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Abstract 
Pneumonia ranks as a leading cause of mortality, particularly in children aged 
five and under. Detecting this disease typically requires radiologists to ex-
amine chest X-rays and report their findings to physicians, a task susceptible 
to human error. The application of Deep Transfer Learning (DTL) for the 
identification of pneumonia through chest X-rays is hindered by a shortage of 
available images, which has led to less than optimal DTL performance and 
issues with overfitting. Overfitting is characterized by a model’s learning that 
is too closely fitted to the training data, reducing its effectiveness on unseen 
data. The problem of overfitting is especially prevalent in medical image 
processing due to the high costs and extensive time required for image anno-
tation, as well as the challenge of collecting substantial datasets that also re-
spect patient privacy concerning infectious diseases such as pneumonia. To 
mitigate these challenges, this paper introduces the use of conditional genera-
tive adversarial networks (CGAN) to enrich the pneumonia dataset with 2690 
synthesized X-ray images of the minority class, aiming to even out the dataset 
distribution for improved diagnostic performance. Subsequently, we applied 
four modified lightweight deep transfer learning models such as Xception, 
MobileNetV2, MobileNet, and EfficientNetB0. These models have been fine- 
tuned and evaluated, demonstrating remarkable detection accuracies of 
99.26%, 98.23%, 97.06%, and 94.55%, respectively, across fifty epochs. The 
experimental results validate that the models we have proposed achieve high 
detection accuracy rates, with the best model reaching up to 99.26% effec-
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tiveness, outperforming other models in the diagnosis of pneumonia from 
X-ray images.  
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Adversarial Networks), Deep Transfer Learning, Medical Image Analysis 

 

1. Introduction 

Pneumonia, primarily caused by viruses or bacteria, is a form of acute respirato-
ry infection and a major global health concern affecting all age groups. It is par-
ticularly deadly for children, being the single largest infectious cause of death 
worldwide in this demographic. In 2017 alone, pneumonia claimed the lives of 
over 808,000 children under the age of five, representing 15% of all deaths in this 
age group. The disease significantly impacts the lungs’ alveoli, small sacs crucial 
for oxygen exchange. In pneumonia, these alveoli fill with pus and fluid, making 
breathing painful and limiting oxygen intake, thus severely affecting respiratory 
function. The transmission of pneumonia typically occurs through direct contact 
with infected individuals. This alarming prevalence underscores the urgent need 
for effective detection and treatment strategies, especially in vulnerable popula-
tions and regions with limited healthcare infrastructure [1] [2] [3]. The impor-
tance of early detection and timely treatment is paramount to prevent the pro-
gression to more severe, potentially fatal stages. 

The convergence of robust computing systems and sophisticated algorithms 
has revolutionized the healthcare landscape, introducing a new epoch where the 
automation of diagnostic processes that traditionally depended on the expertise 
of medical professionals has become a reality [4]. Artificial intelligence (AI), 
particularly in the form of deep convolutional Neural Networks (D-CNN), is 
reshaping the field of medical imaging. While it does not seek to replace human 
experts, it serves as a powerful tool to assist in complex diagnoses, often sur-
passing human capabilities in both speed and accuracy [5]. The advent of deep 
learning and advancements in deep convolutional neural networks has brought 
the practice of transfer learning to the forefront. Leveraging the weights of 
CNNs pre-trained on extensive datasets such as ImageNet, this method has be-
come a cornerstone in medical imaging research, especially where datasets are 
inherently limited in size [6]. The promise of D-CNN in diagnosing, detecting, 
classifying, and segmenting pneumonia from medical images has garnered sig-
nificant interest, given the demonstrated success of these networks in medical 
image analysis [3]. 

Despite the advancements in healthcare technology, pneumonia diagnosis 
remains a challenge. The integration of AI and D-CNN in medical imaging has 
opened new possibilities for automated diagnosis. However, this approach faces 
significant challenges, such as limited and imbalanced datasets, and a discre-
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pancy between the characteristics of natural images used in pre-training and 
those of medical images. These issues hinder the effective application of deep 
learning in medical diagnostics, particularly for pneumonia, where accurate and 
timely detection is critical [6]. Addressing these hurdles requires innovative so-
lutions, such as fine-tuning pre-trained networks on specialized datasets to im-
prove performance, a method that can offer substantial benefits over building 
models from scratch [4]. 

Our research aims to address the challenges of data scarcity and model ef-
fectiveness in the AI-driven diagnosis of pneumonia. By implementing Condi-
tional Generative Adversarial Networks (CGAN), we intend to enrich the quali-
ty and quantity of data for underrepresented classes, overcoming the obstacle 
of limited training data. Furthermore, we plan to deploy and evaluate a series 
of lightweight Deep Transfer Learning (DTL) models, aiming to achieve excep-
tional diagnostic accuracy. This approach is expected to underscore the trans-
formative potential of AI in medical imaging and demonstrate the critical role of 
fine-tuned, lightweight neural networks in the detection and diagnosis of pneu-
monia. 

