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Abstract

Stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) are fundamental for
understanding the formation and evolution of stars and galaxies. Photometric data can provide a low-cost way to
estimate these parameters, but traditional methods based on photometric magnitudes have many limitations. In this
paper, we propose a novel model called Bayesian Convit, which combines an approximate Bayesian framework
with a deep-learning method, namely Convit, to derive stellar atmospheric parameters from Sloan Digital Sky
Survey images of stars and effectively provide corresponding confidence levels for all the predictions. We achieve
high accuracy for Teff and [Fe/H], with σ(Teff)= 172.37 K and σ([Fe/H])= 0.23 dex. For glog , which is more
challenging to estimate from image data, we propose a two-stage approach: (1) classify stars into two categories
based on their glog values (>4 dex or <4 dex) and (2) regress separately these two subsets. We improve the
estimation accuracy of stars with glog 4> dex significantly to glog 4 0.052( )s > = dex, which are comparable
to those based on spectral data. The final joint result is glog 0.41( )s = dex. Our method can be applied to large
photometric surveys like Chinese Space Station Telescope and Large Synoptic Survey Telescope.

Unified Astronomy Thesaurus concepts: Astronomy image processing (2306); Stellar photometry (1620); Stellar
abundances (1577); Neural networks (1933); Bayes’ Theorem (1924)

1. Introduction

Galaxies are the basic units of structure in the universe. The
formation and evolution of galaxies over time, as well as their
diversity in morphology, structure and properties, are major
topics in modern astrophysics. The atmospheric parameters of
stars, such as effective temperature (Teff), surface gravity
( glog ), and metallicity [Fe/H], are essential for studying how
galaxies form, structure and evolve chemically, and also help to
calculate the distances and ages of stars.

There are two main types of methods for deriving stellar
atmospheric parameters: direct and indirect. The direct methods
are highly demanding. Like measurement of effective temper-
ature, it requires not only correcting for interstellar extinction,
but also obtaining the total flux in each band and angular
diameter of the star, and applying the Stefan–Boltzmann law
(Halliday & Resnick 1988; Baschek et al. 1991; Roy &
Clarke 2003). Besides, it also suffers from distance constraints,
as it becomes impractical for distant stars. Another example is
using eclipsing binaries (Southworth et al. 2004) to obtain
high-precision surface gravity, yet it very difficult to measure
single stars. So far, less than 200 stars have been directly
measured for their atmospheric parameters, and only a few stars
meet the conditions for direct measurement.

Indirect methods can be classified into two categories:
spectroscopic and photometric. Spectroscopic methods use
spectral data to estimate the parameters, employing various
techniques such as traditional statistics, machine learning and
deep learning. Ness et al. (2015) used a Bayesian posterior
inference at each wavelength to derive the effective temper-
ature (Teff), surface gravity ( glog ), and metallicity [Fe/H] for
550,000 stars. Bu & Pan (2015) proposed a method for

estimating stellar atmospheric parameters based on Gaussian
process, which has a more easily optimized structure and
parameters. Kielty et al. (2018) built a one-dimensional
convolutional neural networks to capture the characteristics
of spectral data. The spectroscopic method based on high-
resolution spectral data is undoubtedly the most accurate
method for measuring atmospheric parameters, but it is difficult
to apply it on a large scale because of the limited number of
high-resolution spectra and its high acquisition cost.
Photometric data are easier to obtain than spectroscopic data.

Future surveys will rely more on photometric measurements,
thanks to the improved CCD technology and the advanced
statistical methods that can handle these lower-resolution data.
For example, the Large Synoptic Survey Telescope, which is
being built in China, will collect photometric data in six bands
and produce a much larger data set than Sloan Digital Sky
Survey (SDSS). Although photometric observations are not as
accurate as spectroscopic ones for estimating stellar parameters,
they have unparalleled advantages over spectral observations,
such as covering large or even full sky areas. Therefore,
photometric data have enormous potential for applications.
Many studies have explored how to derive stellar parameters

from photometric data. For example, Alonso et al. (1996)
established an empirical relation between metal abundance and
effective temperature using infrared flux methods. Huang et al.
(2015) collected a sample of about 200 nearby stars and
established empirical relations between effective temperature,
stellar color, and metal abundance. Huang et al. (2019) applied
a regression polynomial to photometric colors from SMSS to
derive atmospheric parameters of red giant stars. Chiti et al.
(2021) used SkyMapper v, u, g, i photometry to obtain
metallicities of giant stars from SMSS with [Fe/H] <
−0.75 dex. Xu et al. (2022) constructed high-quality samples
of giants and dwarfs from Gaia Early Data Release 3 using
empirically determined coefficients that describe stellar metal-
licity loci of colors, and they corrected for magnitude-
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dependent systematic errors and reddening. Huang et al. (2022)
combined stellar colors of SMSS DR2 and Gaia EDR3 to infer
atmospheric parameters based on a maximum-likelihood
approach. Liang et al. (2022) transformed photometric data
for all bands (u, v, g, r, i and z) using PCA and estimated
atmospheric parameters using LightGBM, a machine-learning
algorithm. Fallows & Sanders (2022) employed a neural
network method, which used 8-band photometry and parallaxes
from Gaia EDR3, 2MASS and WISE surveys to estimate
metallicities and uncertainties of red giant stars. Yang et al.
(2022) constructed a set of cost-sensitive neural networks
(CSNet), which utilized 13-band J-plus photometry to
determine stellar parameters, C, N, Mg, Ca, and [α/Fe]
abundances. During the training process, they adjusted the
model loss according to the density distribution of the samples.

Traditional methods of acquiring magnitudes in each band
are not only relatively complicated but also losing a lot of
image details due to area integration, which reduces the
utilization rate of image information. With the sustained
development of deep learning, more and more studies are
using photometric image data for various tasks. A deep-
learning algorithm (He et al. 2021) was applied to detect
sources, and further classify quasars, stars, and galaxies based
on detected sources. Shi et al. (2022) constructed a photometry
pipeline based on convolutional neural networks (CNNs),
including target source detection, target source classification
and parameter measurement branch. However, the parameter
measurement branch in the paper still relies on traditional
methods. At present, relevant work on estimating stellar
parameters directly based on photometric images is still in its
infancy, with much unexplored territory.

