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Abstract

In this paper, a modified Adomian decomposition method (MADM) for solving the hyperbolic telegraph
equation is proposed. The MADM introduces a new inverse partial differential operator that can speed up the
convergence rate of the standard ADM. We also present a technique for converting the equation to a special
case form, which makes the MADM easier to implement. The proposed method was tested on six different
linear and nonlinear telegraph equations in one and two dimensions. The results show that the method is
accurate and efficient for solving the telegraph equation.
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1 Introduction
Most physical systems can be mathematically modeled using linear or nonlinear partial differential equations
(PDEs) in various scientific fields. Hyperbolic PDEs are among the most important types of PDEs [1]. One
example of a hyperbolic PDE is the second-order telegraph equation with constant coefficients. This equation
is a powerful tool that can be used to describe a wide range of phenomena in various fields.

For instance, the telegraph equation can model the random motion of a particle in fluid flow, the transmission of
electrical impulses in nerve and muscle cells, and the propagation of electromagnetic waves in superconducting
media. It can also describe the propagation of pressure waves in pulsatile blood flow in arteries [2]. The study of
the telegraph equation is an active area of research. Developing new methods for solving it can lead to significant
advances in our understanding of these and other physical phenomena.

Solving the telegraph equation analytically is not always possible or convenient, especially when the boundary
and initial conditions are complicated or nonlinear. Therefore, various numerical and approximate methods
have been proposed and used to obtain solutions of the telegraph equation [3, 4, 5, 6, 7, 8, 9, 10, 11], such
as finite difference methods, Runge-Kutta methods, perturbation methods, homotopy methods, and Adomian
decomposition method (ADM). Among these methods, ADM is a popular and powerful technique that can handle
linear and nonlinear problems without linearization or discretization. It provides the solution as an infinite series
that converges rapidly and has easily computable components [12]. However, ADM also has some limitations
and drawbacks, such as the limited choice of acceptable linear operators and initial approximations, the difficulty
of integrating higher order deformation equations, and the need of using the so-called Adomian polynomials.
To overcome these challenges and improve the accuracy and efficiency of ADM, several modifications have
been proposed by various researchers. One of them is the modified Adomian decomposition method (MADM),
which was introduced by Hasan and Zhu in 2009 [13].This modification is based on developing a new invertible
differential operator and was introduced for solving second-order ordinary differential equations with constant
coefficients . The main objective of this paper is to use the differential operator introduced in [14] and use it
to apply this modified method for the hyperbolic telegraph equation. This method has some advantages over
ADM, such as simplifying the calculation process, giving exact solutions for some equations by using only a few
iterations, and with this method only the initial conditions are needed for finding the solution. In this paper,
we apply the MADM to solve the hyperbolic telegraph equation. We show that MADM is more efficient than
ADM for solving this equation. We also present numerical results that demonstrate the accuracy and efficiency
of the MADM.

This paper is organized as follows: in Sect. 2 the analysis of the method is given with two cases being considered.
In Sect. 3 a proposed technique for converting the problem from the general case to the special case is introduced.
Numerical results are presented and discussed in Sect. 4. and, finally, conclusions are summarized in Sect. 5.

2 Analysis of The Method
In this work, we consider the general hyperbolic telegraph equation of the form

∂2u

∂t2
+ a

∂u

∂t
+ b u = c

∂2u

∂x2
+ f(x, t) + F (u(x, t)), (2.1)

with initial conditions as follows:

u(x, 0) = g1(x) , ut(x, 0) = g2(x), (2.2)

where a,b and c are constants related to the inductance, capacitance and conductance of the cable respectively
[1], f, g1, g2 are known functions, and the unknowing function u can be voltage or current through the wire at
position x and time t , and F(u(x,t))represents the nonlinear terms [8].

