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Abstract: Unconventional events exacerbate the imbalance between regional transportation demand
and limited road network resources. Scientific and efficient path planning serves as the foundation for
rapidly restoring equilibrium to the road network. In real large-scale road networks, especially during
emergencies, it is usually difficult to obtain or predict accurate dynamic traffic network flows in real-
time, which is used to support equilibrium path planning. Moreover, the traditional iterative methods
cannot meet the real-time demand of emergency equilibrium path planning decision generation.
To solve the above problems, this paper proposes a hybrid control architecture for path planning
based on equilibrium traffic assignment theory. The architecture introduces the travelers’ real-time
travel data and constructs a spatio-temporal neural network, which captures the evolution of traffic
network loads. Adaptive multi-graph fusion technology is used to mix the background traffic flow
data and the traveler’s real-time Origin–Destination (OD) data, to mine the dynamic correlation
between the traffic state and the travelers’ travel. Based on the real-time prediction of dynamic
network states, equilibrium mapping learning is carried out to pre-allocate potential travel demands
and construct equilibrium traffic graphs based on system optimization traffic assignment. Finally,
individual evacuation path strategies are generated online in a data-driven manner in real time to
achieve improved resilience in the transportation system.

Keywords: equilibrium assignment; background traffic; emergency recovery; spatio-temporal neural
networks; path planning

1. Introduction

With the development of the economy, there are more and more vehicles in the urban
road network. Traffic decongestion is increasingly becoming a daily challenge for urban
traffic management. Especially in big cities where there are more people and cars, the
road conditions are more complicated and there are often temporary emergencies (e.g.,
traffic accidents, temporary road control, and large events such as concerts and exhibitions).
If the manager is unable to rapidly guide the vehicle to modify the route to guide the
traffic to achieve a balanced state, it will make the local congestion continue to spread,
thus affecting the smooth flow of the large area of the road network. Such temporary
emergencies are unpredictable, accidental, and irregular. After an emergency, it is crucial for
the system to be able to calculate and adjust the travelers’ planned routes in time and guide
the transportation system to rapidly return to the original traffic equilibrium [1]. Traffic
equilibrium means that no traveler in a transportation system can unilaterally reduce his
travel impedance by changing his path [2]. Existing traffic forecasting and route planning
methods make it difficult to meet the actual needs of prediction accuracy and decision-
making efficiency in such emergency scenarios.
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Firstly, the impact of such emergencies on the traffic state is affected by the local road
network structure and the activities of the surrounding travelers, which makes it difficult
to devise a generalized method for prediction. Traffic equilibrium is one of the main
research objectives in traffic assignment modeling and route planning, which has already
produced more results [3–5]. For example, the static traffic assignment (STA) typically
assigns the current real-time origin–destination data (OD) used, such as Logit probabilistic
stochastic methods [6–9], to estimate the road impedance, which can quantify the impact
of real-time OD on the road network. However, the traffic on the entire road network
changes dynamically. Such static methods are difficult to adapt to the real road network
at the time of emergencies. In addition, in reality, information on accurate and dynamic
road network traffic flow is usually difficult to obtain in real time. Existing dynamic traffic
assignment (DTA) studies usually depict the dynamic distribution of traffic flows based on
linear or constant different metrics [10–13], optimization objectives [14], or probabilistic
approaches [15]. But because many factors are difficult to quantify in emergencies, it is
difficult to describe the complex and variable dynamic traffic flow distribution relying
only on simple variables or probability distributions. Therefore, route planning after an
emergency should consider not only real-time traveler OD information (referred to as
micro-information), but also real-time and future information about the overall background
traffic flow (referred to as macro-information). We concluded that it is difficult to consider
either micro or macro transportation information in isolation to achieve accurate prediction
and planning after an emergency event.

Second, in terms of model performance, while existing flow allocation models are well
structured and reasonably well explained, they often imply a large number of variables and
constraints. The solution algorithms are often computed iteratively by constantly choosing
the optimal path. Only after continuous adjustment within the system can the algorithm
reach an equilibrium state. Due to the excessive number of iterations, the computation time
of these algorithms is too long, and the ability of real-time planning and decision-making is
greatly reduced. And the re-planning of travelers’ routes in emergency scenarios requires
high algorithm performance for real-time decision-making. The traditional iteration-based
approach is difficult to adapt to this rapid planning and decision-making requirement.

In summary, how to be able to rapidly and accurately re-route and guide the traffic back
to equilibrium after an emergency is a key issue facing traffic relief. The main contributions
of this paper are as follows:

(1) A hybrid control architecture that combines network-wide traffic flow data (macro
information) and travelers’ real-time OD data (micro information) is proposed, which
provides the system with emergency-compatible and more accurate real-time traffic
load for dynamic road networks.

(2) A spatio-temporal neural network-based traffic equilibrium assignment model (ST-
ETA) is given, mapping the equilibrium assignment aiming at system optimization
(SO) into a neural network. The problem of real-time path planning for emergency
scenarios in large-scale real road networks is solved by learning the mapping relation-
ship between the current traffic condition and the optimal equilibrium distribution,
instead of an iterative approach.

The beginning of this paper lists the current research related to path planning based
on traffic assignment and traffic forecasting. The second part will briefly describe the
principles of equilibrium traffic assignment and the theoretical basis for hybrid control
path planning. The third section details the hybrid control architecture. In the fourth part,
a series of experiments and result analysis are given to verify the model validity. In the last
part of this paper, we conclude and put forward the future research work.

