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Abstract
For a connected nontrivial graph G , the maximum linear forest of G is the linear forest having maximum
number of edges. The number of edges in a maximum linear forest is denoted by `(G) . In this paper we
determine the maximum linear forest of the join and union of nontrivial connected graphs G and H , denoted
by G + H and G ∪H , respectively.
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1 Introduction
Graph Theory is a branch of discrete mathematics that is being distinguished by its geometric approach to the
study of various objects. The foundation of Graph Theory’s basic concept and idea was pioneered by a Swiss
mathematician Leonhard Paul Euler (1707-1782). He settled a famous unsolved problem of his day called the
Königsberg Bridge Problem. The problem’s answer remained indeterminable until Euler was able to prove that
the walk is impossible by drawing a picture consists of “dots" and “line-segments" representing the landmasses
and the bridges that connected them.

After the Euler’s work, subsequent discoveries of graph theory by some researchers had their roots in the physical
world. It was in the year 1847 when the concept of a Tree , a connected graph without cycles, was introduced by
a Physicist, Gustav Kirchhoff (1824-1887). A decade after, trees were used by Arthur Cayley (1821-1895), James
Joseph Sylvester (1806-1897), Georg Polya (1887-1985), and others, to solve problems involving enumeration of
certain chemical molecules [1]. Since then, there had been many rediscoveries contributed in the field of Graph
Theory. This study is anchored on the concept of trees specifically the parameter of maximum linear forest.

2 Preliminary Notes
Some definitions of the concepts covered in this study are included below. You may refer on the remaining terms
and definitions in [1]-[9].

Definition 2.1. [3] A graph is acyclic if it has no cycles. A tree is a connected acyclic graph. Any graph
without cycles is a forest ; thus, the components of a forest are trees.

Definition 2.2. [10] A linear forest (F ) is an acyclic subgraph of a graph where the degree of any vertex is at
most two. Equivalently, a linear forest is a vertex disjoint union of paths.

Definition 2.3. A maximum linear forest in G is a linear forest in G with maximum number of edges. The
number of edges in maximum linear forest of graph G is denoted by `(G) .

Corollary 2.1. [11] Every connected graph contains a spanning tree.

Corollary 2.2. [12] If G is a forest with n vertices and k components, then G has n− k edges.

3 Main Results

3.1 Maximum Linear Forest of Graphs
Proposition 3.1. Let G be a connected nontrivial graph of order n and G has no vertices adjacent to at least
3 end-vertices. Then G has a linear forest F of order n , i.e., |V (F )| = n .

Proof. Let G be a connected nontrivial graph such that |V (G)| = n and G has no vertices adjacent to at
least 3 end-vertices. Then by Corollary 2.1, G contains a spanning tree T ∗ . Naturally, |V (T ∗)| = n . Now,
we remove degrees of T ∗ until we arrive at a collection of vertex disjoint paths. The resulting graph is a linear
forest having n vertices, i.e., |V (F )| = n .

Proposition 3.2. Let F ′ and F ′′ be two linear forests in a connected nontrivial graph G of order n such that
|V (F ′)| = p and |V (F ′′)| = m , where m < p . Then M(F ′) ≤M(F ′′) .

Proof. Let G of order n be a connected nontrivial graph and let F ′ and F ′′ be linear forest in G such that
|V (F ′)| = p and |V (F ′′)| = m , where m < p . We determine the edge count or edge number of F ′ and F ′′

using Corollary 2.2, where the number of components of a forest is subtracted from the total number of vertices.
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We consider the following cases:

Case 1: F ′ and F ′′ has k components.
M(F ′) = p− k , and
M(F ′′) = m− k
since m < p , this implies that M(F ′) < M(F ′′) .

Case 2: F ′ has r components and F ′′ has s components, where r < s .
M(F ′) = p− r , and
M(F ′′) = m− s
since m < p and r < s , this implies that M(F ′) < M(F ′′) .

Case 3: F ′ has r components and F ′′ has s components, where s < r .
M(F ′) = p− r , and
M(F ′′) = m− s
since m < p and s < r , this implies that M(F ′) = M(F ′′) .

