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An increase in herbicide use is occurring due to a growing population and
herbicide-resistant crops in agriculture, which has resulted in more herbicide
tolerant target species. Glyphosate and 2,4-Dichlorophenoxyacetic acid (2,4-D)
are two of the most commonly used herbicides worldwide and are more recently
being used in combination in pre-mixed commercial formulas. Subsequently,
herbicide contamination of wetlands will increase exposure of microorganisms to
multiple chemical stressors. Methane is a potent greenhouse gas naturally emitted
from wetlands, but herbicides may disrupt biogeochemical processes leading to
an unbalanced methane cycle. We review the impacts of these herbicides on
aquatic microbial communities from glyphosate-derived nutrient enrichment and
2,4-D inhibition of methane oxidation, and examine how these altered metabolic
processes may lead to increased methane production in wetlands. The response
of wetland ecosystems to herbicide contamination will vary across regions, in part
due to the complexity of microbial communities, however, this perspective gives a
glimpse into the potential global implications of continuing herbicide use on
wetlands and demonstrates the importance for research on ecosystem-level co-
stressors.
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1 Introduction

Climate change is an ongoing global concern as greenhouse gas (GHG) emissions
continue to increase (IPCC, 2021). Methane (CH4) is the second most abundant GHG, after
carbon dioxide (CO2), but is about 25 times more potent (Islam et al., 2018; EPA, 2023).
Wetlands are a large natural source of CH4 as they play a significant role in carbon (C)
sequestration and cycling (Andresen et al., 2017), and it has recently been suggested that
agrochemicals may impact GHG emissions from freshwater ecosystems (Stehle and Schulz,
2015). In particular, herbicide use has substantially increased over the past 30 years due to
the introduction and rapid adoption of herbicide-resistant crops worldwide (Bai and
Ogbourne, 2016; Coupe and Capel, 2016; Peterson et al., 2018). As a result, target plants
have developed herbicide-resistance and the use of pre-mixed formulas that contain multiple
active ingredients (i.e., multiple modes of action) has become more common (Freydier and
Lundgren, 2016; Schütte et al., 2017). Herbicide use is also projected to increase due to
ongoing climatic change (Delcour et al., 2015), where higher temperatures can enhance
toxicity and alter biodegradation processes (Noyes et al., 2009; Koleva and Schneider, 2010;
Matzrafi, 2019). Subsequently, wetland biota are subjected to combinations of more severe
physical and chemical stressors.
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Glyphosate and 2,4-D are two of the most commonly used
herbicides globally, and are also used in pre-mixed formulas such as
Enlist Duo® (1:0.95 glyphosate:2,4-D) and Landmaster™ II (1:
0.83 glyphosate:2,4-D) (Benbrook, 2016; Zuanazzi et al., 2020;
EPA, 2022). Their extensive use is cause for environmental
concern within aquatic ecosystems as herbicides are already
substantial contributors to wetland pollution (Casado et al.,
2019). Wetlands are often located in the lowest drainage points
of agriculture fields, where they can serve as critical sinks for
herbicides transported through spray drift, runoff, groundwater
leaching, and wind and sediment erosion (Annett et al., 2014;
Bento et al., 2017). However, their fate is dependent on many
landscape- and ecosystem-level components such as, precipitation
patterns, herbicide application dates, surrounding land use, and
plant and animal composition. For example, glyphosate and 2,4-D
are highly water soluble, thus a rainfall shortly after application
would rapidly transport substantial amounts of these herbicides into
nearby wetlands (Bertuzzo et al., 2013). These agrochemicals often
persist in sediments of temperate and northern climates (Helander
et al., 2012; Mierzejewska and Urbaniak, 2022), can bioaccumulate
in organisms such as biofilms (Beecraft and Rooney, 2021), and can
be transported between habitats via emerging insects (Roodt et al.,
2023). Herbicides are frequently detected within aquatic ecosystems
around the world, where they have even been found in protected
conservation areas (Wolfram et al., 2023).

Consequently, “pesticide cocktails” can effect microorganisms
that are important contributors to wetland biogeochemical cycling
and overall ecosystem function (Aparicio et al., 2013; Sun et al.,
2013; Islam et al., 2018; Baker et al., 2020). Microorganisms are
sensitive to disturbances (Sun et al., 2013), thus as both herbicide use
and climate change intensifies it is critical to assess the potential
effects of herbicides on GHG emissions. Methanogens (i.e., CH4

producers) and methanotrophs (i.e., CH4 consumers), in addition to
plant and algal-mediated transport, play a critical role in the global
CH4 budget of wetlands, which may be impacted by glyphosate and
2,4-D. In this article we highlight previous research on glyphosate-
derived nutrient enrichment and 2,4-D inhibited CH4 oxidation to
suggest that herbicides entering wetlands could alter CH4

production via synergistic effects on microbial communities and
consequently impact climate change.