2. Related Works 
2.1. Automated Diagnosis of Pneumonia Using CNN and Transfer  

Learning Approaches 

This study [2] proposes a deep learning system for automated diagnosis of 
pneumonia using chest X-ray images. The authors identify the images as normal 
or pneumonia patients using CNN and transfer learning algorithms. The study’s 
dataset is made up of chest X-rays from children and women in Guangzhou. 
According to the results, the transfer learning model, especially the XceptionNet 
model, had the best accuracy of 93%. However, the ensemble model, which in-
cludes three separate models, performed better overall, but with somewhat lower 
accuracy. The suggested system has the potential to improve pneumonia identi-
fication and treatment. However, the research makes no mention of potential 
biases in the dataset used to train the deep learning models, which might impair 
the generalizability of the results. Furthermore, the study does not investigate 
the interpretability of deep learning models, which is critical for understanding 
how these algorithms make decisions.  

2.2. A Comparison of Deep CNN Architectures for Pneumonia  
Detection 

In their research, [3] introduced an automated approach for distinguishing be-
tween bacterial and viral pneumonia using digital chest X-ray images. A com-
parative analysis was carried out on various CNN architectures such as VGG19, 
ResNet152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNets with 201 
layers. Among these, DenseNets emerged as the most efficient, registering a test 
accuracy of 95%. To enhance model performance, transfer learning and ensem-
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ble techniques were incorporated. This study underscores the proficiency of 
deep CNNs in pneumonia diagnosis and emphasizes the significance of prompt 
detection for improved patient prognosis. However, it is critical to recognize the 
research’s limitations. The use of a small dataset and dependence on free re-
sources may have limited the scope and depth of the studies, thus affecting their 
generalizability and robustness.  

2.3. Deep Transfer Learning Model with Classical Data  
Augmentation and CGAN for COVID-19 Detection from Chest  
CT Radiography Images 

The authors suggested a deep transfer learning model with conventional data aug-
mentation and conditional generative adversarial networks (CGAN) for COVID-19 
identification from chest CT radiography images in this study [7]. The authors 
overcome the limitations of the COVID-19 CT datasets by using data augmenta-
tion methods and CGAN to produce extra training images. To identify the CT 
images, several deep convolutional neural network (DCNN) architectures were 
used, including AlexNet, VGGNet16, VGGNet19, GoogleNet, and ResNet50. 
The findings show that the ResNet50 model detects COVID-19 with the best 
accuracy from the enhanced dataset. The combination of data augmentation 
methods with CGAN enhances dataset size and improves deep transfer learning 
model performance. The work emphasizes the significance of early COVID-19 
identification as well as the prospective uses of GANs and CGANs in picture 
production and unsupervised learning. The study paper’s disadvantage is the lack 
of a rigorous examination of the suggested DTL models on a bigger and more 
varied dataset to determine their generalizability.  

2.4. Classification of Diseases from X-Ray Images Using  
Conditional Generative Adversarial Networks and Transfer  
Learning 

This paper examines illness categorization using X-ray images, including COVID-19, 
pneumonia, and tuberculosis [8]. It presents a model for exact categorization 
that combines a Conditional Generative Adversarial Network (CGAN) with 
fine-tuned deep transfer learning. To balance the dataset, CGAN is used to gen-
erate additional training images. Pre-processing approaches such as histogram 
equalization and lung segmentation improve image quality. Using the aug-
mented images, many pre-trained models, including ResNet-50, ResNet-101, and 
others, are modified. The results show that incorporating produced images im-
proves model accuracy during training, validation, and testing. Some constraints 
of the study may have an impact on the model’s performance. The use of a small 
and unbalanced dataset, which may not be reflective of the actual world, is one 
restriction. Another issue is that the CGAN-generated images are lower resolu-
tion than the original dataset images, which may make extracting features from 
the images challenging for the model. Furthermore, differences in the settings 
and characteristics of the chest X-ray images may induce biases in the categori-
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zation findings. Finally, when the model is applied to a test dataset that is not the 
same as the training and validation datasets, its accuracy may suffer.  

2.5. Deep Transfer Learning 

A significant challenge in training deep learning models is the lack of substantial 
quantities of labeled medical images. In the early stages of the COVID-19 pan-
demic or even a year after its onset, obtaining ample labeled chest X-ray data for 
deep learning training remained a hurdle [9]. To address this, numerous studies 
have adopted transfer learning, leveraging knowledge from CNN models trained 
on vast image datasets like ImageNet [4]. 

Transfer learning can be categorized from two perspectives: feature space and 
label space. Based on these perspectives, it can be classified into homogenous 
and heterogenous transfer learning. For instance, when comparing solely based 
on image data, a dataset of X-ray images might be viewed as heterogeneous in 
relation to a dataset of tree species pictures. However, when the comparison en-
compasses both audio and text datasets, the X-ray dataset might be seen as ho-
mogeneous to the tree species picture dataset. Additionally, based on label-setting 
criteria, DTLs can be divided into three types: 1) transductive, 2) inductive, and 
3) unsupervised. In simpler terms, transductive refers to cases where only the 
source data has labels, inductive is when both source and target data possess la-
bels, and when neither datasets are labeled, it’s termed as unsupervised deep 
transfer learning [9]. 