Under the transformation a = α+ β and b = αβ Eq.(2.1) becomes

∂2u

∂t2
+ (α+ β)

∂u

∂t
+ αβ u = c

∂2u

∂x2
+ f(x, t) + F (u(x, t)) (2.3)
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we will consider two cases

2.1 First case when (α 6= β ) :
In this general case we propose the new differential operator Lt(.) as follows

Lt(.) = e−αt
∂

∂t
e−(β−α)t ∂

∂t
eβt (.). (2.4)

Applying this operator to u results in

Lt (u) = e−αt
∂

∂t
e−(β−α)t ∂

∂t
[eβtu]

= e−αt
∂

∂t
e−(β−α)t [ ut e

βt + β u eβt ]

= e−αt
∂

∂t
[ ut e

αt + β u eαt ]

= e−αt [ utt e
αt + α ut e

αt + β ut e
αt + αβ u eαt ]

= utt + (α+ β) ut + αβ u .

So, under this operator the left hand side of Eq.(2.3) becomes Ltu so the telegraph Eq.(2.3) can be written as

Ltu = c uxx + f(x, t) + F (u(x, t)). (2.5)

The inverse operator L−1
t is therefore considered a two-fold integral operator, as below,

L−1
t (.) = e−βt

∫ t

0

e(β−α)t
∫ t

0

eαt(.) dtdt . (2.6)

Applying L−1
t to the left hand side of the Eq.(2.3)

L−1
t (utt + (α+ β)ut + αβu) = e−βt

∫ t

0

e(β−α)t
∫ t

0

eαt(utt + (α+ β)ut + αβu) dtdt

= e−βt
∫ t
0
e(β−α)t[eαtut + βeαtu− ut(x, 0)− βu(x, 0)] dt

= e−βt
∫ t
0
[eβtut + βeβtu− e(β−α)tut(x, 0)− βe(β−α)tu(x, 0)] dt

= e−βt[eβtu− u(x, 0)−
1

β − αe
(β−α)tut(x, 0)−

1

β − αβe
(β−α)tu(x, 0) +

1

β − αut(x, 0) +
β

β − αu(x, 0)]

= u− 1

β − αe
−αtut(x, 0)−

β

β − αe
−αtu(x, 0) +

1

β − αe
−βtut(x, 0) +

α

β − αe
−βtu(x, 0) .

Operating with L−1
t on Eq.(2.5) we get

u =
1

β − αe
−αtut(x, 0) +

β

β − αe
−αtu(x, 0)− 1

β − αe
−βtut(x, 0)−

α

β − αe
−βtu(x, 0)

+cL−1
t (uxx) + L−1

t (f(x, t)) + L−1
t (F (u(x, t))).

Substituting the initial conditions (2.2) in the above equation, then

u =
1

β − α e−αt g2(x) +
β

β − α e−αt g1(x)−
1

β − α e−βt g2(x)−
α

β − α e−βt g1(x)

+ c L−1
t (uxx) + L−1

t (f(x, t)) + L−1
t (F (u(x, t))).

(2.7)
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The ADM suggests that the unknown linear function u may be represented by the decomposition series

∞∑
k=0

uk,

where the components uk, k ≥ 0 can be computed recursively, and the nonlinear term F (u(x, t)) can be
expressed by an infinite series of the so-called Adomian polynomials Ak given in the form [12]

F (u(x, t)) =

∞∑
k=0

Ak(u0, u1, u2, ..., uk),

where the Adomian polynomials Ak can be evaluated by using the following expression

Ak =
1

k!

dk

dλk

[
F

(
k∑
i=0

λiui

)]
λ=0

, k = 0, 1, 2, .... (2.8)

Therefore the solution in a series form is
∞∑
k=0

uk =
1

β − αe
−αtg2(x) +

β

β − αe
−αtg1(x)−

1

β − αe
−βtg2(x)−

α

β − αe
−βtg1(x)

+ L−1
t (f(x, t)) + cL−1

t (

∞∑
k=0

(uk)xx) + L−1
t (

∞∑
k=0

(Ak).

Through using ADM, the components uk(x, t) can be determined as

u0 =
1

β − α e−αt g2(x) +
β

β − α e−αt g1(x)−
1

β − α e−βt g2(x)−
α

β − α e−βt g1(x) + L−1
t (f(x, t))

and
uk+1 = c L−1

t ( (uk)xx ) + L−1
t Ak, k = 0, 1, 2, 3, . . . .