Neural networks have become a powerful tool for various real-
world problems, especially visual tasks (He et al. 2015;
Dosovitskiy et al. 2021; Dai et al. 2021), in the past decade.
However, vanilla neural networks cannot provide uncertainty
estimates and their confidence may be inflated, which motivates
the development of Bayesian neural networks (BNNs). BNNs
differ from vanilla deep neural networks in that their weights are
random variables rather than fixed values. The fitted objects are
the posterior probability distributions of the predictions, which
can provide corresponding confidence levels instead of fixed
prediction values. MacKay (1992b) showed how to perform
model fitting within the Bayesian framework, which faced the
challenge that computing the marginal likelihood is computa-
tionally expensive. Subsequently, variational inference (Jordan
et al. 1999; Blei et al. 2017) simplified the computation by
assuming a specific form for the posterior distribution.

However, modern neural networks require large data sets to
achieve powerful inference capabilities. For large data sets,
using the complete log-likelihood function as the training
objective is impractical. This issue has motivated the develop-
ment of modern BNNs. Some basic work (Opper &
Archambeau 2009;Graves 2011) optimized the model in terms
of gradient computation and update methods. Welling & Teh
(2011) applied stochastic gradient descent, which uses small
batches of data to approximate the likelihood term. A key
technique for approximate inference in BNNs, called Bayes by
Backprop, uses a reparameterization trick to obtain unbiased
estimates of the expected derivatives (Blundell et al. 2015).
Shridhar et al. (2019) built Bayesian convolutional neural
networks based on Bayes by Backprop and performed well on

data sets such as MINIST. The application of Bayesian neural
networks will naturally satisfy our need for confidence levels of
estimating atmospheric parameters. However, BNNs will have
relatively serious convergence difficulty on large-scale net-
works due to a large number of prior regularizations and
parameter multiplications. Moreover, in a real-time scenario,
the computational overhead from repeated model inference is
huge due to the need for approximation inference from
probabilistic models.
In this paper, considering that our model uses image data and

our interest in evaluating the uncertainty of the predictions
from large models, we propose a novel method for obtaining
stellar atmospheric parameters. The main contributions of our
work are as follows:

1. We estimate atmospheric parameters directly from star
images for the first time, preserving more image details
and information than traditional photometric magnitudes.

2. We propose an approximate Bayesian framework that
cost-effectively quantifies the model uncertainty and
provides theoretical analysis of its validity. This will
have more potential in scenarios where confidence is
required for downstream tasks based on large pretrained
models.

3. To address the challenge of estimating glog from image
data, we introduce a classification stage before regression.
This stage effectively eliminates the anomaly in the
original regression results and enhances the estimation
accuracy.

The paper is organized as follows. Section 2 introduces the
approximate Bayesian framework and specific models, namely
BNNs and ConViT, to instantiate the framework. Section 3
describes the photometric images and image processing
methods. Section 4 presents the main experimental results
and discusses them. Finally, Section 5 concludes the paper and
outlines potential directions for future research.

2. Method

2.1. Bayesian Neural Networks

BNNs (Buntine & Weigend 1991; MacKay 1992a) are a
type of probabilistic models, which can represent the
uncertainties of their predictions, unlike vanilla neural net-
works that use point estimates. In this section, we will briefly
introduce how to transform point estimates in neural networks
into posterior inference in Bayesian neural networks and apply
an efficient backpropagation-compatible algorithm (Blundell
et al. 2015) to optimize weights.
Point Estimates of Neural Networks: We first consider the

point estimate of the neural networks. Viewing neural networks
as probabilistic models, given a set of parameters wäΘ, and
an input x pÎ  , we can obtain the current probability
distribution P(y|x, w) of output y qÎ  . Θ is the space of all
possible parameter values that need to be optimized for a
probabilistic model. The optimal weights wMAP can be learned
by maximizing the posterior wP ( ∣ ) , where P(w) is an
artificially specified prior, and  is the training data.

w w

w w

P

P P

arg max log

arg max log log . 1
w

w

MAP ( ∣ )

( ∣ ) ( ) ( )





=

= +

2

The Astronomical Journal, 166:88 (15pp), 2023 September Wu et al.



In practice, this will be commonly accessed by gradient
descent with appropriate loss function (e.g., square error in
regression, or cross-entropy in classification).

Being Bayesian: Unlike point estimates that have fixed
weights, Bayesian neural networks have stochastic weights that
follow wP ( ∣ ) . Given x, we can infer P(y|x, w) by sampling w
from wP ( ∣ ) with corresponding probability. Furthermore, by
taking into account all the possible configurations of weights,
we can obtain an expectation that follows y xP ( ∣ ) =

y x wP ,wP [ ( ∣ )]( ∣ ) . This is equivalent to using an ensemble
of infinitely many neural networks for prediction.

However, Bayesian neural networks face the challenge of
applying Bayesian inference to determine wP ( ∣ ) , which is
intractable for neural networks of any practical size due to its
complexity. To overcome this problem, a variational approx-
imation (Graves 2011) to wP ( ∣ ) has been proposed.
Variational learning aims to find a simple distribution q(w|θ)
that approximates wP ( ∣ ) by minimizing the Kullback–Leibler
(KL) divergence between them, as follows:

KL w w

w w

KL w w w

q P

q d

q P P

arg min

arg min log

arg min log , 2

w

w w

w

q

P P

q

[ ( ∣ )∣∣ ( ∣ )]

( ∣ )

[ ( ∣ )∣∣ ( )] [ ( ∣ )] ( )

( ∣ )
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


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=
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where θ is the parameter space of the simple distribution. For
simplicity, we can denote it as:

KL w w wq P P, log . 3wq( ) [ ( ∣ )∣∣ ( )] [ ( ∣ )] ( )( ∣ )  q q= - q

This is the objective function of the Bayesian neural networks,
which consists of two parts: a prior regularization term and a
data-dependent likelihood term.

Although variational inference provides a simpler approach
than exact inference, the expectation term that in the objective
function is still difficult to compute. Therefore, we use Monte
Carlo (MC) sampling to approximate it. In most cases, the KL
divergence term has an analytic solution, but we also
approximate it by MC sampling to handle more complex
scenarios. To do this, we first reformulate ,( )  q into an
expectation-like form and then approximate it:

w w w

w w w

q P P

q P P

, log log

log log 4

wq

i

n
i i i

1

( ) [ ( ∣ ) ( ) ( ∣ )]

( ∣ ) ( ) ( ∣ ) ( )

( ∣ )