A single CNN model comprises various convolutional, pooling layers and 
others. These layers are responsible for extracting features from images or videos, 
with the deeper layers capturing more intricate deep features [7]. The initial lay-
ers of the model are either fixed or fine-tuned, while the latter layers are trained 
specifically on the target dataset [4]. 

Consider the layer l of a convolutional layer. If we have a square grid of neu-
ron nodes with dimensions N N× , followed by a convolutional layer, and then 
apply a filter with dimensions M M×  represented as W, the resulting output 
from the convolutional layer will have dimensions ( ) ( )1 1N M N M− + × − + , 
generating k feature maps [7]. The dot product is computed by the convolution-
al layer by taking its input and multiplying it by the filter weights, as illustrated 
in Figure 1. The convolutional layer acts as a feature detector, detecting proper-
ties in its inputs. Before adding nonlinearity, this layer recognizes visual charac-
teristics such as edges, lines, and corners to compute the input. The input for 
layer 1l ×  is supplied as follows 1:  

 ( )( )
1

1 1

N N
l l i l
i i i a j b

a b
Z B W X −

+ +
= =

= +∑∑  (1) 

where l
iB  indicates a bias value matrix and iW  means a masking matrix with 

dimensions M M× . Following that, the convolutional layer employs the activa-
tion function defined in Equation (2). 
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Figure 1. Convolutional and pooling layers producing feature maps. (a) convolutional 
layer; (b) pooling layer.  
 

 ( )Net l
ir Z=  (2) 

where r(.) is a function that introduces nonlinearity, which is essential in Deep 
Transfer Learning methods. Several functions, including the hyperbolic tangent 
(tanh), sigmoid function, and rectified linear units (ReLU), can be used for this 
purpose. In our technique, the ReLU and sigmoid function are used as the acti-
vation function in Equations (3) and (4). This option is chosen to expedite the 
learning process. The ReLU and function are defined by the expression:  
 ( ) ( )max 0,r u u=  (3) 

Which outputs either the input value if it’s positive, or zero if it’s not.  

 ( ) ( ) 1
1 e xf x

−−= +  (4) 

The sigmoid function creates an S-shaped curve by gradually transitioning 
values from near-zero to near-one. 

3. Methodology 
3.1. Dataset Description 

The whole dataset included 5858 chest X-ray images, 1584 normal images, and 
4274 pneumonia images. The dataset is divided into three folders: train, test, and 
val, with subfolders for each image category (Pneumonia/Normal). The full da-
taset was obtained using kaggle from retrospective cohorts of pediatric children 
aged one to five years old at Guangzhou Women and Children’s Medical Center 
in Guangzhou. The dataset was highly skewed and constrained. [8].  

3.2. Proposed Model 

The proposed framework consists of two main components. The first compo-
nent utilizes CGAN for data augmentation, while the second component inte-
grates four individual lightweight DTL models as shown in Figure 2. CGAN is 
primarily used in the preprocessing phase to generate synthetic data, while DTL 
is used in the performance measurement phase to train and evaluate models.  

Algorithm 1 delineates the framework for a Deep Transfer Learning strategy 
tailored to classify chest X-ray images into two distinct categories, namely 
NORMAL and PNEUMONIA. The approach leverages a collection of efficient 
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lightweight DTL architectures including MobileNet, MobileNetV2, Xception, 
and EfficientNetB0, denoted by M .  

These models undergo a meticulous tuning process with a dataset ( )input input,X y , 
where inputX  constitutes a series of N images each with a resolution of 224 × 
224 pixels, and inputy  consists of the associated categorical labels within the set 
{NORMAL, PNEUMONIA}. 
 

 

Figure 2. The suggested architecture employs CGAN and lightweight DTL models. 
 
Algorithm 1. Suggested Lightweight DTL Model based on CGAN for Chest X-ray Classi-
fication. 
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The learning rate λ , a critical tuning parameter, is employed to adjust the 
models’ weights during the training phase. This phase is structured into three 
segments: a training set ( )train train,X y , a validation set ( )val val,X y , and a test set 
( )test test,X y . The training set is subdivided into mini-batches of size 64,  

represented as ( ) ( )train train, ,i iX y X y∈  for 1,2, ,
64
Ni = � , and is iteratively used  

to fine-tune the Lightweight DTL models, denoted as d ∈D , to minimize em-
pirical loss, characterized by Equation (5):  

 ( )
( ) ( )

( )( )
, ,

1; , ,
i i

i
x y X y

L w X m x w y
n ∈

= ∑ �  (5) 

In this case, ( )⋅�  is the binary cross-entropy loss function, and ( ),m x w  is 
the DTL prediction function that assesses the likelihood of class y for an input x, 
given the set of weights w. 