By the preceding cases, M(F ′) ≤M(F ′′) .

Proposition 3.3. Let Fm be a collection of linear forests of a connected nontrivial graph G such that |V (F )| =
m for all F i ∈ Fm , where i denotes the number of components of the linear forest F i . Then for F i , F j ∈ Fm

with i < j ,

M(F i) > M(F j) .

Proof. Let G be a connected nontrivial graph and let Fm be a collection of linear forests of G of order n with
the property that if F i ∈ Fm , then |V (F i)| = m , with mleqn and i denotes the number of components of
F i , 2 ≤ i ≤

⌊
n
2

⌋
.

Now, consider two elements F i and F j in Fm , with
⌊
n
2

⌋
. With this and by Corollary 2.2, M(F i) = m− i >

m− j = M(F j) .

Corollary 3.1. Let G be a connected nontrivial graph of order n and suppose that the set Fn of all linear
forests of G with n vertices is nonempty. Then a linear forest in Fn having the least number of components is
a maximum linear forest in G .

Proof. If Fn is nonempty, then G has a linear forest of order n , by Proposition 3.2, each linear forest in Fn

has more edges than the linear forest of G not in Fn . Conclusion follows from Corollary 3.1.

Remark 3.1. Let F i
m be a collection of all linear forests in a connected nontrivial graph G such that for each

F ∈ F i
m , |V (F )| = m and F has exactly i components. Then for any two F1, F2 ∈ F i

m ,

M(F1) = M(F2) .

3.2 Maximum Linear Forest of Special Graphs (Paths and Cycle)
Remark 3.2. Since paths and cycles are connected nontrivial graphs, in view of Proposition 3.3, we have:

(i) A maximum linear forest of a connected nontrivial graph G with ∆(G) = 2 contains all vertices of G .

(ii) A maximum linear forest of a connected nontrivial graph G with ∆(G) = 2 has two components.

From this point on, we employ notations given in the following definition.
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Definition 3.1. Let G be a connected nontrivial graph of order n with maximum degree, ∆(G) = 2 . We
adopt the following:

(i) Ci
G = {S1, S2, S3, ..., Si} be a partition of V (G) where each Sk , 1 ≤ k ≤ i , contains at least two

adjacent vertices which forms a path Pk in G . (Note also that i , 2 ≤ i ≤
⌊
n
2

⌋
, indicates the number of

components.)

(ii) F i
G = ∪i

k=1Pk is linear forest form by the disjoint union of Pk , as defined in (i) .

Remark 3.3. Each Ci
G and F i

G is not unique. We can choose any vertex disjoint sets in G as long as the
vertices we choose are adjacent.

Theorem 3.2. If G is a connected nontrivial graph of order n with ∆(G) = 2 . Then G has a linear forest
F of order n and `(G) = n− 2 .

Proof. Suppose G is a connected nontrivial graph of order n with ∆(G) = 2 . In view of Remark 3.2 (i) , a
maximum linear forest of G must contain n vertices. Consider the linear forests F 2

G and F k
G where k > 2 ,

such that |V (F 2
G)| = |V (F k

G)| = n . By Corollary 2.2, we have

M(F 2
G) = n− 2 > n− k = M(F k

G) .

Thus, F 2
G is a maximum linear forest in G where `(G) = M(F 2

G) = n− 2 .

Remark 3.4. The number of edges of a maximum linear forest in Pn and Cn with ∆(G) = 2 is given by:

`(Pn) = `(Cn) = n− 2 , where n ≥ 4 .

3.3 Maximum Linear Forest Resulting from Some Binary Operations

3.3.1 Maximum Linear Forest in the Union of Graphs

Lemma 3.3. Let G and H be connected nontrivial graphs of order n and m respectively, where ∆(G) =
∆(H) = 2 and let G∪H of order n+m be the union of G and H . Then the linear forest F of order n+m
with two components is a maximum linear forest in G ∪H .