2. Related Work
2.1. Path Planning Based on Traffic Assignment

The research community has proposed various techniques to improve path planning in
emergencies using traffic assignment methods. Earlier, researchers used the static traffic as-



Appl. Sci. 2024, 14, 1253 3 of 21

signment (STA) [6–9] to estimate road impedance conditions and guide traveler assignment.
For example, the Logit assignment model [5] is a typical probabilistic stochastic assignment
method that assumes that the user’s error in estimating the actual road impedance satisfies
a Logit distribution. However, the period of traffic distribution is difficult to determine.
If the interval is short, the traffic state will be affected by the previous period, and vice
versa, it will change drastically. This is because static models do not reflect dynamic
changes in traffic states. This has led to a shift in the study of traffic assignment to the more
realistic dynamic traffic assignment (DTA) [16]. DTA focuses on discovering the natural
evolution of the transportation system and thus depicts the continuous distribution of
traffic flows [17]. DTA has been favored by various works for its typical application in
congested networks such as frequent emergencies [18–20]. Several researchers have pro-
posed different DTA-based techniques to estimate and depict the continuous distribution
of traffic flows and in the process accomplish path planning. Pel et al. presented a review
of travel behavior modeling in dynamic traffic simulation models of evacuation from four
aspects [10]: traveler behavior, travel demand, trip distribution, and traffic assignment
representation. In addition, [21,22] and others have also studied the DTA problem through
real-time traffic simulation. Ref. [11] optimized the traffic distribution using the method
of successive averaging (MSA) and solving the dynamic equilibrium problem for UEs
and SOs using the time-varying shortest path algorithm. The MSA method is also used
in [12]. The authors additionally utilized Mahut’s temporal queuing method [23] to solve
the path runtime computation, which improves the computational efficiency. These two
studies are based on simulated small-scale road network models, and it can be seen that
MSA will be extremely inefficient in large-scale transportation networks due to its iterative
computational approach.

Subsequently, some researchers have started to consider the impact of real trans-
portation network evolution on path planning. Di Gangi [13] proposed an extension to a
mesoscopic dynamic traffic assignment (DTA) model which was developed to determine
quantitative indicators for estimating the exposure component of the total risk incurred
by the transport networks in an area. But the method’s deterministic assessment using
linear or constant metrics does not express the complex dynamics of transportation well.
Ref. [24] proposed an equilibrium model considering dynamic background traffic flow in a
problem targeting parking lot evacuation optimization, and experimentally demonstrated
that the background traffic flow has a great influence on the selection of the optimal path.
Then, Tao Zhang [14] clearly defined the concept of background traffic, i.e., the traffic flow
consisting of existing vehicles on a road network before emergency evacuation affects the
assignment of evacuation vehicles, consequently affecting the formulation and implementa-
tion of emergency plans. In this work, they considered the presence of background traffic in
dynamic evacuation traffic studies based on three constraints, including the state equation,
propagation function, and conservation. Experimental validation by [14,24] shows that
background traffic is an important guide for the generation of traffic assignment strategies.

However, while some of the above work also attempts to give real-time path planning
decisions by determining the evolution of traffic flows, the evolution of network traffic
predicted by the model is usually only applicable to deterministic scenarios. Emergencies
have considerable uncertainty. However, while some of the above work attempts to give
path-planning decisions by judging the evolution of traffic flows, the evolution of network
traffic predicted by the model is usually only applicable to deterministic scenarios, since
emergencies have considerable uncertainty [15]. Individuals are likely to change their
established routes when faced with unforeseen circumstances, which leads to the failure
of traffic prediction models backed by normative data. To address this problem, Di Gangi
uses a probabilistic approach to directly predict the time evolution of the probability of
evacuating users from an area. But individual rerouting behavior is directly affected by
the metrics selected for generating the probabilities, and we cannot judge the merits of
the metric selection. Moreover, the probabilities are generated in different emergencies in
different ways. Therefore, how to consider the impact of individual trips on macroscopic
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background traffic flow, so that the model can compatibly predict future background traffic
in the existence of anomalies, and thus support the traffic assignment work in real-time
becomes the focus of our work.

To assess the impact that micro individual demand brings to macro traffic flows, Ref. [25]
quantified the impact of urban logistics activities on traffic flow dynamics through simple
metrics of the macroscopic fundamental diagram (MFD) to investigate the possible benefits of
multi-use lane strategy deployment. Ref. [26] proposed a framework for simulating micro
freight demand through a probabilistic generation approach, and combined traffic states with
stochastic and microscopic freight demand generation models, i.e., the delivery movements
and the delivery duration. The intention is to use MFD and its associated metrics to capture
and quantify the macro impacts of double-parked vehicles transporting goods on urban
arterials. But both of these works are based on MFD. The macroscopic information in MFD
is the impact of the relationship between the three main parameters of the transportation
system, namely flow, speed, and density [27], rather than the impact on the network-wide
traffic flow data. Furthermore, [28] formulated the dynamic OD demand estimation problem
as an excess–demand dynamic traffic assignment (DTA) problem defined for an expanded
network with dummy paths, and assumed that the network equilibrium is a compromise
between minimizing the individual routing cost, traffic count matching error, and the OD
demand entropy. Inspired by this work, we introduce travelers’ real-time OD data to improve
the prediction of dynamic traffic flows.

In summary, background traffic is an important guide for the generation of traffic-
assignment strategies in emergencies. However, existing models use quantitative indicators,
constraints, or probabilistic methods to predict background traffic, which cannot be adapted
to equilibrium path planning in emergencies. In addition, existing allocation methods use
iterative computation, which is extremely inefficient in large-scale traffic networks and
cannot make real-time decisions. Therefore, in this paper, we combine the background
traffic flow data and the traveler’s real-time OD data to predict the accurate traffic network
state under the influence of real-time OD, and further offer hybrid control of the trav-
eler’s path planning strategy. Moreover, the neural network mapping traffic assignment
method is used instead of the iterative approach to enhance the real-time performance of
the algorithm.

2.2. Traffic Prediction Based on Spatio-Temporal Neural Networks

The spatio-temporal neural networks have been widely applied in the traffic speed,
traffic flow, travel demands, and traffic map predictions. Ref. [26] proposed an innovative
method for predicting a dynamic OD matrix in a subway network using long short-term
memory (LSTM) by analyzing the swipe data of subway passengers. This method cannot
be directly applied to road network OD prediction due to the relatively fixed subway lines
and the small scale of the subway network. Ref. [29] investigated the spatio-temporal
dependence of ODs and proposed a multi-perspective graph convolutional network. The
temporal features and spatial dependencies were extracted for each OD pair using LSTM
and a two-dimensional graph convolutional network. Most taxi OD prediction meth-
ods only considered the demands at origin ignoring the destination the taxi arrived at.
Ref. [30] proposed a contextualized spatio-temporal network to predict the future interac-
tive demands between all regional ODs. Ref. [31] adopted tensor data to characterize OD
streams and proposed a multi-scale convolutional LSTM to handle high-dimensional travel
features by tensor permutation and matrixing. To alleviate OD data sparsity, Ref. [32] used
a grid partition method dividing the road network to explore the correlation of ODs. This
model combines geographic and semantic neighborhoods, with the geographic domain
measuring the intrinsic closeness of grids and the semantic domain modeling the intensity
of traffic between grids. Ref. [33] proposed a spatio-temporal residual neural network to
predict the inflow and outflow of ODs in each region based on temporal closeness, period,
and trend features. The ST-ResNet aggregates the outputs of three residual networks and
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allocates different weights to different branches and regions, further combining the weather
factor to predict the regional traffic.