3.3. A Conditional Generative Adversarial Network 

A conditional GANs are a type of GAN that takes in additional information to 
help the generator and discriminator learn. This information could be the class 
of the current image or some other property [10]. Generative models produce 
new instances influenced by the input data provided. Like other deep neural 
networks used for image creation, GANs produce images that align with the dis-
tribution of the input images [8] while CGANs incorporate two distinct net-
works (the generator and the discriminator) that utilize a conditional label as 
shown in 3 [7]. The generator within the CGAN deceives the discriminator by 
producing images that appear real. Conversely, the discriminator network aims 
to discern between genuine and generated images. The models undergo adver-
sarial training, where a reduction in the generator’s loss correlates with an in-
crease in the discriminator’s loss, and vice versa. 

In the generator, the initial input noise ( )zp z  and y are integrated into a 
shared hidden layer. The design of the adversarial training setup offers ample 
leeway in shaping this hidden layer. In the discriminator, both x and y are used 
as inputs to a differentiation function [11]. 

Two losses need to be computed for the Discriminator: one associated with 
the “fake” image and the other with the “real” image. Their sum constitutes the 
comprehensive loss for the Discriminator. Consequently, the Discriminator’s 
loss function is designed to minimize the discrepancy in predictions for real im-
ages obtained from the dataset and fake images produced by the Generator, all 
while taking their one-hot labels into account. 

Discriminator’s loss function is shown in 6  

 ( ) ( ) ( ) ( ) ( )( )( )data~ ~, log | log 1 |D p pL V D G D D G  = − = − − −    
zx x z zx y z y  (6) 

And the loss function of the generator minimizes the correct prediction of the 
discriminator on fake images conditioned on the specified one-hot labels.  

 ( ) ( )( )~ log |
zG z p zL D G z y = −    (7) 
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Finally, the objective function for a two-player minimax game can be 
represented as shown in 8 [11].  

 ( ) ( ) ( ) ( ) ( )( )( )data~ ~min max , log | log 1 |
zx p x z p zG D

V D G D x y D G z y  = + −     (8) 

This Equation (8) represents a two-player minimax game where the generator 
(G) tries to minimize the function, and the discriminator (D) tries to maximize 
it. 

Where:  
 ( )|D x y : denotes the discriminator estimated probability for the sample of 

real data.  
 (x): is the actual reality for class (y).  
 ( )( )|D G z y : denotes the discriminator estimated probability for the sample 

of fake data.  
The CGAN architecture and its constituent layers can be summarized as 

(Figure 3): 
1) Generative network: 

 2—Input Layers  
 2—Dense Layers  
 1—Embedding Layer  
 5—Conv2DTranspose Layers (Convolutional Layer with upsampling)  
 1—Conv2D Layer (Convolutional Layer with downsampling)  
 5—Leaky ReLu  

2) Discriminator Network:  
 2—Input Layers  
 2—Dense Layers  
 1—Embedding Layer  
 5—Conv2D Layer (Convolutional Layer with downsampling)  
 1—Dropout Layer  
 5—Leaky ReLu  

Once the discriminator and generator networks were established, we trained 
the model over 250 epochs. During this training, the discriminator’s loss for real 
images fluctuated between 0.3 and 0.6, just as the loss for fake images did. How-
ever, for the majority of the training duration, the generator’s loss remained 
slightly above 1. After trained, the generative network is then used to generate 
the synthetic images of the normal class in order to balance the data sets.  
 

 

Figure 3. Conditional generative adversarial network model. 
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Figure 4 present the samples from original and generated X-ray images of 
normal lung conditions. Using a generative network, the images in section B 
were synthesized to mimic those in section A. Upon visual inspection, the gen-
erated images closely resemble their original counterparts, highlighting the ca-
pability of the generative model. 

First Figure 5 displays an initial dataset with a class imbalance with a lower 
count of “NORMAL” (blue bar) compared to “PNEUMONIA” (red bar) while 
the second 6 shows the dataset after employing CGAN to synthesize images for 
the “NORMAL” class, achieving an equal number of samples for both classes, 
thus rectifying the imbalance and facilitating the training of more accurate and 
unbiased diagnostic models (Figure 6). 
 

 

Figure 4. Conditional generative adversarial network model. (a) Original normal images; 
(b) Generated normal images. 
 

 

Figure 5. Initial data distribution across the classes. 
 

 

Figure 6. Data distribution after applied cGAN technique. 
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4. Experiments 
4.1. Dataset Splitting 

During the partitioning process, we divide the dataset into two segments. The 
initial segment, constituting 70% of the dataset, is reserved for training purposes. 
The remaining 30% is allocated for both testing and validation. The count of di-
vided images with CGAN enhancement is detailed in Table 1. The original da-
taset contained 5217 images for training, 16 images for validation, and 625 im-
ages for testing. After augmenting the dataset with CGAN-generated images, the 
number of images increased significantly. The training set grew to 5982 images, 
the validation set to 1709 images, and the testing set to 855 images.  