( ) ( ) ( )
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å

q q

q

= -

» -

q

=



where w(i) denotes the ith Monte Carlo sample drawn from the
variational posterior q(w(i)|θ). However, there is a significant
challenge in computing the gradient: let wf ,( )q =

w w wq P Plog log( ∣ ) ( ) ( ∣ )q - , according to the chain rule,

the gradient of θ is: w
w

w wf f, ,( ) ( )D = +q
q

q
q

q
¶

¶
¶
¶

¶
¶

, but w
q

¶
¶

cannot
be computed because we cannot calculate the gradient of the
sampling operation. To overcome this problem, we can apply
the reparameterization trick, which is commonly used for latent
variable models. There is a generalization (Blundell et al. 2015)
of it as follows:
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( ∣ ) ( )
q

q
q

q
q

q
¶
¶

=
¶
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where ò is a random variable with a probability density
determined by q(ò), w= t(θ, ò) with a prerequisite: q(ò)dò= q
(w|θ)dw, where t is a deterministic mapping. The original w
from the variational posterior is transformed into a parameter-
free stochastic term ò and a parameter term θ, then we can
obtain w

q
¶
¶

separately without considering sampling. Next, we
will demonstrate how this transform works in the Gaussian
case, which is applied in practice.
Suppose the variational posterior is a Gaussian distribution,

then ò are derived by sampling from the unit Gaussian
distribution, and shifting it by mean μ and standard deviation σ
to obtain w. To ensure that σ is nonnegative, we set σ = log
(1 + exp(ρ)). Thus, we have w t , log 1( ) (m r m= = + +
exp( ))◦r .

The optimization proceeds as follows:

1. Sample I0,( ) ~ .
2. Random initialization (μ, ρ) for each node, let θ= (μ, ρ).
3. Let w log 1 exp( ( ))◦m r= + + .
4. Let w w w wf q P P D, log log( ) ( ∣ ) ( ) ( ∣ )q q= - .
5. Calculate the gradient of the mean:

w
w

wf f, ,
. 6

( ) ( ) ( )q q
m

D =
¶

¶
+

¶
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m

6. Calculate the gradient of the standard deviation ρ:

w
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7. Update θ:
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Actually, the w
w

f ,( )q¶
¶

term are shared and can be obtained by

normal backpropagation algorithm like ,w wf f, ,[ ]( ) ( )q
m

q
r

¶
¶

¶
¶

. Here,
we present the primary equations (Equations (1)–(8)) from the
prior work (Blundell et al. 2015). The more implementation
details, we refer the reader to the original paper. However,
BNNs face convergence challenges when the model parameter
size is too large. To address this issue, we propose an
approximate Bayesian framework in Section 2.3.

2.2. ConViT

ConViT (d’Ascoli et al. 2022) is a deep-learning method,
which improved self-attention operators with soft convolu-
tional inductive biases in the computer vision field. In this
section, we briefly introduce basis operators and the architec-
ture of the ConViT, which serves as the backbone of our
model.
Operators: This section introduces the self-attention (SA)

operator and its variants, which are the building blocks of
ConViT. The self-attention operator (Vaswani et al. 2017) has
been widely used in computer vision. It maps a set of query,
key and value vectors to an output by mainly computing an
attention matrix, where query, key and value are obtained
through separate linear projections. Q, K, V denotes query,
key, and value; W D D

query emb outÎ ´ , W D D
key emb outÎ ´ ,

W D D
value emb outÎ ´ denotes linear weights, where Demb is the

dimensions of input channels; Dout is the dimensions of target
channels. Hence, for an embedding X L DembÎ ´ as an input,
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we have Q= XWquery, K= XWkey and V= XWvalue, where L is
the first dimensions of X and will be set in Section 2.3. Then
the attention matrix A and SA operator are defined as follows:

⎜ ⎟
⎛
⎝

⎞
⎠

A
QK

D

X AV

softmax

SA 9

T

emb

( ) ( )

=

=

where X X Xsoftmax exp expij ij k ik( [ ]) = å .
However, the experiment (Dosovitskiy et al. 2021) shows

that the SA performs similarly regardless of how the position
prior is provided, but when the position prior is missing, the
performance drops significantly. Thus, it is crucial to
incorporate position information into the model. A common
method is positional self attention (PSA), which uses relative
position encoding of patches Xi,: and Xj,: to enhance the
attention matrix (Ramachandran et al. 2019):

v rA Q Ksoftmax 10ij i j
T T

ijpos
˜ ( ) ( )= +

where Xr,: represent the rth row of X, vT D
pos

posÎ  is a trainable

embedding, and rij DposÎ  is the position embedding between
patches Xi,: and Xj,:, only subject to the relative distance. Dpos is
the position embedding dimension, which relies on the
approach of encoding. Hence, the PSA operator as follows:

X AVPSA . 11( ) ˜ ( )=

The multihead self-attention (MHSA) uses different self-
attention operators to extract various semantic features of an
image in parallel (each segment is called a head). They have the
dimension of each embedding Demb= NhDh, where Nh is the
number of self-attention operators in parallel. The output of the
MHSA is obtained through the following mechanism:

X C X W bMHSA SA 12h out out( ) [ ( )] ( )= +

where W b,D D D
out outemb emb embÎ Î´  . The hth self-attention

SAh(X) follows Equation (9), and the shape of shared weights
is Wh D D

query key value
hembÎ ´ . C is an operator to concat each

output of various self attention.
Similarly, the positional MHSA (P-MHSA) shares an almost

identical structure with MHSA. The only difference is that
P-MHSA substitutes SAh(x) in MHSA with PSAh(x), which is
as follows:

P X C X W bMHSA PSA 13h out out( ) [ ( )] ( )- = +

where the hth positional self-attention PSAh(X) follows
Equation (11), the definitions of other parameters remain
consistent with those mentioned above.

It has been proved that Equation (13) of dimension Dpos� 3
can express any convolutional layer of kernel size N Nh h´
and D Dmin ,h out( ) output channels (Cordonnier et al. 2020),
when following the encoding:

v

r
IW W W0

1, 2 , 2

, ,

; 14

h h h h
pos 1 2

2
1 2

qry key value

( )
( )

( )

( ) ( ) ( ) ( )

 

a

d d d

=- - D - D

=
= = =

d

where trainable parameters ,h h h
1 2( )( ) ( ) ( )D = D D is a coordinate,

which is used to mark the center of attention in each head. α is
a scale coefficient to indicate locality strengths. rδ= (δ1, δ2) is
fixed, which represent the relative shift between query and key
pixels in two-dimensional space.