The time-varying traffic flow of road sections is another perspective that reveals the
evolution of traffic network, and real-time traffic flow prediction is the core issue in ITS. In
previous traffic flow prediction, time series models were used to capture the autocorrelation
between traffic statuses [34,35]. Subsequently, graph topological features were introduced
to fit the spatial dependence of traffic flow [36]. Considering the complicated topologi-
cal connectivity and nonlinear temporal dynamics of traffic context, Ref. [37] proposed
a diffusion convolutional recurrent neural network. It captures the spatial correlation
using bidirectional random walks on the graph and temporal dependence using the code-
and-decode architecture. To improve the generality of convolution, Ref. [38] proposed a
spatio-temporal graph convolutional network that simultaneously extracts spatio-temporal
features from time-series graphs. It models the spatial features of the traffic network using
general graph and adopts fully convolutional layers on the time axis. Ref. [39] extended the
existing graph convolutional networks and proposed a novel graph-based neural network
that distinguishes the intensity of connections to adjacent nodes revealing the hidden
features of traffic propagation. To cope with the constraints of topology and the dynamic
changes in traffic, Ref. [40] proposed a temporal graph convolutional network, which learns
the complex topology to capture the spatial dependence, and extracts the dynamic temporal
dependence of traffic. In the temporal dimension, the status feature in the distant past is
not necessarily less important than the recent feature. Ref. [41] proposed an attentional
temporal graph convolutional network that captures both global temporal dynamics and
spatial correlation, which introduces an attentional mechanism to adjust the importance
of different time series. Most of the existing graph convolution methods only consider
local spatial correlations, but non-local associations are equally important. To obtain the
non-local spatio-temporal features, Ref. [42] proposed a global spatial–temporal network
to extract local and global spatial features.

In summary, the spatio-temporal neural network technique provides new theoretical
support for dynamic traffic network flow with real-time prediction. Among them, graph
convolution shows excellent ability in spatial trend feature extraction. In this paper, a spatio-
temporal neural network is constructed that uses hierarchy graph convolution to capture
the global traffic state as well as the potential traffic generated from the real-time OD data,
so as to provide accurate and comprehensive real-time traffic load to the equilibrium path
planning decision by traffic prediction.

3. Preliminaries
3.1. Dynamic Road Network and Traffic Equilibrium Principle

A generalized dynamic road network G = (N, R, OT , VT) is obtained by combining
the road network topology and the travelers’ trajectories. The OD evacuation volume OT

and background load VT change dynamically with the period T. The origin and destination
of the OD come from two nodes in set N. The set of road sections in the network is denoted
by R. We refer to the connection from the origin to the destination as the OD path l. The l
consists of a series of adjacent link sequences <ro, ri, . . . , rd> which correspond to the road
sections in the road network. Meanwhile, as the traffic load changes, the impedance of the
road section varies simultaneously, and we use an evacuation time function to measure it.

Definition 1 (Traffic Load). The total traffic volume carried by the road network during the time
period, including background traffic flow loads (background load) as well as assigned evacuation
volumes. The total traffic volume allocated to each section is called the traffic load of that section,
and the maximum traffic load is equal to its capacity. Therefore, the real-time traffic load combined
with the section capacity can be used to calculate the actual capacity.

Definition 2 (Travel Impedance). For the edge ri in the OD path, the δ(ri) denotes the evacuation
time cost function. The travel impedance for ri can be expressed in Equation (1).
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C(ri) = {δ(ri)| <ri> ∈ l}. (1)

The travel impedance of path l is the total cost of the containing road sections, as in Equation (2):

C(l)=δ(t0)(ro) + δ(t1)(ri)+ · · ·+δ(tk)(rd). (2)

where t0, t1, . . . , tk denote the discretized time points, and k means the time steps spent on l.

In the evacuation of ODs, the travel impedance of the pre-planned path may increase
due to the traffic load changes. The increasing traffic load on the path causes the pursuit
of minimum evacuation costs C(l) to be invalidated, while some sections with low flow
traffic are not fully utilized. The problem domain for hybrid control path planning is based
on the criteria that the total evacuation cost of all ODs in the traffic network is minimized.
The principle of system optimization for traffic assignment is used here.

Definition 3 (System Optimization, SO [2]). With the constraint of traffic load balancing,
traffic flows in a congested network should be assigned at the lowest average or total evacuation cost.

The SO requires travelers to accept the system’s unified scheduling, where there is
a collaborative relationship between them. Ref. [3] constructed a mathematical model to
achieve system optimization under constraints, and regarded the OD flow as an equilibrium
distribution of the network. This objective optimization function is shown in Equation (3).

min z(L, VL) = ∑
ri∈L,vri∈VL

vri C(ri)

s.t. VL= ∑
l∈L

∑
ri∈l

vl
ri

; vl
ri
≥ 0

. (3)

The z(·) is the sum of the product of travel impedance and traffic load, and its optimal
solution minimizes the function value. The constraints include the conservation of traffic
between OD paths and road sections with non-negative section traffic. The VL denotes the
traffic volume of all OD paths L, and vl

ri
denotes the traffic load of ri in l. As the Beckmann-

based traffic assignment methods use stepwise approximation, they are difficult to apply in
large-scale traffic networks with high real-time requirements [43]. In this paper, we design
and map the equilibrium traffic assignment method to data-driven deep learning, which is
based on SO ideas for online real-time decision-making in large-scale transportation networks.