4.2. Experimental Setup 

The experiments were conducted using Tensor Flow version 2.9.1 and were 
trained on the PaperSpace cloud platform, which includes an Ampere A4000, 8 
CPUs, 45 GB of RAM, and a 16 GB GPU.  

4.3. Training Parameter Settings 

The pre-trained models underwent training for 50 epochs, utilizing shuffled 
mini-batches comprising 64 images each. Adam optimizer was employed with a 
learning rate set at 0.001, and binary cross-entropy was used as the loss function. 
Additional elements integrated into the network layers included a flattening 
layer, two dropout layers with dropout probabilities of 0.2 and 0.5, respectively, 
and a batch normalization layer, with the sigmoid function serving as the clas-
sifier. A dense layer with 64 neurons is used in all the models following the first 
dropout layer, which has a dropout probability of 0.2.  

Table 2 provides a detailed breakdown of the parameters used in various 
Deep Transfer Learning architectures, emphasizing their optimization settings.  
 
Table 1. Distribution of chest X-ray pneumonia images in the original and CGAN en-
hanced dataset.  

Main Dataset Training set Validation set Testing set 

Original dataset 5217 16 625 

Original dataset + cGAN 5982 1709 855 

 
Table 2. Configuration parameters of DTL models. 

Model Batch size Epoch Learning rate Optimizer 

MobileNet 64 50 0.001 Adam 

MobileNetV2 64 50 0.001 Adam 

Xception 64 50 0.001 Adam 

EfficientB0 64 50 0.001 Adam 
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4.4. Light Weight Pre-Trained Models Architectures 

Training a neural network from the ground up requires a substantial amount of 
data. However, with transfer learning, a smaller training dataset can be utilized 
to produce a precise and extensive set of features. Given that the majority of 
chest x-ray pneumonia datasets are relatively small, due to medical ethical stan-
dards, privacy considerations and the expenses associated with their creation, it 
takes longer to develop a proficient model. Consequently, the suggested models 
are based on lightweight pre-trained architectures and are tailored to classify 
pneumonia instances.  

4.4.1. MobileNet 
The MobileNet architecture employs depth-wise separable convolutions, posi-
tioning it as a lightweight model [12]. It introduces two global hyper-parameters, al-
lowing developers to select the appropriate model size for their specific use case. 
MobileNet is both trained and evaluated on ImageNet for the purpose of image 
classification. 

To reduce computational costs, MobileNet employs Depth-wise separable 
convolution and point-wise convolution instead of standard convolution [13]. 
This approach aims to minimize the number of Floating Point Operations Per 
Second (FLOPS) and Multi-Add operations, as detailed in Figure 7.  
 

 

Figure 7. Depth-wise separable convolution and point-wise convolution. (a) Standard 
Convolution Filters; (b) Depthwise Convolutional Filters.  

https://doi.org/10.4236/jdaip.2024.121001


C. Mohamed et al. 
 

 

DOI: 10.4236/jdaip.2024.121001 13 Journal of Data Analysis and Information Processing 
 

4.4.2. MobileNetV2 
MobileNetV2 represents an enhancement over the original MobileNet design, 
demonstrating top-tier performance across various tasks and benchmarks [12]. 
The primary contribution lies in the introduction of a new layer module, the in-
verted residual with linear bottleneck. This module accepts a low-dimensional 
compressed representation as input. Initially, the input is expanded to a higher 
dimension and then filtered using a lightweight depthwise convolution. Subse-
quently, the features are projected back to a low-dimensional representation via 
a linear convolution. A notable modification is the elimination of non-linearities 
in the narrow layers to preserve representational power [13]. Within the in-
verted residual block, the intermediate layers undergo an expansion, effectively 
thickening them. This expansion, despite increasing the number of filters in 
these intermediate layers, actually reduces computational costs by decreasing the 
number of input and output channels, as illustrated in Figure 8. The architec-
ture is trained and evaluated for both object detection and image classification 
tasks.  

4.4.3. Xception 
The Xception network incorporates depth-wise separable convolution layers. It 
is designed to map both spatial and cross-channel correlations, which can be 
fully disentangled in CNN feature maps [14]. While it retains the foundational 
structure of Inception, the Xception model has 36 convolution layers, which can 
be grouped into 14 distinct modules. Excluding the initial and final layers, each 
layer possesses a consistent residual connection around it. The model processes 
the input image by transforming spatial correlations to attain cross-channel cor-
relations within each output channel. A full depiction of the network’s specifica-
tions is illustrated in Figure 9.  