Once we have determined the components of u(x, t) , the solution in a series form is established by summing up
these iterations. This series could provide the exact solution in a closed form.

The solution u(x, t) can be approximated by the truncated series:

φk =

k−1∑
m=0

um, lim
k→∞

φk = u(x, t).

2.2 Second case when (α = β ) :
In this special case the telegraph equation has the form

∂2u

∂t2
+ 2α

∂u

∂t
+ α2u = c

∂2u

∂x2
+ f(x, t) + F (u(x, t)), (2.9)

with initial conditions as follows:

u(x, 0) = g1(x) , ut(x, 0) = g2(x). (2.10)

So the differential operator becomes

Lt(.) = e−αt
∂

∂t

∂

∂t
eαt (.). (2.11)
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And the inverse operator is

L−1
t (.) = e−αt

∫ t

0

∫ t

0

eαt(.) dtdt. (2.12)

Applying L−1
t of (2.12) to the left-hand side of Eq.(2.9) we find

L−1
t [ utt + 2α ut + α2 u]

= e−αt
∫ t

0

∫ t

0

eαt(utt + 2αut + α2u) dtdt

= e−αt
∫ t

0

(eαtut + αeαtu− ut(x, 0)− αu(x, 0)) dt (2.13)

= u− te−αtut(x, 0)− e−αtu(x, 0)− αte−αtu(x, 0).

In an operator form Eq.(2.9) is written as

Lt(u) = c
∂2u

∂x2
+ f(x, t) + F (u(x, t)) (2.14)

Operating with L−1
t on Eq.(2.14) results in

u =te−αtut(x, 0) + e−αtu(x, 0) + αte−αtu(x, 0) + L−1
t f(x, t)

+ c L−1
t uxx + L−1

t F (u(x, t))
(2.15)

Substituting the initial conditions (2.10) in Eq.(2.15) we get

u =te−αt g2(x) + e−αt g1(x) + αt e−αt g1(x) + L−1
t f(x, t)

+ c L−1
t uxx + L−1

t F (u(x, t))
(2.16)

By the ADM the solution u is considered as an infinite series
∑∞
k=0 uk , so Eq.(2.16) becomes

∞∑
k=0

uk =te−αt g2(x) + e−αt g1(x) + αt e−αt g1(x) + L−1
t f(x, t)

+ c L−1
t (

∞∑
k=0

uk)xx + L−1
t

∞∑
k=0

Ak.

(2.17)

The components of u is given by

u0 = te−αt g2(x) + e−αt g1(x) + αt e−αt g1(x) + L−1
t f(x, t)

uk+1 = L−1
t ((uk)xx) + L−1

t Ak, k = 0, 1, 2, . . . .

3 Special Case Transformation Technique
Our research indicates that implementing the inverse partial differential operator 2.12 of the special case is
simpler, as it involves only the exponential function raised to the power α . This simplifies the calculation of
iterations and can sometimes lead to faster determination of the exact solution.

As such, we propose converting the problem to the special case form before solving it. This can be achieved by
rewriting the telegraph equation so that the coefficient of the dependent variable u is equal to the square of
half the coefficient of its first derivative ut , as follows :
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Suppose the telegraph equation has the form

utt + aut + bu = cuxx + f(x, t) + F (u(x, t)). (3.1)

First we rewrite the Eq.(3.1) by adding (a
2
)2u to its both sides as follows:

utt + 2 ∗ (a
2
)ut + bu+ (

a

2
)2u = (

a

2
)2u+ cuxx + f(x, t) + F (u(x, t))

utt + 2(
a

2
)ut + (

a

2
)2u = [(

a

2
)2 − b]u+ cuxx + f(x, t) + F (u(x, t)).

We put a
2
= α and (a

2
)2 − b = γ then Eq.(3.1) will take the form

utt + 2α ut + α2 u = γ u+ c uxx + f(x, t) + F (u(x, t)). (3.2)

It is clear that Eq.(3.2) is still equivalent to the original Eq.(3.1) [15].