3.2. Formulation of Hybrid Control Path Planning Problem

Hybrid control path planning is a path decision model that combines network-wide
traffic flow information (macroscopic information) and travelers’ real-time OD information
(microscopic information) to consider traffic system optimization. In the path-planning
process, it considers both individual paths cost C(l) and system cost z(L, VL). This is
achieved by mapping the traffic equilibrium assignment method based on SO. However,
background traffic flows at the macro level are not available in real time. Traffic assignment
is only based on the macro background traffic flow, which cannot adapt to the situations
wherein individuals change the established route to adapt to time-varying transportation
system states in emergencies. Thus, the hybrid control path planning relies on the data-
driven deep learning approach to perceive future traffic evolution.

We use the discrete time points (t − m, ..., t − 1, t) to record the OD volume and back-
ground load of road sections. The prediction of the dynamic traffic load can be considered
as learning the mapping function f (·) based on OT and VT , as shown in Equation (4).

(or, vr)
t = f

{
Ã;

[
ot−m

r , · · · , ot−1
r

vt−m
r , · · · , vt−1

r

]}
. (4)
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The ot
r ∈ OT denotes the OD volume and vt

r ∈ VT denotes the traffic load of node r at
time t. The Ã is the spatial connectivity of the nodes in the road network. The historical data
of or and vr from t − m to t − 1 can be represented as (ot−m

r , · · · , ot−1
r ) and (vt−m

r , · · · , vt−1
r ).

Considering that acquiring OD data is limited for some nodes, the historical data for or
can be taken from other nodes with similar spatial patterns [44]. The traffic equilibrium
graph can be considered as a priori traffic distribution of OT , VT . The traffic distribution
F in period T has the following decomposition equation according to the conservation of
traffic flow:

E(OT , VT) = (FT
o |min z(·)) + FT

v . (5)

Equation (5) learns an equilibrium distribution function E(·) based on the SO-constrained
traffic equilibrium assignment method that assigns OD evacuation volume to road sections.
The hybrid control path planning builds upon the equilibrium distribution ET

(o,v), which
equals finding a path with the largest potential traffic assignment. On this basis, the system
recommends that path planning prioritizes using the road sections with potential traffic,
which can reach a compromise between individual cost and system optimization, as shown
in Equation (6):

l′(ro ,rd)
= HRoute(ro, rd|ri ∈ ET

(o,v)). (6)

where l′ is the decision path under hybrid control. To capture the impact of dynamic traffic
network for path planning, this paper attempts to learn a HRoute(·) function that considers
the overall traffic evolution trend of the system to the path planning of the individual
traveler. In fact, the potential traffic assignment can better represent the evolution of the
traffic network. Therefore, the hybrid control path planning model extracts the evolution
features of the traffic network to calculate the individual paths.

4. The Proposed Hybrid Control Architecture for Path Planning

Traffic allocation is based on dynamic traffic states and real-time OD states. In reality,
network-wide traffic flow data cannot be collected and uploaded promptly, and equilibrium
path planning decisions based on macro real-time traffic states are iteratively generated,
both of which lead to scheduling delays. To meet the real-time requirements of path
planning, on the one hand, the dynamic traffic load state can be foreseen by deep learning
prediction, which combines the OD evacuation volume and background traffic flow. On the
other hand, mapping SO constrains the traffic equilibrium-assigned method by the neural
network approach.The path plan is given in real time based on the predicted traffic state and
real-time OD data, so as to improve the effectiveness and timeliness of the traffic allocation.
The hybrid control architecture for path planning named equilibrium traffic assignment
based on spatio-temporal neural network (ST-ETA) can be subdivided into the dynamic
traffic network load prediction module and the hybrid control path planning module, as
shown in Figure 1. Among them, the feature extraction and prediction mechanism of
the dynamic traffic network load prediction module corresponds to Sections 4.1 and 4.2,
respectively. The hybrid control path planning module corresponds to Sections 4.3.

Considering the strong spatio-temporal correlation of OD volume or background load
of the road network under discrete periods, our model assumes that we can estimate the
evacuation volume for a given period by making a prediction based on the travelers’ route
data. And the dynamic road impedance on each section can be pre-calculated by predicting
the future traffic load. The OD evacuation volume prediction module and the background
traffic load prediction module are trained in parallel to capture OD trend features and
background traffic flow change features, respectively. The equilibrium mapping layer fuses
the two types of data to form a complete traffic flow distribution and captures the mapping
relationship between this distribution and the optimal traffic equilibrium flow distribution.
Ultimately, the optimal equilibrium flow distribution graph calculated from the real-time
information is used as the basis for the path plan.
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Figure 1. The hybrid control architecture for path planning based on equilibrium traffic assignment.

4.1. Spatial Feature Extraction Based on Hierarchy Graph Convolution

To extract spatial features of OD and background load, we uniformly adopted a
hierarchy graph convolution. The real-time OD data are then counted for each network
node by time slices to form the OD evacuation volume. With the time dimension, the OD
evacuation volume carries real-time spatial trend information.

The graph convolutional networks have been widely applied to extract spatial features
in status snapshots of traffic network [38,40]. The topology of the traffic graph can be well
portrayed by the Laplace matrix. The first-order Chebyshev graph convolution [45] sim-
plified as Θ ∗ x ≈ θ(D̂− 1

2 ÂD̂− 1
2 )x, where θ(D̂− 1

2 ÂD̂− 1
2 ) is the approximating convolution

filter, x is the input feature. Thus, the traffic status of one node in the road network can
be treated as an aggregation of surrounding traffic. The perception field of the graph
convolution can be expanded by stacking multiple GCNs embedded in the network. The
feature transfer between the GCN layers is as in Equation (7):

H(l+1) = Γ(GCN)(D̂− 1
2 ÂD̂− 1

2 · H(l) · Θ(l)). (7)

H(l) denotes the output vector of the l-th layer, and Γ(GCN) is the ReLU activation
function for performing the first-order spectral convolution. The GCN layer finally converts
the input traffic background flow or OD evacuation volume Xt=(xt

1, · · · , xt
i−1, xt

i ) into a
code Ht=(ht

1, · · · , ht
i−1, ht

i).
In a real road network, due to the complex connectivity of geographic space, it is not

enough to explore the intrinsic relationships and regularities from the individual features
of the nodes [46]. The network nodes form the OD volume matrix have extremely high
dimensionality. It records all node-to-node traffic volumes. Since some intersections are
low-level and often have no vehicles passing through them, the OD data are extraordinarily
sparse, which usually makes it difficult to capture the effective trend characteristics carried
by real-time OD. Moreover, it is impractical to use such a fine-grained road network to
analyze and calculate traffic features. The spatial features can be further aggregated by
semantic information and described in a coarse-grained manner.