4.4.4. EfficientNetB0 
The EfficientNetB0 series, a recent family of architectural designs, has demon-
strated remarkable performance superiority in classification tasks compared to 
other networks, all while maintaining a lower parameter count and computa-
tional load (FLOPs) [12]. It adopts a technique known as compound scaling, 
which efficiently and uniformly adjusts the network’s width, depth, and resolu-
tion, as demonstrated in Figure 10. This innovation leads to EfficientNet models  
 

 

Figure 8. (a) Residual block; (b) Inverted residual block.  
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Figure 9. Architecture of the xception model showing entry, middle, and exit flows. 
 

 

Figure 10. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of 
the network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions 
with a fixed ratio. 
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having parameters that are 8.4 times smaller and achieving 6.1 times faster infe-
rence speeds when compared to the best-performing existing networks. The Ef-
ficientNet family includes multiple versions, ranging from B0 to B7. The choice 
of which EfficientNet model to use can be made based on available computa-
tional resources and cost considerations. For instance, EfficientNet-B0 consists 
of 5.3 million parameters, whereas the most recent iteration, EfficientNet-B7, 
boasts a larger model with 66 million parameters.  

4.5. Evaluation Criteria 

Various performance metrics are employed to evaluate the effectiveness of ma-
chine learning classification models based on CNN algorithms. These metrics 
include accuracy (AC), precision, recall, F1-score, and the confusion matrix 
(CM).  

4.5.1. Accuracy 
This metric evaluates the total number of instances correctly predicted by the 
trained model relative to all possible instances. Accuracy is defined as the pro-
portion of images accurately classified to the total number of images provided.  

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
, (9) 

where TP refers to true positive, TN refers to true negative, FP refers to false 
positive, and FN refers to false negative values.  

4.5.2. Precision 
This metric measures the proportion of true positive cases among all predicted 
positive instances. For instance, in the context of pneumonia, it represents how 
accurately the model identifies patients with pneumonia. Precision becomes a 
pertinent measure when false positives carry more significance than false nega-
tives. It is mathematically represented as follows:  

 TPPrecision
TP FP

=
+

, (10) 

where TP refers to true positive and FP refers to false positive values.  

4.5.3. Recall 
This metric assesses the model’s ability to correctly detect pneumonia patients 
out of all actual cases of pneumonia. Recall becomes an important measure 
when the consequences of false negatives outweigh those of false positives. It is 
defined mathematically by the subsequent equation:  

 TPRecall
TP FN

=
+

, (11) 

where TP refers to true positives and FN refers to false negative values. 

4.5.4. F1-Score 
The F1 score offers a combined metric of classification accuracy, taking into ac-
count both precision and recall. It is the harmonic mean of the two, providing a 
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balance between them. The F1 score reaches its maximum value when precision 
and recall are equal. This measure effectively gauges the model’s comprehensive 
performance by integrating the results of both precision and recall.  

 1
2 Precision RecallF Score

Precision Recall
× ×

=
+

 (12) 

The training loss measures the model’s performance on the training dataset, 
while the validation loss gauges its performance on unseen data. Essentially, a 
loss value indicates the efficiency of a predictor in categorizing the provided data. 
The better the model is at capturing the relationship between input data and its 
intended output, the smaller the loss. Nevertheless, there’s a threshold to how 
accurately we can fit the training data, beyond which our model may compro-
mise its ability to generalize. 

4.5.5. Confusion Matrix (CM) 
A confusion matrix presents algorithm performance in a tabular format. It of-
fers a visual representation of key predictive metrics like recall, specificity, ac-
curacy, and precision. Through the CM, values like TP, FP, TN, and FN can be 
straightforwardly compared. The term “support” refers to the occurrences of the 
desired class within the dataset. If there’s an imbalance in support in the training 
data, it could highlight potential vulnerabilities in the classifier’s scores, suggest-
ing the possible need for measures like stratified sampling or rebalancing.  

5. Result Analysis and Discussion  

We look at the performance characteristics of four popular lightweight DTL 
models in this section: MobileNet, MobileNetV2, Xception, and EfficientB0. We 
begin by displaying their categorization results 3. Following that, a complete 
examination of their overall findings without and with CGAN is shown in 
Tables 4-6.  

The performance of four fine-tuned lightweight architectures is discussed in 
this section. As indicated in Table 3, the models MobileNet, MobileNetV2, 
Xception, and EfficientNetB0 all achieved high accuracy scores on the aggre-
gated test dataset. The test accuracies were determined by the ratio of correctly 
identified samples to the total samples. The Xception model stood out with an 
accuracy of 99.26%. Noteworthy is the enhancement in accuracy for the Mobi-
leNet, MobileNetV2, and EfficientNetB0 networks from their initial configura-
tion to after fine-tuning. 

Table 4 shows the accuracy of each DTL model on the test set. The results are 
divided into two training scenarios: first, using only original data, and second, 
using the original data augmented with synthetic chest X-ray images generated 
by a CGAN. The accuracy statistics from the table are impressive. They show 
that using CGAN-generated data significantly improves the performance of DTL 
models. For example, the MobileNet model’s accuracy increases from 61.37% 
when trained on the original data to 92.94% when trained on the CGAN-augmented  
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Table 3. Training, validation and testing binary accuracy for models trained with the help 
of generated images. 