Proof. Let G of order n and H of order m be connected nontrivial graphs where ∆(G) = ∆(H) = 2 and let
G∪H of order n+m be the union of G and H . Note that in G∪H , G and H are disconnected components.
Hence, we consider the following cases:
Case 1: G = Pn and H = Pm , i.e., G ∪H = Pn ∪ Pm

By definition of linear forest, since G∪H is a disjoint union of two paths as its components, equivalently, G∪H
is a linear forest itself, i.e., F 2

G∪H of order n + m . This means G ∪H contains maximum number of vertices
and with least number of components. By Corollary 3.1, F 2

G∪H is a maximum linear forestin G ∪H .

Case 2: G = Pn and H = Cm , i.e., G ∪H = Pn ∪ Cm

Observe that G ∪H is a disjoint union of a path and a cycle. Hence we consider F i
G∪H , 2 ≤ i ≤

⌊
n+m

2

⌋
as a

linear forest in G ∪H (see Definition 3.1). But note that since we want to construct a linear forest with least
components, we leave Pn as it is and we remove at least one edge in Cm , i.e., Pm = Cm − e . Hence, as we
remove one edge in Cm , it now becomes a path. Consequently, we have F 2

G∪H = Pn ∪ Pm which is of order
n + m with 2 components and thus, a maximum linear forest of G ∪H .

Case 3: G = Cn and H = Cm , i.e., G ∪H = Cn ∪ Cm

Observe that G ∪ H is a disjoint union of two cycles. Hence we consider F i
G∪H , 2 ≤ i ≤

⌊
n+m

2

⌋
as a linear
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forest in G∪H (see Definition 3.1). To construct a linear forest with least components, we remove at least one
edge from each cycle in G ∪ H , i.e., Pn = Cn − e and Pm = Cm − e . Now, this results to a linear forest in
G∪H having 2 components, F 2

G∪H = Pn∪Pm of order n+m for which is the maximum linear forest in G∪H .

By the preceding cases, a linear forest of order n + m with two components among all linear forests that can
be form is a maximum linear forest of G ∪H .

Corollary 3.4. If G and H are connected nontrivial graphs of order n and m , respectively, with ∆(G)∆(H) =
2 , then

`(G ∪H) =


n + m if G = Pn and H = Pm,
n + m− 1 if G = Pn and H = Cm,
n + m− 2 if G = Pn and H = Pm.

Proof. In view of the proof of Lemma 3.3, conclusion follows from each specified cases.

3.3.2 Maximum Linear Forest of Join of Graphs

Lemma 3.5. Let G and H be connected nontrivial graphs of order n and m respectively, where ∆(G) =
∆(H) = 2 , and let G + H of order n + m be the join of G and H . Then a linear forest F of order n + m
with two components is a maximum linear forest in G + H .

Proof. Observe that G and H are either path or cycle; hence, G and H both have spanning paths Pn and
Pm . These paths form a linear forest F 2

G+H = Pn ∪ Pm of order n + m with 2 components. By Corollary 3.1,
F 2
G+H is a maximum linear forest in G + H .

Proposition 3.4. If G and H are connected nontrivial graphs of order n and m , respectively, with ∆(G) = 2
and ∆(H) = 2 . Then in the join G + H , `(G + H) = n + m− 2 .

Proof. Let G of order n and H of order m be connected nontrivial graphs where ∆(G) = ∆(H) = 2 , for
which G = (Vn, En) and H = (Vm, Em) , and let G + H of order n + m be the join of G and H . By Lemma
3.5, we can find a maximum linear forest of order n + m in G + H with least components. Suppose F 2

G+H is
a maximum linear forest in G + H and let r = n + m . By Theorem 3.2,

`(G + H) = M(F 2
g+H) = r − 2

= n + m− 2

Thus, `(G + H) = n + m− 2 .

4 Conclusion and Recommendation
For simple graph G , the maximum linear forest of G is the linear forest having maximum number of edges among
all formed linear forest, the number of edges in a maximum linear forest is denoted by `(G) . In this article, the
maximum linear forest is investigated under the binary operations union and join. For future research, it would
be interesting to determine the number of maximum linear forests in graphs under some binary operations
including union, join, composition, tensor product, normal product, dot product and the strong product of
graphs.
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