The grid partition is a commonly used method for coarse-grained road network
analysis, but the equidistant grid scales tend to disrupt the semantic relationships of the
roads. The contraction hierarchy [47] generates a hierarchy structure by iteratively merging
the lower ranked nodes in the road network. The contraction process is continuously
adding the shortcuts to the edge set, and finally obtaining an overlay graph G↑ := (N↑, R↑)
that preserves the shortest path feature of the original graph. After the coarse-grained
contraction of the road sections, the traffic graph structural complexity and connection
sparsity were improved. Furthermore, we encoded the coarse-grained spatial features
based on the overlay graph G↑ through the hierarchy graph convolution and skip graph
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convolution, as shown in Figure 2. The neurons represent links in G↑ and their activation
statuses correspond to their traffic. The weight on the link can be interpreted as the
probability of traffic assignment. The hierarchy features of nodes in G↑ are encoded using
graph convolution for the node that can be contracted. The hierarchy convolution network
(HCN) first encodes the graph features with the correlation between shortcuts and edges,
which can be defined as

Z(c)=Γ(HierarchyConv)(D̂− 1
2

c ĈD̂− 1
2

c · Z · Θ(c)). (8)

where Z ∈ Rn×n is the contraction matrix and Z(c) is the output given by hierarchy
convolution. Next, we perform neighborhood features extraction based on the shortcuts in
A↑. The shortcuts are the coarse-grained description of the road sections, and we encode
the adjacent relationships of shortcuts in G↑, as follows:

Z(h)=Γ(SkipConv)(D̂− 1
2

↑ Â↑D̂− 1
2

↑ · Z(c) · Θ(h)). (9)

where Z(h) is the output of the skip convolution. Considering the prediction for multi-graph
snapshots, we generate a sequence of hierarchy graph encodings ZT = {Zt−m, · · · , Zt} by
fusing spatial features of XT = {Xt−m, · · · , Xt} through the HCN layer.

HierarchyConv SkipConv

Figure 2. The process of extracting hierarchy features based on G↑.

4.2. Dynamic Traffic Network Load Prediction

The objective of dynamic traffic load prediction is to capture the spatial and temporal
evolutionary features based on historical data {Oq|q = t−m, ..., t−1} and {Vq|q = t − m, ..., t − 1}
to predict the evacuation volume ot and background load vt. In Section 4.1, we have
extracted the spatial features for both data. For the temporal dimension, we have used
the classical LSTM for both types of data. It takes ot or vt as input, and the output layer is
processed by the internal memory cell to generate the ho

t or hv
t as input to the next cell.

In time series, the background load shows a recent, daily, and weekly periodical
pattern [48]. Unlike background load prediction, the OD evacuation volume prediction is
not closely related to the recent features. If evacuation features are consecutively extracted,
the model captures the interference features which are not helpful for prediction in a
compulsory manner [32]. Hence, we construct a coarse-grained prediction method that
skips irrelevant sequences based LSTM to predict OD evacuation volume.

Based on the gate control units of LSTM, we designed a coarse-grained prediction
model with multi-level memory that skips irrelevant sequences.The memory unit processes
the input vector ot,vt through the forget gate, input gate, and output gate, respectively.
And the output Π(o)

t , Π(v)
t of hidden layers via the activation function of gate is updated as

shown in Equation (10):

Π(o)
t = Γ(gate)(W(o)[ot, hτ(t)] + b(o)),

Π(v)
t = Γ(gate)(W(v)[vt, ht−1] + b(v)).

(10)

where τ(t) is the time period after the coarse granularity process. The W(o) , W(v) are the
weight matrix of the input layer to the gates, and b(o),b(v) are the corresponding bias. The
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Γ(gate) is the sigmoid activation function. The OD’s latent encoding of gate control units is
computed using the embedding ot and the hidden state hτ(t). And the background load
latent encoding is computed with vt and ht−1. The input gate and forget gate are used to
update the cell state Ct, and the H′

t is controlled by the output gate and the activation unit,
as in Equation (11):

Ct =Π( f orget)
t ⊙Ct−1+Π(input)

t ⊙Tanh(W(c)[X′
t, H′

t−1]),

H′
t = Π(output)

t ⊙ Tanh(Ct).
(11)

where ⊙ is the Hadamard product. The X′
t, H′

t−1 come from the OD prediction of ot, hτ(t),
or the traffic load prediction of vt, ht−1. Furthermore, the temporal encoding is converted
in parallel by HCN to increase the depth of LSTM spatio-temporal contextual memory. The
final output H(t) is composed of the contraction encoding Z, temporal encoding H′

t , and
spatial correlation Ĉ,Â↑, as shown in Equation (12).

H(t) = Γ(gate)(HCN(Z, Ĉ, Â↑), H′
t). (12)

4.3. Path Planning Constrained by Equilibrium Traffic Assignment

To make the path planning constrained by the equilibrium traffic assignment, we
first train a mapping layer to obtain the equilibrium graph. The path planning makes the
routing decision based on the road sections with potential traffic. Therefore, finding the
equilibrium traffic graph in the period to guide path planning can induce the traffic network
to equilibrium. We propose a data-driven deep learning solution to derive equilibrium
traffic graphs, as shown in Figure 3.

In the offline training phase, the SO-based traffic equilibrium sample generator uses
the equilibrium graph obtained by the traffic assignment method to label the input traffic
statuses, which provides data samples for the network training. The equilibrium mapping
layer first obtains the joint traffic state distribution of ODs and background load, and
then learns the mapping to the equilibrium graph based on the generated samples. The
data-labeling process generates sufficient traffic distribution samples for the training of the
equilibrium mapping layer. After offline training, the mapping module can perform online
prediction and periodically update the parameter configuration to adapt the changes. The
trained equilibrium mapping layer can rapidly derive traffic distribution from real-time
ODs and background load, and map it to an optimal (or close-to-optimal) equilibrium graph.