Architecture 
Training binary 

accuracy (%) 
Validation binary 

accuracy (%) 
Testing binary 
accuracy (%) 

MobileNet 97.06 97.31 97.19 

MobileNetV2 98.23 97.83 98.01 

Xception 99.26 96.66 96.72 

EfficientNetB0 94.55 93.74 95.08 

Xception and MobileNetV2 showed highest training and testing acuracy while MobileNet 
and MobileNetV2 showed highest validation accuracy. 
 
Table 4. DTL testing accuracy for the both scenarios. 

Dataset 
MobileNet 

(%) 
MobileNetV2 

(%) 
Xception 

(%) 
EfficientNetB0 

(%) 

Original data 61.37 62.5 70.35 62.5 

Original data with CGAN 92.94 91.82 96.47 93.58 

 
data. Similar improvements are observed for MobileNetV2, Xception, and Effi-
cientNetB0, with all models demonstrating significant accuracy gains when 
trained on the enriched dataset.  

The recall rates in Table 5 show how challenging the original dataset is, with 
MobileNet achieving a recall rate of only 38.46%. This is significantly improved 
to 98.46% by adding CGAN data. This improvement is important because it 
suggests that augmenting training with CGAN images can greatly reduce the 
number of false negatives. This is vital in clinical settings to ensure that all cases 
of a condition are identified. MobileNetV2 and EfficientNetB0 exhibited perfect 
recall with both original and CGAN-augmented datasets, reflecting their strong 
generalization abilities. Despite the original data’s imbalance, these models 
demonstrated high recall, suggesting they could learn to identify minority class 
instances effectively. Xception also maintained high recall across datasets, indi-
cating its robust performance in class imbalance conditions and confirming its 
reliability for tasks requiring high recall. The precision metrics for models, as 
shown in Table 6, provide insights into the models’ performance in classifying 
positive instances correctly when trained on different datasets. MobileNet’s pre-
cision decreased slightly when supplemented with CGAN-generated images, 
dropping from 99.33% to 90.99%. In contrast, the precision for MobileNetV2, 
Xception, and EfficientNetB0 increased when trained on the augmented dataset. 
The rise from 62.5% to 88.43% for MobileNetV2 and from 62.5% to 93.31% for 
EfficientNetB0 is particularly noteworthy, indicating a significant benefit from 
the inclusion of CGAN data. Xception’s precision increase to 97.66% unders-
cores its capability to maintain high precision despite the increased dataset com-
plexity. 
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Table 5. Testing recall for the both scenarios. 

Dataset 
MobileNet 

(%) 
MobileNetV2 

(%) 
Xception 

(%) 
EfficientNetB0 

(%) 

Original data 38.46 100 99.74 100 

Original data with CGAN 98.46 100 96.66 96.66 

 
Table 6. Testing precision for the both scenarios. 

Dataset 
MobileNet 

(%) 
MobileNetV2 

(%) 
Xception 

(%) 
EfficientNetB0 

(%) 

Original data 99.33 62.5 67.88 62.5 

Original data with CGAN 90.99 88.43 97.66 93.31 

 
The precision improvements with CGAN-augmented data suggest that some 

models benefit from the extended feature set of synthetic images. Additionally, 
the varying impact of CGAN on different model architectures indicates that a 
model’s structure may affect its adaptability to enhanced data diversity. 

The training times for the DTL models MobileNet, MobileNetV2, Xception, 
and EfficientNetB0 are comparable, as evidenced by their similar total training 
times (MobileNet: 10389.02 seconds, MobileNetV2: 10494.16 seconds). This 
consistency in training times indicates that these models exhibit comparable ef-
ficiency during the training process. 

The significant boost in model accuracy, achieved through data augmentation 
using CGAN, emphasizes its capability in mitigating the constraints posed by 
limited datasets. Expanding the dataset by generating more images for both la-
bels further reinforces this approach. This advancement opens avenues for fur-
ther exploration, particularly in customizing CGAN to cater to a variety of med-
ical imaging applications. One promising area of development is the enhance-
ment of the CGAN architecture itself, possibly by adding more layers for more 
sophisticated data processing. Figure 4, which contrasts original and CGAN- 
generated images for the NORMAL label, highlights a current limitation: the 
lower resolution of generated images compared to their original counterparts. 
Addressing this by generating higher-resolution images could substantially en-
hance model performance, as higher resolution would allow the model to dis-
cern and utilize more detailed features. Additionally, the impressive perfor-
mance metrics observed suggest the importance of real-world validation. Future 
research should prioritize testing these models on larger and more diverse data-
sets, which is essential to confirm the models’ robustness and practical effective-
ness in real-world medical settings.  