Now the differential operator Lt(.) becomes

Lt(.) = e−αt
∂2

∂t2
eαt (.). (3.3)

The inverse operator L−1
t is therefore considered a two-fold integral operator, as below

L−1
t (.) = e−αt

∫ t

0

∫ t

0

eαt(.) dtdt, (3.4)

and the solution u according to (2.16) is

u =te−αtg2(x) + e−αtg1(x) + αte−αtg1(x) + γL−1
t u

+ cL−1
t (uxx) + L−1

t f(x, t) + L−1
t F (u(x, t)).

(3.5)

It is obvious that the iterations made by this technique is easier to calculate because u0 and L−1
t only contain

the exponential function raised to the power α and the solution converges faster as demonstrated by the following
numerical examples.

4 Numerical Examples
In this section, we present some numerical examples to illustrate the application of the MADM to solve the
telegraph equation in different cases with different initial conditions.We compared the MADM with the exact
solutions. We also show the convergence and accuracy of the MADM by computing the absolute error for some
examples.

4.1 Example 1:
Consider the following one-dimensional telegraph equation [3]

utt + 2 ut + 2 u = uxx + xe−t, x ∈ [0, 1], (4.1)

with initial conditions
u(x, 0) = x , ut(x, 0) = −x.
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Here we have α+ β = 2 and αβ = 2
⇒ α = 1 + i and β = 1− i. Substituting in (2.6) then the inverse operator is

L−1
t (.) = e−(1−i)t

∫ t

0

e(−2i)t

∫ t

0

e(1+i)t(.) dtdt. (4.2)

Using (2.7), the solution u is given by

u =
x

2i
e−(1+i)t − 1− i

2i
xe−(1+i)t − x

2i
e−(1−i)t +

1 + i

2i
xe−(1−i)t + L−1

t (uxx) + L−1
t (xe−t)

u =
x

2
e−(1+i)t +

x

2
e−(1−i)t + L−1

t (uxx) + L−1
t (xe−t).

So we have
∞∑
k=0

uk =
x

2
e−(1+i)t +

x

2
e−(1−i)t + L−1

t (xe−t) + L−1
t (

∞∑
k=0

(uk)xx).

By the decomposition method we get the following recurrence relations

u0 =
x

2
e−(1+i)t +

x

2
e−(1−i)t + L−1

t (xe−t),

uk+1 = L−1
t (

∞∑
k=0

(uk)xx) ∀k ≥ 0.

L−1
t (xe−t) = e−(1−i)t

∫ t

0

e(−2i)t

∫ t

0

e(1+i)t(xe−t)dtdt

= xe−(1−i)t
∫ t

0

e(−2i)t

∫ t

0

eitdtdt

= xe−(1−i)t
∫ t

0

e(−2i)t[
1

i
eit − 1

i
]dt

= xe−(1−i)t
∫ t

0

[
1

i
e−it − 1

i
e(−2i)t]dt

= xe−(1−i)t[e−it − e(−2i)t

2
− 1

2
]

= xe−t − x

2
e−(1+i)t − x

2
e−(1−i)t.

The components of u(x, t) is given by

u0 =
x

2
e−(1+i)t +

x

2
e−(1−i)t + xe−t − x

2
e−(1+i)t − x

2
e−(1−i)t

= xe−t,

u1 = L−1
t (u0)xx = 0,

...
uk = 0 ∀k = 1, 2, 3, ....

Therefore the exact solution is
u = u0 = xe−t.
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4.2 Example 2
Consider the linear telegraph equation [11]

∂2u

∂t2
+ 4

∂u

∂t
+ 4u =

∂2u

∂x2
, (4.3)

with initial conditions
u(x, 0) = 1 + e2x , ut(x, 0) = −2.

Here we have α = β.
Substituting α = 2 in Eq.(2.11) we get

⇒ Lt(.) = e−2t ∂
2

∂t2
e2t(.). (4.4)

The inverse operator L−1
t is

L−1
t (.) = e−2t

∫ t

0

∫ t

0

e2t(.)dtdt. (4.5)

Then by Eq.(2.16) we get

u = e−2t + e2x−2t(1 + 2t) + L−1
t

∂2u

∂x2

By the decomposition method we get the following recurrence relations

u0 = e−2t + e2x−2t(1 + 2t),

uk+1 = L−1
t

∂2uk
∂x2

, ∀k = 0, 1, 2, 3, ...