In view of the above convolution-equivalence theorem, we
can construct the main operator (GPSA) in ConViT as follows:

v r

X A V

A Q K

GPSA normalize

1 softmax

softmax 15

h
h h

ij
h

h i
h

j
hT

h
hT

ijpos

( ) [ ]
( ( )) ( )

( ) ( ) ( )

s l

s l

=

= -

+

where (normalize[A])ij= Aij/ΣkAik and x: 1 1 exp x( )s + -

is the sigmoid funciton. vh
pos, rij is set by Equation (14). Aij

h

consists of vanilla SA (left term) and a position embedding
(right term). λ is used to control the relative magnitude of self-
attention against position embedding. In the light of
Equation (14), the position embedding is a convolution-
equivalence term, which provides convolutional inductive
biases to SA.
Architecture: Stemming from the GPSA, we can present the

entire ConViT. The architecture of the ConViT are showed in
Figure 1. ConViT propagates the input through 12 blocks, and
each block in the first ten consists of a GPSA layer followed by
two-layer feed-forward networks with GeLU activation, both
equipped with residual connections. The last two blocks
recover the GPSA layer by vanilla MHSA layer.

2.3. An Approximate Bayesian Framework and Instantiation

To address the challenge of BNNs’ convergence on large-
scale models, we propose a new framework, which approx-
imates the probabilistic inference and integrates ConViT for
image regression tasks.
Approximate Bayesian Framework: In vanilla probabilistic

modeling for neural networks, each weight in the layers of the
neural networks is sampled from a given probability distribu-
tion, and then the output determined by weights is fed to the
next layer. Thus, for the deep probabilistic model, each forward
result is equivalent to a drawing from a complex distribution
that integrates numerous base distributions (e.g., Gaussian
distribution). For an input X, this can be denoted as:

XOutput 16i i i( ( )) ( ) =

where i , i are the backbone and head of the model, which are
equipped with ith weights sampled from the posterior distribution

wP .( ∣ ) (We divide the model into two parts: the backbone,
which extracts deep semantic features from the input, and the
head, which maps the flattened feature map to the label space.)
Fortunately, in the procedure of inference, we just need to

focus on the mean and variance of the output to derive the
predictions and corresponding uncertainties, regardless of other
details of the complex distribution. In addition, we argue that
the most crucial role of variance is mainly reflected in
relativity. Specifically, under the same dimensionality, if there
exists a set of indicators that can preserve the relative
information of variance, then this indicator can also measure
the relative size of uncertainty; namely, the relative quality of
data. That is, let a random variable Xi denotes Xi( ) . If another
random variable Yi exists that satisfies Equation (17), then the
two inference frameworks are equivalent when measuring
relative uncertainty

X Y
X g Y 17

i i i i

i i i i

( ( )) ( ( ))
( ( )) ( ( ( ))) ( )
 
 

=
=

 
 

where g( · ) is a strictly increasing function.
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To make the original framework more controllable, we
construct such Yi

n( ) that Y n X1i
n

j
n

j1
( ) = å = (although the

overall variance may decrease, the relative characteristics will
be preserved), which satisfies Equation (17) (see Appendix A
for the proof).

We then conduct probabilistic modeling by replacing Xi with
Yi

n( ), which ensures that Theorem 1 holds. Theorem 1 suggests
that if we replace Xi with Yi

n( ) and increase the number of
multilayer linear perceptual (MLP) layers in the head, the final
perturbation caused by the backbone can be reduced to higher
order small terms that become negligible. The proof of
Theorem 1 can be found in our supplementary material
(Appendices B and C). Therefore, by revisiting the above
probabilistic framework with multilayer linear layers in the
head, we obtain the following approximation:

F F F F 18b h b h( ) ( ) ( ) ( )z z z+ » +

where Fb and Fh are point estimation models, and ζ is a
probability factor for transforming point estimation models to
probabilistic models. We then employ Fb+ ζ(Fh) to approx-
imate the characterization of relative uncertainties as our
framework.

Instantiation: We ran an instance relying on the above
framework in a real image task. First, we prepared the input for
the model by dividing the image X H W CÎ ´ ´ into several
segments, which are a sequence of flattened 2D patches
Xp

L P C2( )Î ´ . Here, (H, W) is the number of pixels in original
image height and width, C is the number of channels. (P, P)
represents the number of pixels in patches, where P is the
height and width of each patch (16× 16 pixels patches is put
forward; Dosovitskiy et al. 2021), and L=HW/P2 represents
the length of sequence. Then we applied a trainable linear

projection in Xp to transform the dimension P2C into Demb.
This gives us an embedding X L DembÎ ´ as the input of model.
Second, we will construct an approximate Bayesian frame-

work (shown in Figure 1). Based on the Equation (18), we
employed Convit as Fb to extract deep feature. On the other
hand, we employed BNNs as ζ(Fh) to associate labels with
feature maps and represent the uncertainty of the entire model.
Finally, we discuss some practical details.
(i) About ConViT: We first trained a backbone based on

point estimates. The mean values of the parameters in the last
50 rounds of the training process, before reaching the point of
overfitting, were used as the weight expectation of the
backbone. We also replaced the Layernorm with the Batch-
norm, because we think that the relative sizes between the pixel
values of the images in our problem have physical significance
and should not be directly erased by the Layernorm.
(ii) About BNNs: We rewrite the BNNs objective function as

follows

KL w wq Parg min 19h h[ ( ∣ )∣∣ ( ∣ ( ))] ( ) q q¢ =
q*

where wh is parameters of the head and  represents the
backbone. In addition, in the feed-forward process of the head,
we replace the output of each layer with the mean value of
repeating output. The other details remain consistent
with BNNs.

3. Data Introduction

This section describes our data sources and processing
methods. We use stellar atmospheric parameters from APO-
GEE (Majewski et al. 2017), a large-scale spectroscopic survey
that operates in the near-infrared (H-band) portion of the
electromagnetic spectrum. APOGEE consists of two 300-fiber

Figure 1. Feed-forward process of our model. Our approximate Bayesian framework consists of a deep model for extracting image features and a probabilistic model
for producing outputs and uncertainties. In the deep model, we adopted the backbone of ConViT (bottom left), a version of ViT in that some of the MHSA layers are
replaced with gated positional self-attention layers (GPSA; middle and right in orange frame). We use 10 GPSA layers followed by 2 vanilla MHSA layers. FFN: feed-
forward network (two linear layers separated by a GeLU activation);Wqry: query weights; Wkey: key weights; vpos: attention center and span embeddings (learned); rqk:
relative position encodings; λ: gating parameter; σ: sigmoid function. E(Y) and D(Y) are the sample mean and sample variance, respectively, of the random variable Y.
In the probabilistic model, we adopted BNNs (bottom right) to accept the regression token from the backbone. We provide a theoretical analysis that MLP can
approximately erode uncertainties (ò) from the backbone.
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cryogenic spectrographs mounted on two telescopes at Apache
Point Observatory in New Mexico: a 2.5 m Sloan Foundation
Telescope and a 1 m NMSU Telescope. APOGEE provides
high-resolution (R∼ 22,500) spectra for stars across the Milky
Way in the wavelength range of 15140–16940 Å.