1.1 Glyphosate

Glyphosate’s impacts on wetland microorganisms are often
dose- and species-dependent (Bai and Ogbourne, 2016), therefore
it can be detrimental or advantageous to different microbial species.
While glyphosate’s mode of action was developed to target the
shikimate pathway in higher plants (Hetrick and Blankinship, 2015),
many archaea and bacteria also utilize this pathway resulting in non-
target effects (Herrmann and Weaver, 1999). Despite the potential
negative impacts on microorganisms, in many instances increased
growth, respiration, and enhanced metabolism in wetland microbial
communities have been observed as a result of glyphosate
biodegradation (Vera et al., 2012; Lu et al., 2020) and linked with
the use of glyphosate as a nutritive source (Saxton et al., 2011; Wang
et al., 2016). Due to glyphosate’s chemical structure, its degradation
often contributes substantial amounts of phosphorus (P), which has

been found to be favored and more rapidly utilized by
microorganisms compared to other sources of soil P (Hébert
et al., 2019; Sun et al., 2019). Specifically, stimulated
cyanobacterial growth and cyanotoxin production has been
recorded from glyphosate-derived P enrichment (Vera et al.,
2010; Qiu et al., 2013; Zhang et al., 2016; Hernández-García and
Martínez-Jerónimo, 2020; Wang et al., 2021; Lin et al., 2023).
Glyphosate degradation was found to be positively correlated
with total P concentrations in surface waters (Carles et al., 2019).
Glyphosate additions to aquatic ecosystems can contribute to water
quality issues, such as eutrophication, which has been demonstrated
to be an important driver of CH4 emissions (Sepulveda-Jauregui
et al., 2018; Beaulieu et al., 2019; Yang et al., 2019; Bertolet et al.,
2020). Ultimately, increased glyphosate use could shift microbial
community dynamics towards copiotrophs and algae, altering
important C biogeochemical processes and resulting in an
indirect increase in CH4 production in wetlands (Figures 1A, B).

1.2 2,4-D

Despite 2,4-D being the first synthetic herbicide, compared to
glyphosate, relatively little research has been conducted on its effects
on aquatic microorganisms (Donald et al., 2018; Malaj et al., 2020).
However, similar to glyphosate, 2,4-D can have a variety of impacts
on wetland microbial communities. It targets broadleaf plants
through mimicking the plant growth hormone, indol-3-yl-acetic
acid (IAA or auxin), resulting in plant overgrowth (Cobb and Reade,

FIGURE 1
Conceptual diagrams of a wetland with methanogens,
methanotrophs, and algae. (A) represents balanced CH4 production;
(B) represents glyphosate contamination stimulating methanogens
and algae causing higher CH4 emissions; (C) represents balanced
CH4 oxidation; (D) represents 2,4-D contamination inhibiting
oxidation (i.e., removal) of CH4 by methanotrophs causing higher CH4

emissions.
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2010), but auxin synthesis and usage in microorganisms is also well
knownmaking them vulnerable non-target organisms (Spaepen and
Vanderleyden, 2011). In addition, 2,4-D can be applied as an aquatic
herbicide resulting in species being exposed to higher concentrations
compared to terrestrial transport (Mierzejewska and Urbaniak,
2022). While 2,4-D is already a widespread environmental
contaminant frequently detected in aquatic ecosystems (Malaj
et al., 2020) and its use has also increased in recent decades with
the development of herbicide-resistant crops, its use will likely
continue to increase in the future (Freydier and Lundgren, 2016).
Consequently, wetland microorganisms could be highly susceptible
to its toxic effects with limited capacity to degrade it. Previous
research has found some species use 2,4-D as a C source, whereas
other species are toxicologically inhibited (Benndorf et al., 2004;
Zabaloy et al., 2008; Sachu et al., 2022). Research in microcosms has
also found that increased 2,4-D concentrations resulted in inhibition
of CH4 oxidation, decreases in CH4 removal time, and increased
CH4 emissions (Syamsul Arif et al., 1996; Kumaraswamy et al., 1997;
Top et al., 1999). Where studies from Top et al. (1999) and Seghers
et al. (2005) suggested decreases in CH4 removal could be due to 2,4-
D inhibition of methanotroph-mediated oxidative metabolism.
Research on the effects of 2,4-D on CH4 oxidation is extremely
limited, however these studies do indicate that 2,4-D loading into
wetlands could potentially alter the CH4 cycle by suppressing the
removal of CH4 via the food web, resulting in greater concentrations
within the water column and higher emissions (Figures 1C, D).