The components of the solution u(x, t) is given by

u0(x, t) =e
−2t + e2x−2t(1 + 2t),

u1(x, t) =e
−2t

∫ t

0

∫ t

0

e2t(4e2x−2t(1 + 2t)) dtdt = e2x−2t

(
(2t)2

2!
+

(2t)3

3!

)
,

u2(x, t) =e
−2t

∫ t

0

∫ t

0

e2t(4e2x−2t

(
(2t)2

2!
+

(2t)3

3!

)
) dtdt = e2x−2t

(
(2t)4

4!
+

(2t)5

5!

)
,

...

uk(x, t) =e
2x−2t

(
(2t)2k

(2k)!
+

(2t)2k+1

(2k + 1)!

)
.

The solution u(x, t) in a series form is given by

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t)....

=e−2t + e2x−2t

(
1 + 2t+

(2t)2

2!
+

(2t)3

3!
+

(2t)4

4!
+

(2t)5

5!
+ ....

)
.

Which gives the exact solution

u(x, t) =e−2t + e2x−2te2t = e−2t + e2x.

4.3 Example 3
Consider the telegraph equation [4]

utt + ut + u = uxx + x2 + t− 1, (4.6)
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with initial conditions
u(x, 0) = x2 , ut(x, 0) = 1.

Here we have α+ β = 1 and αβ = 1,

⇒ α =
1

2
− i
√
3

2
, β =

1

2
+
i
√
3

2
.

So, by Eq.(2.6) the inverse operator is given by

L−1
t (.) = e−( 1

2
+ i

√
3

2
)t

∫ t

0

e(i
√
3)t

∫ t

0

e−( 1
2
− i

√
3

2
)t(.)dtdt.

Substituting α, β and the initial conditions in (2.7) we get

u = e−( 1
2
− i

√
3

2
)t

(
1

i
√
3
+ (

1

2
− i
√
3

6
)x2
)
+ e−( 1

2
+ i

√
3

2
)t

(
−1
i
√
3
+ (

1

2
+
i
√
3

6
)x2
)
+ L−1

t (x2 + t− 1) + L−1
t uxx

L−1
t (x2 + t− 1) =e−( 1

2
+ i

√
3

2
)t

∫ t

0

e(i
√
3)t

∫ t

0

e−( 1
2
− i

√
3

2
)t (x2 + t− 1

)
dtdt

=x2 + t− 2 + e−( 1
2
− i

√
3

2
)t

(
(
−1
2

+
i
√
3

6
)x2 + 1

)
+ e−( 1

2
+ i

√
3

2
)t

(
(
−1
2
− i
√
3

6
)x2 + 1

)

u = x2 + t− 2 + e−( 1
2
− i

√
3

2
)t

(
1

i
√
3
+ 1

)
+ e−( 1

2
+ i

√
3

2
)t

(
−1
i
√
3
+ 1

)
+ L−1

t uxx.

So by ADM, we have the following recurrence relations

u0 = x2 + t− 2 + e−( 1
2
− i

√
3

2
)t

(
1

i
√
3
+ 1

)
+ e−( 1

2
+ i

√
3

2
)t

(
−1
i
√
3
+ 1

)
,

uk+1 = L−1
t (uk)xx , k = 0, 1, 2, 3, ...

Therefore

u1 =L−1
t (u0)xx = L−1

t (2) = e−( 1
2
− i

√
3

2
)t

(
−1
i
√
3
− 1

)
+ e−( 1

2
+ i

√
3

2
)t

(
1

i
√
3
− 1

)
+ 2,

u2 =L−1
t (u1)xx = L−1

t (0) = 0,

...
uk =0 , k = 2, 3, 4, ...

⇒ u = u0 + u1 + u2 + ... = x2 + t.

Which is the exact solution.
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4.4 Example 4
We will solve this example first by applying the general case, and then we will solve it by using the suggested
transformation technique to see how effective this suggested technique.

Consider the following tow-dimensional telegraph equation [6]

utt + 3ut + 2u = uxx + uyy, (4.7)

with initial conditions
u(x, y, 0) = ex+y , ut(x, y, 0) = −3ex+y.