1 OFFLINE TRAINING

Joint Traffic State 

Distribution 

Learning 

Equilibrium

Mapping Learning

Sample Generator 

Road Sections

2 ONLINE PREDICTION

Historical Data 

Online Traffic

3 PATH PLANNING

System 

Optimization

Multiple Data 

Path Planning

Equilibrium Mapping Layer

Figure 3. Hybrid control for path planning process based on data-driven deep learning.

Equilibrium Mapping Learning: To build the neural network for traffic graph learning,
the equilibrium mapping layer can be implemented with multiple fully connected layers.
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However, the mapping between traffic patterns and equilibrium distributions is complex,
involving network traffic propagation and global implicit interaction. This requires a fully
connected neural network with many layers of connection parameters, which are difficult
to train in a reasonable time and limited samples [49]. The status of the traffic graph is
complex and variable, so the interaction between sections should be dynamic as well.
In particular, it has limitations in using the fixed adjacency matrix to model the spatial
dependencies of ODs. Accordingly, we propose a multi-graph convolutional network
that adopts an adaptive adjacency matrix [50] to capture the hidden spatial dependencies
between traffic and topology configurations.

As shown in Figure 4, the inputs to the model contain the OD’s volume O ∈ Rn×n and
the background load V ∈ Rn. They are fused after multi-graph convolution resulting in a
unique traffic pattern that corresponds to an equilibrium traffic graph. The equilibrium
mapping layer efficiently learns the patterns in traffic and topology to achieve SO with
higher performance. The traffic load graph Gv(R, Λv) is composed of the road sections R
and topology relations Λv. The OD’s graph Go(R, Λo) consists of R and semantic relations
Λo of ODs. We use two separate feature graphs as basic components, with each component
focusing on its own feature extraction and finally fusing them through a concatenation
operation. The spatial dependencies of the HCN and AdaptiveHCN are based on the
adjacent neighborhood Λv and OD semantic neighborhood Λo, respectively. The Λo is
obtained by two learnable parameters Eo,Ed, where Eo is the origin embedding and Ed is
the destination embedding. We obtain the OD semantic dependencies between the origin
and destination, as shown in Equation (13).

Λo = So f tmax(Relu(Eo × E⊤
d )). (13)

The Softmax is a probability distribution mapping function. And ReLU is applied
to eliminate minor dependencies. The output Λo can be considered as a transfer matrix
for implicit propagation based on ODs. Combined with the self-learning hidden graph
dependencies, we propose the following multi-graph convolution operation:

Y(m)=Γ(MultiGraph)([ΛvVΘv, ΛoOΘo] · W(m)). (14)

After obtaining the latent encoding features of the OD and background load graphs,
we use the multi-graph fusion mechanism to retain the original spatio-temporal features
as completely as possible [51]. At the end, the derived feature graph is projected to the
generated equilibrium graph via a fully connected layer. The trained equilibrium mapping
layer can be efficiently assigned traffic online.

To train the input to output weights, we calculate the average error between the
predicted traffic graph and the generated equilibrium graph. We expect the prediction
results to be close to the ideal equilibrium graph by introducing the following loss function:

Loss(x, y)=

∥∥∥∥∥ 1
n1

∑
ri∈L1

xri C(ri)− 1
n2

∑
rj∈L2

yrj C(rj)

∥∥∥∥∥. (15)

where x denotes the generated equilibrium traffic and y denotes the predicted assignment
traffic. The n1 and n2 are the count of road sections contained in the OD path sets L1 and
L2, respectively. This loss is equivalent to the mean square error when L1 and L2 contain
the same section.

Path Planning based on ST-ETA: As the background load and traveler evacuation vol-
ume change dynamically over time, the ST-ETA model should constantly update its traffic
distribution to adapt the evolution, to guarantee the SO path planning from the origin
at the current time step to the destination. The state correlations between the time steps
are connected by the spatio-temporal characteristics of the traffic flow and the real-time
OD trend features. Dynamic path decisions are stitched together by constantly giving the
current step. The final output y represents the hypothesis of the travelers’ trajectories in
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the network, interpreted as path planning based on the traffic equilibrium constraint. We
adjust the road sections’ rank according to the equilibrium topology configuration, which
guides the path-planning method to use the potential traffic assignment sections for the
routing decision. When a subject requests a path, the model performs path planning on the
adjusted underlying graph, returning a path that meets the evacuation subject’s demand
and is consistent with system optimization.

HCN

Background Load

AdaptiveHCN

ODs+

Output =

Loss

Concatenation

Fully-Connected

Traffic Assignment
Go(R, Λo)Gv(R, Λv)

Equilibrium Mapping Layer

Equilibrium 

Traffic Graph

=

Figure 4. Equilibrium mapping based on adaptive multi-graph fusion.

5. Experimental Results and Analysis

The road network relied on for the experiments in this paper is derived from the map
of Chengdu City provided by OpenStreetMap (www.openstreetmap.org, accessed on 28 De-
cember 2021), with 113,825 road sections and 81,371 nodes. The road network is contracted
by edge aggregation to build 161,731 shortcuts. The latitude and longitude boundaries
we used for the Chengdu City are [30.2775, 31.0328, 103.6767, 104.5578]. Considering that
obtaining OD data of evacuation vehicles on the road network is limited, in our simulation
experiments, we use the real-scene KDD CUP 2020 car-hailing datasets provided by Didi
Chuxing (gaia.didichuxing.com, accessed on 23 December 2021), to simulate the route
data of evacuation vehicles for partial experimental verification. We scaled up in time
granularity (1 h as a statistical unit) to approximate all travelers. The data range from
1 November to 30 November 2016.

ODs Dataset: The order dataset contains 7,062,959 OD records, each with a times-
tamp and geographic coordinates of the origin and destination. After matching the road
network,the shortcuts were aggregated into 14,076 hierarchies to guide the OD semantic
partition. The road network is also divided into 35 × 40 (1400) geographical grids and the
volume of ODs within the grids is aggregated. Since the end time of OD orders is not fixed,
we take 1 h as the time step for prediction. For time-out orders are treated as completed
in 1 h.

Trajectories Dataset: The total number of trajectories is 1,096,618,419 with each record
containing a time stamp, vehicle ID, and geographical coordinates of the location. The
trajectory points are collected at intervals of 2–4 s. The number of sections after mapping to
the road network is 4036, leaving 2239 after further contraction.