We also use photometric images from SDSS (York et al.
2000), the imaging and spectroscopic survey that covers a wide
range of wavelengths from 300 to 1000 nm. SDSS uses a
dedicated camera with 30 CCDs (Gunn et al. 1998) that
operates in Time Delay Integrate mode, also known as drift-
scan mode. The camera collects data in five broad bands: u, g,
r, i, and z (Fukugita et al. 1996). The image data undergo
calibration for photometry and astrometry, and enables object
selection based on unique criteria.

We obtained the photometric images (u, g, r, i and z bands)
from SDSS DR16 and matched them to the APOGEE DR16
spectroscopic parameters (Teff, glog , and [Fe/H]) of common
stars.

To perform the regression task, we combine all of the bands
to ensure that no implicit information is lost. We use CasJobs
Server (Li & Thakar 2008) to cross-match the two catalogs,
photoobj and apogeeStar, with the following criteria:

1. The image is not saturated (the saturated image contains a
large number of missing values);

2. There are no interpolated pixels (due to cosmic rays or
bad columns);

3. There are not too many candidate sources in the image
(overcrowding can lead to photometric contamination).

The MySQL query3 is given in Appendix D. We obtained
6074 stars from the database that meet our criteria. To ensure
data consistency, we cross-matched the catalogs from CasJobs
Server with the file (allStarLite-dr17-synspec.fits4) provided by
APOGEE DR17 and found 5772 stars. We did not have to
worry about version inconsistency, since APOGEE data
releases are cumulative and include all the sky coverage of
previous releases. We deleted the data with missing values in
the catalogs and downloaded the fits file of each field using

“run, camcol, and field” as in He et al. (2021), resulting in 4810
stars.
The SDSS survey telescopeʼs CCD camera did not expose

all filters simultaneously due to the 71.72 s drift-scan time
between neighboring filters, which caused a coordinate shift in
each bandʼs images. We used PYTHONʼs reproject5 to align
the images in different bands to the r-band images using the
world coordinate system keys in the fits headers.
Each field image contained many other stars, so we cropped

our objects using R.A. and decl. and set a fixed size of 48× 48
pixels. However, some target stars were close to other stars that
could contaminate their luminosity. The sample also had some
very faint stars that were hard to distinguish by eye, as well as a
few broken images. After removing these abnormal images, we
obtained 3884 stars for our data set. Finally, we split our data
set into training and validation sets in a ratio of 8:2.

4. Experiment Results

We present the optimal result of Bayesian Convit for SDSS
image data in this section. To train our model, we first used a
vanilla Convit with batch normalization as the backbone. We
fixed the average weights from the last 50 training rounds
before the point of overfitting (excluding rounds with high
volatility in metrics) as the final backbone parameters. Then we
trained individual multilayer perception (in the manner of
Bayesian neural networks) as the head of the model. We set the
number of layers in the head to three in our experiment.

4.1. Precision of Regression

A detailed account of the entire model training process can
be found in Appendix E. It suggests that the model
performance across all components has nearly converged to
the same level on both the training and validation sets. The
results of Bayesian Convit for images on the validation set
are shown in Figure 2. For SDSS images, we obtain
σ(Teff)= 172.37 K, glog 0.49( )s = dex and σ([Fe/H])=
0.23 dex. We can clearly see that there is a horizontal row of
points in the glog 4> dex part, which means that for the

Figure 2. Regression results for three stellar atmospheric parameters. In order to more intuitively demonstrate the overall trend, we employ the kernel density
estimation (KDE) method to fit the probability density of the result data and use it as the color gradient in the graph. Here, “Bias” refers to the residuals between the
sample labels and the model predictions, while “Density” is the probability density fitted to the Bias using the KDE method (the same setting below). The results are
(a) effective temperature (Teff), (b) surface gravity (log g), (c) metallicity ([Fe/H]). The figure shows that the Teff and [Fe/H] estimates are good, with σ(Teff) =
172.37 K, σ([Fe/H]) = 0.23 dex. But for glog , an anomaly exists. A series of horizontal scatter points is observed near where the label equals 4 dex, and

glog 0.49( )s = dex.

3 The query is available at https://skyserver.sdss.org/casjobs/.
4 https://data.sdss.org/sas/dr17/apogee/spectro/aspcap/dr17/synspec/ 5 https://reproject.readthedocs.io/en/stable/
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points with labels around 4 dex, the model predicts them as all
results less than 4 dex. This indicates that in this part, the
model’s predictions are highly uncorrelated with the labels.
However, this does not only happen in the predictions of this
paper, we can likewise find similar phenomena in other articles,
such as Liang et al. (2022). Thus, we think this is not an
accidental model error, but should be the result of an essential
systematic error. Fortunately we got inspiration from the
diagram (shown in Figure 3) of Teff and glog .

Figure 3 shows that, for a given effective temperature, there
may be two possible values of glog due to different stellar
characteristics (such as dwarf versus giant). We hypothesize
that a similar relationship exists between photometric data and

glog . However, a single model often struggles with discrimi-
nating different types of stars during the process of establishing
data associations. When the model has learned the ambiguous,
equational-like relationship, this leads to the problem we
observe in Figure 2(b). To improve the estimation of glog ,
which is more challenging from image data, we adopt the
following strategy: we create artificial labels based on whether

glog is greater or less than 4 dex and train an individual
classification head for the model with the previously trained
backbone frozen. Let classi (0 or 1) denote the predictions.
Then, we also freeze the backbone and train two regression
heads for the model, one for each subset of glog (<4 dex
or > 4 dex), and let h1 and h2 denote the predicted values based
on different regression heads. The final output can be expressed
as:

h houtput class 1 class . 20i i i1 2( ) ( )= * + - *

We achieved 98.29% classification accuracy with the
regression-based backbone. Figure 4(a) shows the regression
results for the subset of glog 4> dex, where we obtained

glog 4 0.052( )s > = dex. This performance is comparable to
that of spectral-based methods (Huang et al. 2020; Olney et al.
2020). Figure 4(b) shows the regression results for the subset of

glog 4< dex, where we obtained glog 4 0.544( )s < = dex.
We speculate that the performance is worse because of the type

of stellar characteristics in this subset is more complex. The
surface gravity of a star depends on its mass (related to its
luminosity) and radius, which are both affected by distance.
However, it is hard to capture the distance information from a
single star image. Our result suggests that the distance effect is
more significant for stars with glog 4< dex, possibly owing to
their larger size and higher luminosity compared with dwarf
stars. Because of their larger size and higher luminosity, the
upper distance limit of observable giant stars is generally larger
than that of dwarf stars, where an increased distance variable
space corresponds to higher complexity. We obtained

glog 0.36( )s = dex for the whole validation set based on
artificial labels, but this assumes perfect classification accuracy.
After obtaining two regression heads and one classifier, we
estimated the glog for the whole validation set using
Equation (20), as shown in Figure 4(c). The misclassification
errors of the classifier would increase glog( )s to 0.41 dex.