Here we have α+ β = 3 , and αβ = 2 ⇒ α = 1, β = 2.

Substituting α, β and the given initial conditions in (2.7) we get

u = ex+y(2e−2t − e−t) + L−tt [uxx + uyy], (4.8)

where

L−tt (.) = e−2t

∫ t

0

et
∫ t

0

et(.)dtdt.

So
u0 = ex+y(2e−2t − e−t),

and
uk+1 = L−tt [(uk)xx + (uk)yy].

u1 =ex+y−t(6− 2t) + ex+y−2t(−6− 4t),

u2 =ex+y−t(−2t2 + 16t− 36) + ex+y−2t(4t2 + 20t+ 36),

u3 =ex+y−t(−4

3
t3 + 20t2 − 112t+ 240) + ex+y−2t(−8

3
t3 − 28t2 − 128t− 240),

u4 =ex+y−t(−2

3
t4 + 16t3 − 160t2 + 800t− 1680) + ex+y−2t(

4

3
t4 + 24t3 + 200t2 + 880t+ 1680),

u5 =ex+y−t(− 4

15
t5 +

28

3
t4 − 144t3 + 1232t2 − 5824t+ 12096) + ex+y−2t(− 8

15
t5 − 44

3
t4 − 192t3

− 1456t2 − 6272t− 12096),

...

Therefor the solution in a series form is
u = u1 + u2 + u3 + u4 + ...

u =− 4

15
ex+y−t(−159375

4
+

38415

2
t− 8175

2
t2 + 485t3 − 65

2
t4 + t5 + ...)

+
1

15
ex+y−2t(−159360− 82560t− 19200t2 − 2560t3 − 200t4 − 8t5 + ...).
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Now we will solve this problem by the special case transformation technique .
First we rewrite the equation as

∂2u

∂t2
+ 2(

3

2
)
∂u

∂t
+ (

3

2
)2u =

1

4
u+

∂2u

∂x2
+
∂2u

∂y2
.

Substituting α = 3
2

and using the given initial conditions in Eq.(2.11) we get

⇒ Lt(.) = e−
3
2
t ∂2

∂t2
e

3
2
t(.). (4.9)

The inverse operator L−1
t is

L−1
t (.) = e−

3
2
t

∫ t

0

∫ t

0

e
3
2
t(.) dtdt. (4.10)

Substituting α, β and the initial conditions in Eq.(2.16) we get

u = −3tex+y−( 3
2
)t + ex+y−( 3

2
)t +

3

2
tex+y−( 3

2
)t + L−1

t

1

4
u+ L−1

t

∂2u

∂x2
+ L−1

t

∂2u

∂y2

u = ex+y−( 3
2
)t[1− 3

2
t] + L−1

t
1
4
u+ L−1

t
∂2u
∂x2

+ L−1
t

∂2u
∂y2

.

By the decomposition method we have the following recurrence relations

u0 = ex+y−( 3
2
)t[1− 3

2
t],

uk = L−1
t

1

4
(uk−1) + L−1

t (
∂2uk−1

∂x2
) + L−1

t (
∂2uk−1

∂y2
)

=
9

4
L−1
t (uk−1), ∀ k = 0, 1, 2, 3, . . .

Therefore the components of the solution u(x, y, t) is

u0 = ex+y−( 3
2
)t(1− 3

2
t),

u1 =
9

4
L−1
t u0 =

9

4
L−1
t (ex+y−

3
2
t(1− 3

2
t)) =

9

4
e−

3
2
t

∫ t

0

∫ t

0

e
3
2
tex+y−

3
2
t(1− 3

2
t)dtdt

=
4

9
ex+y−

3
2
t

(
t2

2!
− 3t3

2 ∗ 3!

)
= ex+y−

3
2
t

(
(− 3t

2
)2

2!
−

(− 3t
2
)3

3!

)
,

u2 = ex+y−
3
2
t

(
(− 3t

2
)4

4!
−

(− 3t
2
)5

5!