Road Section Impedance: The road section impedance can be determined based on the
relationship between evacuation time and traffic load. In this paper, the BPR function is

www.openstreetmap.org
gaia.didichuxing.com
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used as T(xr, Cr) = t0
r (1 + a xr

Cr
)β, where xr is the traffic load on road section r, Cr is the

capacity, and tr
0 is the free-flow evacuation time. The parameters α and β are taken as

0.15 and 4.5, respectively.
We choose three kinds of prediction errors to evaluate the performance of the model,

MAE, RMSE, and accuracy, as in Equation (16):

MAE = 1/m
m
∑

t=1
|yt − xt|,

RMSE =

√
1/m

m
∑

t=1
(yt − xt)

2,

Accuracy = 1 − |yt−xt |
xt

.

(16)

where yt denotes the predicted value and xt denotes the true value based on the OD volume,
background load, or assigned traffic. m denotes the prediction period.

5.1. The Prediction Performance of OD Evacuation Volume and Background Load

In the experiments, we further verify the effect of hierarchy features on the prediction
performance of existing methods. We compare the performance of hierarchy partition with
grid partition using 12 h as the historical time window for training, as shown in Figure 5.
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Figure 5. The prediction error of OD evacuation volume based on hierarchy and grid partitions.

The target is to predict potential evacuation demands for the next 1 h, 6 h, and 12 h.
With increasing iterations of training, the RMSE becomes stable after 500 iterations. In
general, the length of the prediction window has a direct impact on prediction performance.
From Figure 5a, it can be seen that the model is best trained with a 1 h prediction window.
In the first 500 iterations, the validation RME reached a minimum of 5.012. By extending the
prediction scope to 12 h, the RMSE for three curves increases significantly, indicating that
the prediction performance of the long-term prediction is lower than that of the short-term,
which is more applicable to the need for short-term prediction in emergency scenarios. The
small time scope allows the model to perform well, but the length of capturing the time
series features is limited. In each subgraph, the overall RMSE under hierarchy partition is
lower than that under grid partition, with a minimum value of 5.165 during 500 iterations.
This is due to the fact that grid partition does not handle uneven distribution well, and
using equal grids to aggregate OD data leads to a polarization in the dense and sparse data.
This results in an over-generalized amount of OD evacuation after grid partition, and the
evacuation features from one grid to another are not well-reflected. Therefore, the training
performance of the traffic prediction under hierarchy partition is better than that of the
grid partition.

In terms of background load prediction, the same 12 h time window is used to predict
the background load for the next 1, 6, and 12 h, matching the dynamic OD evacuation
volume. The experiments compare our proposed HCN with general graph convolution
methods, respectively. The HC-LSTM employs spatial feature aggregation with HCN in
each LSTM cell. Figure 6 shows the performance of GCN, HCN, and HC-LSTM on the
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validation data. As the iterations increased in Figure 6, the RMSE under different modules
leveled off gradually, and HC-LSTM outperformed the GCN and HCN in three prediction
periods. In comparison to the baseline GCN, the average RMSE of HCN increases by
35.76%, while the HC-LSTM average RMSE increases by 48.28%. And HCLSTM uses spatio-
temporal convolution, which improves by 19.49% relative to spatial convolution HCN.
Similarly, the prediction performance of the models decreases as the scope of prediction
window increases. The RMSE of HC-LSTM reaches a minimum of 26.63 for the next
1 h prediction. The experiments verified that the HCN outperforms the GCN due to the
addition of hierarchy features that improve the fitting ability to traffic spatial relation.
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Figure 6. The background load prediction error under different convolution modules.

Therefore, by obtaining historical ODs and background load data of the traffic network,
it is possible to make prediction for future traffic loads. Also, the experiments demonstrate
that the performance of traffic prediction can be improved by mining the hierarchical
semantic information of the road network.

5.2. The Availability and Timeliness of Equilibrium Traffic Assignment Prediction

To learn the correlation between the current traffic distribution with the optimally
equilibrated traffic distribution map, and to achieve the prediction of the optimally equili-
brated traffic distribution in new scenarios, the ST-ETA equilibrium mapping layer uses
Equation (15) for model training. In the experiments of this paper, the optimal balanced
flow distribution map sample data are generated by the equilibrium assignment method
with SO as the optimization objective and solved by the F-W [52] method.

As can be seen from Figure 7a, the training RMSE, validation RMSE and MAE gradu-
ally decrease and level off over 500 iterations. The performance shown in Figure 7b can
be achieved on the validation set after 500 training epochs, with an RMSE of 68.59, MAE
of 41.34, and Accuracy of 78.60%. The horizontal coordinates of Figure 7c,d are shown in
descending order by loads in the SO equilibrium distribution graph. Figure 7c illustrates
the flow distribution between SO and ST-ETA for highly loaded sections with flows of
200–1500. It can be seen that ST-ETA captures the overall distribution pattern of SO well,
but the flow loading is lower than the actual flow of SO. This suggests that ST-ETA merely
captures the fact that high-traffic roads typically have a higher capacity to carry loads and
can be used as critical evacuation roads in path planning. However, it cannot learn the
maximum load carrying capacity of these critical roads. ST-ETA learns from multiple SO
plans and "averages" several plans that are similar to the current scenario. When there
exist SO plans that utilize certain roadways at or near-maximum capacity to accomplish
evacuation, ST-ETA would allocate a small portion of the flow that exceeds the “average”
capacity to the more critical and commonly used evacuation roads. This view can also be
correspondingly corroborated from Figure 7d. This figure shows the comparison of two
model flow distributions for the low-load road (0–200). Some low-load roads have slightly
higher traffic volumes than the SO option. Certainly, this suggests that some travelers bear
more costs in this evacuation (e.g., appropriately choosing a detour to a nearby roadway
with lower loads). And the total system scheduling time increases accordingly. This is not
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the absolute optimal balanced traffic distribution. But trying to achieve absolute optimality
in a real large road network is unrealistic and the error is acceptable in terms of the total
travel time comparison as seen in Section 5.3.
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Figure 7. The prediction performance of ST-ETA.