4.2. Attention of Backbone

We visualized the attention maps of Convit as shown in
Figure 5, where warmer colors indicate higher attention and
cooler colors indicate lower attention from the model. We find
a similar trend in the feature extraction pattern for Teff and

glog , i.e., more focus on the edge of the star. However, glog
involves a larger area than Teff in terms of attention. For [Fe/
H], the region of model attention almost overlaps with the
region of the stellar core. This means that for saturated stellar
images, the estimation of stellar metallicity is most affected.
Therefore, it is necessary to choose unsaturated images as
data set.

4.3. Uncertainty of Regression

Uncertainty Analysis: Our framework provides uncertainty
estimates associated with the prediction of stellar atmospheric
parameters, as shown in Figure 6. We observe that for effective
temperature, the uncertainty has a clear pattern. The network
has lower uncertainty in the middle of the value range where
the data are more abundant. As the values deviate from the
center and approach the edges of the training range, the
network’s uncertainty increases significantly. The network
becomes more cautious when predicting near the boundaries of
its training data. For surface gravity, the uncertainty varies
depending on whether glog is greater or less than 4 dex. In the
part where glog 4> dex, there is an improved model fit
between glog and the image. Thus, the model gives a higher
confidence level. Similarly, in the part where glog 4< dex, the
model has higher confidence at around glog 2.5= dex due to a
relatively dense sample. However, the overall confidence for
this part is not satisfactory because of its complexity, as we
discussed in the previous section. For [Fe/H], the uncertainty
depends on the metallicity. The model shows higher uncer-
tainty for metal-poor stars due to the lack of samples. These
three results are consistent with our intuition.
Perturbation Experiment: To test the robustness of our

model, we performed two perturbation experiments. First, we
added different levels of noise to the same image (shown in
Figure 7) and observed how the model predictions changed
with noise intensity. The results are shown in Table 1. We
found that for glog and [Fe/H] estimation, the model was
relatively insensitive to noise, as both prediction and
uncertainty fluctuated slightly. However, for the Teff estimation,

Figure 3. Distribution of APOGEE stars in the T glogeff – plane. The colorbar
utilizes the same color gradient as the scatter plot to represent point density,
computed using the KDE method and normalized to a range from 0 to 1. We
can clearly see that for different temperatures, there are two distinct glog
values, mainly located in the regions above and below 4 dex. Moreover, the
strong correlation between Teff and photometry implies that there might be a
similar relationship between images and glog .
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the model was more affected by high noise levels, and we
provided uncertainty, although the change in uncertainty here is
relatively small. This is because when the model was
established, we replaced X with the random variable Y,
resulting in a decrease in the magnitude of uncertainty (as we
discussed in Section 2.3). However, relativity among uncer-
tainties retains, so we can see that as the noise level increases,
the uncertainty increases accordingly. These experiments
demonstrate that our model can provide reliable confidence
levels for its predictions, which reflect their relative quality.
Second, we rotated the images at 30° intervals and fed them
into the model. We plotted the model predictions and
uncertainties as a function of rotation angle in Figure 8. In
our observation, disturbances to model predictions may still
occur unavoidably, even when random image rotation, a

technique commonly used in data augmentation, is applied to
the training data. This arises from the fact that traditional deep-
learning frameworks (including CNN- and transformer-based
models) fundamentally lack rotational invariance. However,
compared to vanilla deep neural network models, our model
has an additional function: it can provide a better characteriza-
tion of these disturbances. That is, our model tended to give
lower uncertainties and narrower 95% confidence intervals
when the predictions were closer to the true labels. This can be
employed to alert users about the current prediction of the
model.

4.4. Comparison with Magnitude Provided by SDSS

To evaluate whether image data has certain advantages over
magnitude data, we obtained the extinction-corrected apparent

Figure 4. Results after introducing a classification stage. (a) The regression results for the stars with glog less than 4 dex. (b) The regression results for the stars with
glog greater than 4 dex. (c) The final combined results. The figure shows that dividing the stars by glog can effectively eliminate the anomaly in the region with glog

greater than 4 dex, resulting in a lower glog 0.41( )s = dex.

Figure 5. Attention distribution of ConViT over different regions. The warmer the color, the more attention the model pays. The model focuses more on the star’s
surroundings when estimating Teff and glog , but more on the star’s core when estimating [Fe/H].
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magnitudes for each band (u, g, r, i, z) from the SDSS official
website6 to facilitate comparative experiments. Moreover,
considering the potentially stronger relationship between colors
and stellar atmospheric parameters (Grady et al. 2021), we
constructed the feature vector f = [u− g, u− r, u− i, u− z,
g− r, g− i, g− z, r− i, r− z, i− z] based on extinction-
corrected magnitudes for an additional set of comparison
experiments. We utilized the methods including XGBoost
(Chen & Guestrin 2016), lightGBM (Ke et al. 2017), CatBoost
(Prokhorenkova et al. 2018), and Random Forest (Brei-
man 2001) methods to model the data. The results of both
sets of experiments are shown in Table 2. All models employed
the Bayesian optimization method to determine the hyperpara-
meters of the models. The search space for the

hyperparameters, along with the optimal results, can be found
in Appendix F. Our method outperforms those based on either
magnitudes or colors for each prediction task. This outcome is
anticipated, considering that tabular data are challenging to
augment effectively and lack the detailed information that
image data can provide. This also demonstrates the superiority
of image data in determining stellar atmospheric parameters.

5. Conclusions

We present an approximate Bayesian framework, which
improves the convergence of Bayesian neural networks on large
models during training, and simplifies the inference process from
sampling the whole model to sampling from only the head of the
model. This significantly reduces the inference cost, and we
provide a theoretical analysis. As pretrained large models (e.g.,
Du et al. 2022) continue to advance, more projects can fine-tune

Figure 6. Model uncertainty. (a) Effective temperature Teff, (b) surface gravity glog , and (c) metallicity [Fe/H]. The uncertainty increases when the model predicts
values outside the training data range. This trend is also observed when we estimate glog separately for different categories of stars.

Figure 7. Add noise. Gaussian noise is added to the gri band, where epsilon indicates the relative magnitude of the noise.