)
,

...

uk = ex+y−
3
2
t

(
(− 3t

2
)2k

(2k)!
−

(− 3t
2
)(2k+1)

(2k + 1)!

)
.

The solution in a series form is given by

u(x, y, t) = ex+y−
3
2
t[1− (−3t

2
) +

(− 3t
2
)2

2!
−

(− 3t
2
)3

3!
+

(− 3t
2
)4

4!
−

(− 3t
2
)5

5!
+ ...].
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Which gives the exact solution
u(x, y, t) = ex+y−

3
2
te−

3
2
t = ex+y−3t.

As illustrated by this example, when the equation is converted to the special case form, the MADM iterations
become easier to compute and more effectively converge to the exact solution, in comparison to the general case.

We computed the absolute error of each series for this example at various points to compare their convergence
rates. The results are presented in Table 1, where the series are truncated at six terms (k=0 to k=5).

4.5 Example 5
Consider the telegraph equation [3]

utt + ut − u = uxx, x ∈ [0, 1], (4.11)

with initial conditions
u(x, 0) = sinx , ut(x, 0) = − sinx, t ≥ 0.

First we rewrite Eq.(4.11) as follows

utt + 2(
1

2
)ut +

1

4
u =

5

4
u+ uxx. (4.12)

Substituting α = 1
2

in Eq.(3.3) then

Lt(.) = e−
t
2
∂2

∂t2
e

t
2 (.),

and the inverse operator becomes

L−1
t (.) = e−

t
2

∫ t

0

∫ t

0

e
t
2 (.) dtdt.

Then by Eq.(3.5) we get

u(x, t) = − sinx te−
t
2 + sinx e−

t
2 +

1

2
sinx te−

t
2 + L−1

t (
5

4
u+ uxx)

= sinx e−
t
2 [1− t

2
] + L−1

t (
5

4
u+ uxx).

∞∑
k=0

uk(x, t) = sinx e−
t
2 [1− t

2
] + L−1

t (
5

4

∞∑
k=0

uk +

∞∑
k=0

(uk)xx)

By the decomposition method

u0(x, t) = sinx e−
t
2 (1− t

2
),

uk(x, t) = L−1
t (

5

4
uk−1 + (uk−1)xx).
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So the components of the solution u(x,t) is given by

u0(x, t) = sinx e−
t
2 (1− t

2
),

u1(x, t) = L−1
t (

5

4
u0 + (u0)xx) =

1

4
L−1
t (sinx e−

t
2 [1− t

2
])

=
1

4
sinx e−

t
2

(
t2

2!
− t3

2 ∗ 3!

)
= sinx e−

t
2

(
( t
2
)2

2!
−

( t
2
)3

3!

)
,

u2(x, t) =
1

4

1

4
sinx e−

t
2

(
t4

4!
− t5

2 ∗ 5!

)
= sinx e−

t
2

(
( t
2
)4

4!
−

( t
2
)5

5!

)
,

...

uk(x, t) = sinx e−
t
2

(
( t
2
)(2k)

(2k)!
−

( t
2
)(2k+1)

(2k + 1)!

)
.

The solution in a series form is given by

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + . . .

= sinx e−
t
2

(
1− t

2
+

( t
2
)2

2!
−

( t
2
)3

3!
+

( t
2
)4

4!
−

( t
2
)5

5!
+ . . .

)
.

Which gives the exact solution

u(x, t) = sinx e−
t
2 e−

t
2

= sinx e−t.

4.6 Example 6
Consider the nonlinear telegraph equation [16]

utt + 2ut = uxx − u2 + e2x−4t − ex−2t, (4.13)
with initial conditions

u(x, 0) = ex, ut(x, 0) = −2ex.
We have

α = 2, β = 0.

Substituting α, β in 2.4 results in

Lt(.) = e−2t ∂

∂t
e2t

∂

∂t
(.).

By 2.6 the inverse integral operator is

L−1
t =

∫ t

0

e−2t

∫ t

0

e2t(.)dtdt.

Therefore by substituting the given initial conditions in 2.7, the solution is given by

u(x, t) = ex−2t + L−1
t (e2x−4t − ex−2t) + L−1

t uxx − L−1
t u2.