5.1. Detailed Performance Metrics of Fine-Tuned DTL Models 

Tables 7-10 provide a detailed breakdown of the performance metrics (precision, 
recall, F1-score, and support) for four different DTL models that were fine-tuned 
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for a classification task involving chest X-ray images. These metrics are crucial 
for validating the effectiveness of the models in distinguishing between “Normal” 
and “Pneumonia” conditions on the original testing set. 
 
Table 7. Precision, recall and F1-score result of fine-tuned MobileNet. 

MobileNet 
Metrics 

Precision Recall F1-Score Support 

Normal 0.97 0.84 0.90 234 

Pneumonia 0.91 0.98 0.95 390 

Accuracy 0.93/624 

Macro Avg 0.94 0.91 0.92 624 

Weighted Avg 0.93 0.93 0.93 624 

 
Table 8. Precision, recall and F1-score result of fine-tuned MobileNetV2. 

MobileNetV2 
Metrics 

Precision Recall F1-Score Support 

Normal 1.00 0.78 0.88 234 

Pneumonia 0.88 1.00 0.94 390 

Accuracy 0.92/624 

Macro Avg 0.94 0.89 0.91 624 

Weighted Avg 0.93 0.92 0.92 624 

 
Table 9. Precision, recall and F1-score result of fine-tuned Xception. 

Xception 
Metrics 

Precision Recall F1-Score Support 

Normal 0.95 0.96 0.95 234 

Pneumonia 0.98 0.97 0.97 390 

Accuracy 0.96/624 

Macro Avg 0.96 0.96 0.96 624 

Weighted Avg 0.96 0.96 0.96 624 

 
Table 10. Precision, recall and F1-score result of fine-tuned EfficientNetB0. 

EfficientNetB0 
Metrics 

Precision Recall F1-Score Support 

Normal 0.94 0.88 0.91 234 

Pneumonia 0.93 0.97 0.95 390 

Accuracy 0.94/624 

Macro Avg 0.94 0.93 0.93 624 

Weighted Avg 0.94 0.94 0.94 624 
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Table 7-10 presents the precision, recall, F1-score, and specificity results for 
the lightweight networks with fine-tuning applied. Typically, a model that exhi-
bits high precision, recall, and support is deemed better. Based on the table’s da-
ta, all four models successfully detected pneumonia. 

5.2. Training and Validation Binary Accuracy and Loss of Fine  
Tuning DTL Models 

Figures 11-14 illustrate the training and validation accuracy of the fine-tuned 
models. The x-axis denotes the number of epochs, while the y-axis indicates the 
percentages for accuracy and loss. 
 

 

Figure 11. Training and validation accuracy and loss over the epochs (Fine-tuned Mobi-
leNet Network). 
 

 

Figure 12. Training and validation accuracy and loss over the epochs (Fine-tuned Mobi-
leNetV2 Network). 
 

 

Figure 13. Training and validation accuracy and loss over the epochs (Fine-tuned Xcep-
tion Network). 
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In DCNN, a loss function is utilized to refine the architecture. The loss is 
computed using both training and validation datasets, with the cumulative per-
formance in these datasets indicating the model’s effectiveness. Essentially, the 
loss equates to the cumulative errors attributed to every sample in the training or 
validation sets. The loss value after each iteration signifies the effectiveness of a 
model’s performance. 

5.3. Confusion Matrix after Fine-Tuned DTL Models 

The confusion matrix is a performance metric that provides more insights into 
the achieved testing accuracy. Figures 15-18 illustrate the confusion matrices for 
two classes of DTL models with the help of CGAN.  
 

 

Figure 14. Training and validation accuracy and loss over the epochs (Fine-tuned Effi-
cientNetB0 Network). 
 

 

Figure 15. CM of fine-tuned MobileNet. 
 

 

Figure 16. CM of fine-tuned MobileNetV2. 
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Figure 17. CM of fine-tuned Xception. 
 

 

Figure 18. CM of fine-tuned EfficientNetB0. 

6. Conclusion 

Recognizing the critical importance of timely and precise diagnosis, this research 
contributes to significantly advancing the detection of pneumonia in children 
under five, a demographic particularly vulnerable to this life-threatening condi-
tion. Pneumonia infection is diagnosed using medical images, including chest 
X-ray images. The primary issue with medical images is the small dataset availa-
ble for training Deep Learning models. To tackle the limited dataset issue, the 
CGAN technique was adjusted to produce more realistic images, thereby achieving 
a balanced dataset. This dataset contains 8548 chest X-ray images distributed 
across two classes. With augmentation, the dataset reached a size conducive for 
effective training and the generation of dependable outcomes. Such enrichment 
of the dataset enabled deep transfer learning models like MobileNet, Mobile-
NetV2, Xception, and EfficientB0 to diagnose pneumonia with high efficiency. 
Further examination of these models’ performance revealed that, notably, the 
Xception model attained an accuracy exceeding 99.26% consistently across 50 
epochs. This result underscores the model’s superior performance when trained 
on an augmented dataset, enhancing overall diagnostic metrics. 
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