1.3 Pesticide cocktails: Glyphosate plus
2,4-D

The increased use of pre-mixed glyphosate and 2,4-D herbicides
further exposes wetland microorganisms to combinations of
chemical stressors, which could lead to unforeseen long-term
effects. Research on the combined effects of pesticides has been
conducted since the 1970’s, but the majority of the focus has been on
the direct toxicological impacts to aquatic flora and fauna
(Lichtenstein et al., 1973; Faust et al., 1994; Gardner and Grue,
1996; Hayes et al., 2006; Relyea, 2009; Moreira et al., 2020). These
studies included compounds such as atrazine, chlorpyrifos, fipronil,
etc., whereas research on the combined effects of glyphosate and 2,4-
D is limited, especially at the aquatic microbial level. Additive and/or
synergistic effects of glyphosate and 2,4-D have been found on fish
and amphibian growth, fertilization, survival, and behavior
(Carvalho et al., 2020; Pavan et al., 2021; Bernardi et al., 2022;
Peluso et al., 2022), and zooplankton emergence (Portinho et al.,
2018). Lozano et al. (2018) found additive impacts of glyphosate and
2,4-D on phytoplankton composition, abundance, and chlorophyll a
after 7 days in microcosms, but also found an antagonist effect on
total and live abundance of Staurastrum spp. In outdoor mesocosms
Lozano et al. (2018) found a decrease in phytoplankton respiration
and gross primary production from a high glyphosate (applied as
Roundup MaxⓇ), low 2,4-D (applied as AsiMax 50Ⓡ) treatment
after 4 h. Additionally, after 7 days in mesocosms with high
glyphosate, an increase in primary production, chlorophyll a, and
micro- and nanophytoplankton was observed (Lozano et al., 2020).
Sura et al. (2015) researched the effects of a herbicide mixture
including glyphosate, 2,4-D, MCPA, clopyralid, dicamba,

dichlorprop, mecoprop, and bromoxynil on pelagic and benthic
communities in nutrient-sufficient and nutrient-deficient wetlands.
They found pelagic bacterial productivity significantly increased
after treatment in the nutrient-sufficient wetland, but benthic
bacterial productivity did not change, which suggests the
stimulatory effect of these herbicides may be related to nutrient
bioavailability. These results demonstrate the complexity of the
direct effects of herbicide mixtures on aquatic microorganisms,
but the potential indirect effects are still poorly understood. As
pre-mixed glyphosate and 2,4-D herbicides become more common
it is important to consider the extent of their effects on aquatic
ecosystems. Glyphosate can easily be used as a nutrient source
stimulating microbial activity, specifically algal communities,
whereas 2,4-D may inhibit methanotrophic communities from
oxidizing CH4. As these compounds enter aquatic ecosystems
their impacts on microorganisms may become synergistic and/or
additive resulting in eutrophication and inhibition of methanotrophs
from glyphosate and 2,4-D, respectively. Subsequently, eutrophic
conditions and decreased CH4 removal could cause increased CH4

production via an unbalanced CH4 cycle (Figure 2).

2 Pollution-Induced Community
Tolerance (PICT)

Aquatic ecosystems are subjected to year-round herbicide
contamination, where herbicide use differs across crop, season,
habitat, and region. Microorganism structure and function can be
impacted by herbicides, but toxicity is often dependent on the
mode of action, concentration, and duration of exposure, as well as
microbial species and environmental factors (DeLorenzo et al.,
2001). For example, glyphosate stimulated Chlorella vulgaris
growth 24-h after exposure, but then inhibited growth after 48-
h at the same concentrations (i.e., hormesis) (Reno et al., 2014). In
addition to the duration of exposure, the exposure to a different
mode of action could also impact microorganisms by causing a