Table 1
Noise Experiment

epsilon = 0.05 epsilon = 0.1 epsilon = 0.5

Parameter Teff glog [Fe/H] Teff glog [Fe/H] Teff glog [Fe/H]
(K) (dex) (dex) (K) (dex) (dex) (K) (dex) (dex)

Prediction 4635.49 4.58 −0.09 4636.95 4.58 −0.08 4683.07 4.58 0.00
Uncertainty 5.24 0.00 0.01 5.41 0.00 0.01 5.89 0.00 0.01
Label 4632.31 4.58 −0.11 4632.31 4.58 −0.11 4632.31 4.58 −0.11

6 https://www.sdss4.org/dr17/algorithms/magnitudes/#mag_psf
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these models for their specific downstream tasks. Our framework
will be very useful and easy to apply when these tasks require
confidence in the results.

We apply this method for the first time to directly estimate the
three main stellar atmospheric parameters (Teff, glog , [Fe/H])
from photometric images. In estimating glog , we found that

classifying glog into two categories (>4 dex or<4 dex) first can
effectively improve the accuracy, and glog results with >4 dex
can even be comparable to those based on spectral data. The
final results are σ(Teff)= 172.23 K, glog 0.41( )s = dex and σ

([Fe/H])= 0.23 dex. We provide confidence levels for all
estimation results.

Figure 8. Uncertainty in rotating. We rotate the images by 30° in each step for a full circle to examine the effect of rotation on the model estimation and uncertainty. In
the figure, the green (left) and red (right) curves represent the uncertainties and predicted values, respectively, as the outputs of the model, while blue points represent
the labels. The red shaded area denotes the 95% confidence interval of the predictions; that is, the range from the 2.5% percentile to the 97.5% percentile based on
multiple sampling results. The figure shows that the model results are affected by the rotation of the images. However, when the predicted values deviate significantly
from the labels, our model tends to give a wider confidence interval with a higher uncertainty, and the transformation trend of the entire uncertainty curve is almost
consistent with the deviation trend of the prediction, i.e., our model can account for this interference in a reasonable way.
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For future work, we plan to apply target detection techniques
to identify sources directly from field images, which can be
integrated with our model to form a pipeline for automated and
efficient estimation of stellar atmospheric parameters.
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Appendix A
Proof of Equivalence

If W is a random variable that represents the parameters of
the head (due to the linearity of expectation, we can focus only
on the product part), X is the output of each inference in the
backbone, and Y is the mean values of n outputs, i.e.,
Y n X1n

i
n

i1
( ) = å = . Then we have X Y( ) ( )=  , and
X n Y( ) ( )=  when n is large enough. We can illustrate this

for a one-layer head:
(i) Expectation:

A1
X XW X W Y W Y .

( )
( ( )) ( ) ( ) ( ) ( ) ( ) ( ( )) = = = =      

(ii) Variance:

X XW

X W XW

W X YW

W X X YW . A2

2 2 2

2 2 2

2 2 2

( ( )) ( )
( ) [ ( )]
( ) ( ) [ ( )]
( )[ ( ) ( ) ] [ ( )] ( )

 =
= -
= -
= + -

 
 
  
   

Let W 2( )a =  and W X YW2 2 2( ) ( ) [ ( )]b = -   , we
have:

X X
Y Y
X n Y . A3

( ( )) ( )
( ( )) ( )

( ) ( ) ( )




a b
a b

= +
= +
=

 
 

 

Then define g(x)= nx− (n− 1)β, a strictly increasing
function, it will meet:

X g Y . A4( ( )) ( ( ( ))) ( ) = 

Finally, the multilayer for linear head will follow the same
proof one by one.

Appendix B
Theorem1

Theorem 1. Suppose L: ,( )   W , L: ,( ) W 
L ,( )W are operators that map samples into random
variables, and x n f x1n i

n
i1( ) ( ) = å = , x n g x1n i

n
i1( ) ( ) = å = .

f x g x,i i( ) ( ) are the results from backbone and head with ith
stochastic weights, separately. L: ,( )   W maps each
input sample to a corresponding point in the output space,
which reflects the expected behavior of the whole model.(i.e.,

◦ ). b is the expectation of . If wP h( ) is a probability
distribution with mean 0, wP Dh( ∣ ) can be limited by
regularization trick. Then 1" < :

O B1b b
n 1∣ [ ]∣ ( ( ) ) ( )( )   - < +

where L ,( )W is the random variable space,  is the sample
space, n is the number of MLP layers in the head, wh is the
parameters of the head.

Appendix C
Proof of Theorem1

Suppose L: ,( )   W , L L: , ,( ) ( )  W  W are
operators that map samples into random variables, and

x n f x1n i
n

i1( ) ( ) = å = , x n ng x1 1n i
n

i1( ) ( ) = å = . fi(x),
gi(x) are the results from backbone and head with ith stochastic
weights, separately. L: ,( )   W maps each input sample
to a corresponding point in the output space. The parameters of
head wh∼N(μRegular, σ

2). μRegular, σ are the expectation and
standard deviation of the distribution.
For the output of the backbone, based on the strong law of

large numbers, suppose we have some regularization tricks
limiting hRegular

1

2
m  , there is the following conclusion:

∀òh< 1, ∃Nb, when n> Nb, n y1n i
n

bi1 = å = , ybi is the ith
sample from backbone, b is the expectation of  then

. C1b n h∣ ∣ ( ) - <

This means ∃òb< òh, s.t. b n b =  , then let
n b b[ ]   = . The head part of the model is a linear

mapping, and we simply use the following function to express:
g(x)= wx+ b, where w, b is the parameters (wh) of the head.
We focus mainly on the multiplicative terms of the neural
networks, rather than the additive terms. This is the additive
terms are independent of the backbone, all the uncertainty of

Table 2
Data Comparison Experiment

Methods Teff glog [Fe/H]
(K) (dex) (dex)

XGBoostmag 265.10 0.81 0.31
LightGBMmag 234.98 0.80 0.30
CatBoostmag 241.68 0.79 0.29
RFmag 239.82 0.80 0.30
XGBoostcolor 189.73 0.66 0.25
LightGBMcolor 191.51 0.66 0.24
CatBoostcolor 189.54 0.65 0.24
RFcolor 188.59 0.65 0.24
Ours 172.37 0.41 0.23

Note. (1) Methodmag: method based on magnitude data. (2) Methodcolor:
method based on color data.
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the additive terms comes from the head part, then we have:
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where òσi is the ith stochastic bias determined by standard
deviation σ in the head, e b1[ ]  represents a multiplicative
combination of expectation components in the first term,
whereas ò0 denotes a stochastic interaction between a random
component and b in the same term, and it is the uncertainty of
head. Then according to the strong law of large numbers we
know that, for òh, ∃Nh, when n> Nh

n
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2
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Similarly, repeating the above steps, let ub denotes the
uncertainty involving backbone, then we can obtain:

un n b b n n b1 1 1 1◦ ◦ ◦ [ ] [ ◦ ◦ ◦ [ ]        = ¼ + Î ¼ -- -
O O,h b

n
n n b h b

n1
1 1

1( ( ) ) ◦ ◦ ◦ [ ] ( ( ) )]      ¼ ++
-

+ ; that is

O . C5b h b
n 1∣ [ ]∣ ( ( ) ) ( )( )   - < +

Finally, to describe the output of the probabilistic model, we
employ an approximation involving b[ ]  terms.

