1205 ± 0.0029), C (MPTP +GT) (0.123 ± 
0.0029), D (GT+ MPTP) (0.130 ± 0.0029), E (GT) 

(0.1275 ± 0.0029). The results of the one way ANOVA 
showed a significant effect of the treatments on GABA 
concentration in the eye (F (4, 5) =7.114,p=0.027), while 
Tukey’s multiple comparisons test at α < 0.05 showed 
significant increase in GABA concentration between 

the Control (0.116 ± 0.0029) versus GT+ MPTP (0.130 
± 0.0029) and  Control (0.116 ± 0.0029) versus GT 

(0.1275 ± 0.0029).  There were no significance 
differences between the MPTP group and the 

intervention groups (GT+ MPTP and GT+ 
MPTP) 

 
Calcium homeostasis is maintained in part by 
complex hormonal systems. Our results showed 
that the calcium level responded significant to the 
effect of the treatments (F (4, 5) =3346
(Fig. 3). The results above clearly showed that 
MPTP administration increased the levels of 
Ca2+in the retina, whereas both pre and 
posttreatment with 300 mg/kg of green tea 
extract supplemented with 6 mg/kg of Quercetin 
decreased its concentrations.
intracellular calcium, in association with excess 
nitric oxide and excitatory amino acids, is 
involved in several neurodegenerative diseases, 
including Parkinson’s disease [59],
maintaining calcium homeostasis in the cell is 
anchored on mitochondrial integrity. However 
excessive mitochondrial calcium accumulation 
can also results in loss of mitochondrial 
transmembrane potential and uncoupling of 
respiratory chain; increasing the generation of 
oxygen and nitrogen reactive species. 
Impairment of mitochondrial function can 
compromise ATP production and, consequently, 
lead to depletion of ATP stores and failure of ion 
homeostasis, including regulation o
concentration [60-61]. Removal of the divalent 
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which can also contribute to the inhibitory effect 
of flavonoids towards MPTP opening. This
suggests that some flavonoids are able to 
interact with mitochondrial physiology, ex
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4. CONCLUSION 
 
From our results we can preliminary conclude 
that green tea confers protection against the 
adverse effects of MPTP in mice model of 
Parkinson’s disease probably by preventing 
mitochondrial lipid peroxidation and inhibition of 
MPTP opening. 
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