FIGURE 2
Conceptual diagrams of a wetland with methanogens,
methanotrophs, and algae. (A) represents a balanced CH4 cycle,
where algae and methanogens produce CH4, methanotrophs oxidize
CH4; (B) represents an unbalanced CH4 cycle where glyphosate
and 2,4-D contamination stimulate methanogens and algae and
inhibit CH4 oxidation, respectively, and thus result in higher CH4

emissions.
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community shift often appearing as changes in gene expression or
diversity (Feld et al., 2015). Pollution-Induced Community
Tolerance (PICT) refers to the response of a community to
a pollutant, which results in an increased tolerance to that
pollutant (Blanck, 2002). The use of PICT analysis is extensive
in the toxicology literature, especially on phototrophic
microorganisms, which are often more susceptible to herbicidal
effects due to their similarities with target species (DeLorenzo et al.,
2001; Larras et al., 2016). Bérard and Benninghoff (2001) found
phytoplankton were significantly more sensitive to atrazine after
1 day, but then significantly less sensitive after at least 11 days.
Phototrophic biofilms were found to be increasingly more sensitive
to diuron as contamination levels decreased 1–3 years after its ban
in the European Union (Pesce et al., 2016). It has also been shown
that selection pressure from multiple stressors can lead to more
opportunistic species and higher tolerances (Rotter et al., 2013).
Ultimately, PICT results suggest that more sensitive species are
being replaced by less sensitive species creating a more tolerant
community (Blanck, 2002). This has also been seen with both
glyphosate and 2,4-D. Microbial communities from sediments with
high glyphosate exposure were able to degrade glyphosate faster
and had higher diversity compared to sediments with low to no
previous exposure (Tang et al., 2019). Zabaloy et al. (2008) saw an
increase in a 2,4-D degrading population in soils for approximately
1 month after treatment and found that agricultural soils had
higher 2,4-D tolerance compared to reference soils via PICT
analysis. In a study by de Lipthay et al. (2002) 2,4-D treatment
induced transcription of the gene responsible for 2,4-D
degradation (tfdA) which demonstrates a survival response from
the microbial community. These studies demonstrate PICT can
occur when communities are exposed to a herbicide, therefore
contamination by an additional herbicide could further alter
communities that have not been exposed before. It could be
presumed that wetland microbial communities within a
glyphosate-dominant region may substantially change when 2,4-
D is introduced in combination with glyphosate and species are
replaced. This potential shift would impact the biogeochemical
functions of the community, subsequently altering herbicide
degradation or metabolism.

3 Conclusion

Glyphosate and 2,4-D are frequently cited as having minimal
to no environmental impacts (Peterson et al., 2016; Duke, 2020;
Singh et al., 2020), however there is increasing evidence that their
indirect effects may be of more substantial global concern.
Wetlands naturally emit CH4 via diffusion, ebullition
(i.e., bubbles), and plant-mediated transport, and are the
highest natural sources of CH4 in the environment (Aben
et al., 2017; Andresen et al., 2017), but emissions may be
increasing due to agrochemical use adversely impacting CH4

sink potential (Seghers et al., 2005). Glyphosate could stimulate
microbial processes resulting in increased CH4 production, in
addition to 2,4-D inhibiting CH4 oxidation further resulting in
increased CH4 production. Ultimately, this would lead to higher
CH4 production versus removal from freshwater creating
elevated CH4 in the atmosphere. Due to the widespread and

extensive use of glyphosate and 2,4-D, these herbicides are
frequently found in wetlands (Islam et al., 2018; Malaj et al.,
2020). To our knowledge there has been no research investigating
the combined impacts of glyphosate and 2,4-D on wetland
microbial communities. The potential bottom-up effects of
glyphosate and 2,4-D could be detrimental to a changing
climate, thus improving our understanding of how these
herbicides can impact GHG emissions is crucial.

3.1 Future research

To investigate the effects of glyphosate and 2,4-D on CH4

emissions from freshwater ecosystems, micro- or mesocosm
experiments could be conducted. Experiments under controlled
conditions could help determine how wetland microbial
communities are affected by glyphosate and 2,4-D. Specifically,
this research would give insight into the CH4-related mechanisms
that may be enhanced or disrupted in microorganisms. In addition
to in-lab research, pesticide loading data could be incorporated
into GHG models. These data are currently not included in
estimations of CH4 emissions from wetlands, but could be an
important source of variation, and could be useful for future
climate modeling. These potential impacts are crucial to
research as herbicide use is only expected to increase over time,
where chemical selection pressure on microbial communities could
contribute to climate change.
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