Appendix D
SQL Query

SELECT TOP 30000
photoobj.run, photoobj.camcol, photoobj.
field, photoobj.objID,
photoobj.ra as photoobj_ra, photoobj.dec as
photoobj_dec,
star.apstar_id, star.ra as star_ra, star.
dec as star_dec,
aspcap.teff into mydb.no_saturated_final
from apogeeStar AS star
CROSS APPLY dbo.fGetNearestObjEq(star.ra,
star.dec, 0.05) AS near
JOIN photoobj ON near.objid=photoobj.objid
JOIN aspcapStar as aspcap ON star.apstar_i-
d=aspcap.apstar_id
WHERE ((flags_u & 262144)=0) and ((flags_g &
262144)=0)
and ((flags_i & 262144)=0)
and ((flags_r & 262144)=0) and ((flags_z &
262144)=0)
and (aspcap.fe_h_flag=0)
and ((flags_u & 131072)=0) and ((flags_g &
131072)=0)
and ((flags_i & 131072)=0)
and ((flags_r & 131072)=0) and ((flags_z &
131072)=0)
and ((flags_u & 2048)=0) and ((flags_g &
2048)=0)
and ((flags_i & 2048)=0)
and ((flags_r & 2048)=0) and ((flags_z &
2048)=0)

Appendix E
Process in Training

We provided the learning curves of various components of
the entire framework in Figure 9. This was done to evaluate the
model’s generalization capability.
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Figure 9. Learning curves. This figure shows the performance of each model component during the training process, as reflected in the training set and validation set.
(a)–(c) depict the change in loss during the training of the backbones of each model, where the loss function employed is the smooth L1 loss. (d)–(g) detail the loss
alteration during the training of different model head parts, where the loss function, as indicated in Equation (19), is used. (h) shows the changing trend of the accuracy
(ACC) regarding the head of the glog classification during the training process. All training processes adopted data augmentation techniques (random rotation and
flipping of images) and early stopping techniques to mitigate overfitting.
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Appendix F
Model Configurations

We provided detailed information on determining hyper-
parameters for different machine learning algorithms based on
the Bayesian optimization method, as shown in Tables 3–6.

Table 3
The Model Configurations of XGBoost using Bayesian Optimization

Hyperparameter XGBoostmag XGBoostcolor

Rangea Optimalb Rangea Optimalb

colsample_bynode (0.1, 0.9) [0.83, 0.77, 0.51] (0.1, 0.9) [0.32, 0.78, 0.83]
colsample_bytree (0.1, 0.9) [0.68, 0.88, 0.90] (0.1, 0.9) [0.79, 0.73, 0.56]
gamma (0, 1) [0.57, 0.60, 0.00] (0, 1) [0.91, 0.91, 0.29]
learning_rate (0.001, 0.5) [0.29, 0.11, 0.10] (0.001, 0.5) [0.26, 0.01, 0.25]
max_depth (1, 10) [5, 4, 3] (1, 10) [9, 6, 3]
min_child_weight (1, 10) [8.63, 3.93, 2.42] (1, 10) [5.12, 2.23, 2.58]
n_estimators (100, 1000) [153, 904, 786] (100, 1000) [351, 543, 524]
reg_alpha (0, 1) [0.69, 0.88, 0.64] (0, 1) [0.25, 0.53, 0.23]
subsample (0.5, 1) [0.63, 0.54, 0.81] (0.5, 1) [0.59, 0.64, 0.62]

Notes.
a Range represents the search space of the hyperparameters (more details about the hyperparameters are available at https://xgboost.readthedocs.io/en/stable/
parameter.html).
b Optimal consists of the optimal hyperparameters for each model estimating the parameters: Teff, glog , and [Fe/H].

Table 4
The Model Configurations of LightGBM using Bayesian Optimization

Hyperparameter LightGBMmag LightGBMcolor

Rangea Optimalb Rangea Optimalb

lambda_l1 (0, 1) [0.93, 0.99, 0.41] (0, 1) [0.80, 0.37, 0.53]
lambda_l2 (0, 1) [0.83, 0.99, 1.00] (0, 1) [0.74, 0.58, 0.56]
learning_rate (0.001, 0.5) [0.08, 0.11, 0.10] (0.001, 0.5) [0.005, 0.04, 0.01]
max_depth (1, 10) [6, 7, 7] (1, 10) [5, 9, 5]
min_child_samples (5, 20) [6, 5, 8] (5, 20) [17, 16, 11]
min_data_in_leaf (20, 100) [26, 86, 83] (20, 100) [47, 75, 40]
n_estimators (100, 1000) [956, 607, 701] (100, 1000) [327, 131, 975]
num_leaves (20, 100) [35, 53, 86] (20, 100) [37, 86, 84]

Notes.
a Range represents the search space of the hyperparameters (more details about the hyperparameters are available at https://lightgbm.readthedocs.io/en/v3.3.2/
Parameters.html).
b Optimal consists of the optimal hyperparameters for each model estimating the parameters: Teff, glog , and [Fe/H].

Table 5
The Model Configurations of CatBoost using Bayesian Optimization

Hyperparameter CatBoostmag CatBoostcolor

Rangea Optimalb Rangea Optimalb

border_count (1, 255) [244, 254, 254] (1, 255) [156, 151, 95]
depth (1, 10) [6, 5, 7] (1, 10) [5, 9, 9]
l2_leaf_reg (1, 10) [2.05, 6.57, 4.98] (1, 10) [8.32, 3.39, 3.34]
learning_rate (0.001, 0.5) [0.18, 0.24, 0.14] (0.001, 0.5) [0.44, 0.18, 0.05]
n_estimators (100, 1000) [946, 472, 739] (100, 1000) [651, 189, 890]

Notes.
a Range represents the search space of the hyperparameters (more details about the hyperparameters are available at https://catboost.ai/en/docs/concepts/parameter-
tuning).
b Optimal consists of the optimal hyperparameters for each model estimating the parameters: Teff, glog , and [Fe/H].
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