By the decomposition method the recursive relations are

u0 =ex−2t + L−1
t (e2x−4t − ex−2t),

uk+1 =L−1
t (uk)xx − L−1

t (Ak), k + 0, 1, 2, ...
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where Ak are the Adomian polynomials for the nonlinear term u2 , and they can be calculated as follows[1]

A0 =u2
0,

A1 =2u0u1,

A2 =2u0u2 + u2
1,

...

The components un of the series solution can be determined as follows

u0 = ex−2t +

∫ t

0

e−2t

∫ t

0

e2t(e2x−4t − ex−2t) dtdt

=
t

2
ex−2t +

5

4
ex−2t +

1

8
e2x−4t − 1

4
e2x−2t +

1

8
e2x − 1

4
e2x,

u1 = L−1
t (u0)xx − L−1

t (A0) =

∫ t

0

e−2t

∫ t

0

e2t((u0)xx − u2
0) dtdt,

u2 = L−1
t (u1)xx − L−1

t (A1) =

∫ t

0

e−2t

∫ t

0

e2t((u1)xx − 2u0u1) dtdt,

...

The solution in series form is

u(x, t) =

∞∑
k=0

uk = u0 + u1 + u2 + ...

=
t

2
ex−2t +

5

4
ex−2t +

1

8
e2x−4t − 1

4
e2x−2t +

1

8
e2x − 1

4
e2x + ...,

where the exact solution is
u(x, t) = ex−2t.

The absolute error of this Example 6 is displayed in Table ??. It was computed with three terms of the solution
i.e u0 + u1 + u2, at x = 0.01 for different values of t .

Table 1. Comparison between exact solution u = ex+y−3t of Example 4 and the solution by
MADM and SMADM at different values of x, y and t using 6 iterations(i.e k=5)

x,y t solution by MADM solution by SMADM EXACT SOLUTION AE by MADM AE by SMADM
0.1 0.7408180000 0.7408182207 0.7408182207 2.207× 10−7 0

0 0.3 0.4065730000 0.4065696597 0.4065696597 3.3403× 10−6 0
0.5 0.2231300000 0.2231301600 0.2231301601 1.601× 10−7 1× 10−10

0.1 2.013750000 2.013752708 2.013752707 2.707× 10−6 1× 10−9

0.5 0.3 1.105170000 1.105170918 1.105170918 9.18× 10−7 0
0.5 0.606540000 0.6065306596 0.6065306597 9.3403× 10−6 1× 10−10

0.1 5.473970000 5.473947392 5.473947392 2.2608× 10−5 0
1 0.3 3.004170000 3.004166024 3.004166024 3.976× 10−6 0

0.5 1.648730000 1.648721270 1.648721271 8.729× 10−6 1× 10−9
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Table 2. Comparison between the exact solution u(x, t) = ex−2t of Example 6 and the solution
obtained by our MADM with three terms of solution u(x, t) = u0 + u1 + u2

t Exact solution at x=0.01 MADM solution at x=0.01 AE
0.1 0.8269591339 0.8269591350 1.1× 10−9

0.2 0.6770568745 0.6770570197 1.452× 10−7

0.3 0.5543272847 0.5543296764 2.3917× 10−6

0.4 0.4538447953 0.4538606685 15.87× 10−6

0.5 0.3715766910 0.3716419421 65.25× 10−6

0.6 0.3042212641 0.3044206706 199.41× 10−6

0.7 0.2490753046 0.2495734460 498.14× 10−6

0.8 0.2039256117 0.2050013396 1.08× 10−3

0.9 0.1669601697 0.1690413190 2.08× 10−3

1 0.1366954254 0.1403909208 3.70× 10−3

5 Conclusions
In conclusion, the Modified Adomian Decomposition Method (MADM) with inverse differential operator has
been demonstrated to effectively solve both linear and nonlinear telegraph equations. In some examples, exact
solutions were derived, while in others, very good approximations were obtained. The suggested transformation
technique proved effective, with series derived using this technique converging faster to the exact solution.
Overall, the MADM is a promising method for solving the telegraph equation due to its ease of implementation
and efficiency in finding both approximate and analytical solutions.
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