In terms of model run times, we compare the data-driven method ST-ETA, which is
mapped by the SO traffic assignment method, with the classical SO method MSA [11] and
the F-W [52] method in terms of timeliness. The experiment uses the statistical OD evac-
uation volume and real-time calculated network capacity of the Chengdu road network
from 13:00∼14:00 on 1 November 2016. In Figure 8a, the MSA took 28 iterations to reach
system optimization in 22,304.66 s, while the F-W required seven iterations in 5010.84 s.
The ST-ETA was pre-trained using the neural network and took 14,257.14 s to perform
500 training iterations. The decision-making phase after training, as shown in Figure 8b,
requires 843.93 s and 843.05 s for the FW and MSA allocation process based on an all-
or-nothing policy, respectively. It cannot satisfy the demand of providing real-time path
decision-making in emergency scenarios. The ST-ETA can provide a decision-making solu-
tion in only 101.51 s, which can effectively solve the problem of real-time decision-making
for large-scale network path planning in emergencies.
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Figure 8. Comparison of the run time of different traffic assignment models.
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5.3. The Other System Performance Based on Hybrid Control Path Planning

The ST-ETA prediction results in a traffic distribution that is close to the traffic equilib-
rium status, and it can be assumed that path planning according to this distribution will
achieve SO. To better demonstrate the changes brought by hybrid control path planning to
the traffic system, we have performed three traffic assignment models, namely UE, SO, and
our proposed ST-ETA, based on static networks and real-time networks. In static networks,
the traffic flows can be assigned according to the maximum capacity of the road network.
The real-time network updates the network capacity periodically, considering the traffic
load of the previous period.

Figure 9 illustrates the overall traffic distribution based on UE, SO, and ST-ETA for
both static and real-time networks. The horizontal axis indicates the evacuation volume
range and the vertical axis indicates the road sections count within that range. It can be
seen that there are more high-traffic sections with traffic between 1000 and 2000 in UE.
In contrast, SO and ST-ETA, which are aimed at system optimization, have fewer high-
volume road segments and a slight increase in low-volume segments. This suggests that
the adoption of SO and ST-ETA results in a more even loading of the roadway segments.
This is more conducive to maintaining a steady state and coping with the recovery of
emergency evacuation scenarios. Comparing Figure 9a,b, it can be seen that the SO and
ST-ETA traffic distributions are close to each other in the static network scenario. This is due
to the fact that ST-ETA is mapped based on the SO method. While in the dynamic network
scenario, the ST-ETA histogram distribution is overall flatter, indicating a more balanced
traffic distribution. Especially for the low and medium traffic sections, its road utilization is
higher, which is more capable of alleviating the overall load of the high traffic sections. This
proves that ST-ETA is better adapted to the balanced evacuation in the dynamic network of
emergency scenarios.

Next, to visualize the system performance of ST-ETA under dynamic scenarios, we cal-
culate the total evacuation time, average traffic load, and road utilization of the system with
the three assignment models, as shown in Figure 10. UE has the highest total evacuation
time. This is because its iteration only considers the traveler’s self-interest to find the opti-
mal path, and fails to consider the impact of the process that travels in real-time cooperation
and competition among ODs on the road network state. In the dynamic network scenario,
the average traffic load of UE is 215 and the road utilization is 62.66%. The average traffic
load of SO decreased by 4.88% and road utilization increased by 8.57% compared to UE.
ST-ETA had the lowest average traffic load of 201 and road utilization of 68.86%.This is
consistent with the results of Figure 7c,d of Experiment 5.2. The improvement in ST-ETA
road utilization is obtained at the expense of the total scheduling time. While the system
travel time is comparable to SO, the error from the absolute system optimum is within
acceptable limits.

Hybrid control path planning is used to advise multi-evacuation travelers to select
paths in congested networks following the principle of system optimization. Specifically, ST-
ETA predicts the volume of travelers’ evacuation in advance to generate a traffic topology
configuration. The hybrid control path planning prioritizes the road sections in the topology
configuration during the routing decision, with the final path containing the maximum
potential traffic. Figure 11 shows the paths using the Dijkstra shortest path planning method
and the hybrid control path planning based on ST-ETA. Compared to the shortest path, the
paths in Figure 11b use more road sections which come from the topology configuration
obtained by ST-ETA prediction. Therefore, the hybrid control path planning contributes to
the evolution of congested network to system optimization.
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Figure 9. Comparison of traffic distributions of different assignment models.The (a) represent the
traffic distribution in static , and the (b) represent the traffic distribution in real-time networks.
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Figure 11. Comparison of hybrid control planning path and shortest path.

6. Conclusions and Future Work

The hybrid control path planning perceives the background traffic and evolution
volume of the system to make individual path decisions. This paper first predicts the
dynamic traffic load in large-scale networks using multidimensional features to provide a
more accurate dynamic road network state for system-compatible emergencies. Then, its
models macro and micro information using the adaptive multi-feature fusion technique,
mapping the offline SO flow assignment method to generate equilibrium distribution
graphs considering dynamic traffic states. Finally, the potential travel demand is assigned
in a data-driven manner online in real time. Hybrid control path-planning techniques
increase the diversity of path choices for evacuating travelers by sensing both macro and
micro information, which is conducive to improving the capability of the transportation
system to rapidly return to normality in emergencies. As this paper adopts the way of
training the prediction and assignment model in advance, the network-wide dynamic traffic
flow can be obtained in real time in the actual path-planning decision-making. Through
the mapping of the assignment process without iteration, the algorithm can give the traffic
assignment plan in real time, which is well adapted to the needs of rapid planning decisions
in emergencies.

The current method applies to daily traffic and roads with temporary emergencies.
It cannot be adapted to major disasters scenarios where the structure of the road network
changes (e.g., earthquakes). This is because the forecasting method used involves the
impact of the network’s structural characteristics. Since ST-ETA cannot learn the maximum
carrying capacity of the roadway, it allows roadway flows to be diverted when they exceed
the average optimal distribution. While this alleviates the load on critical roads, it will
result in a slight increase in the total evacuation time. In future work, a limit on the
maximum load of the network can be added to the spatio-temporal network training to
bring it closer to the SO optimal flow distribution. Otherwise, given the current state
of emergency data and subject routes data collection, the model in this paper has some
limitations at the data and validation level. The future work intends to collect and simulate
more representative data of normal and non-normal scenarios, so as to further verify
and compare the model performance under different scenarios in detail, and make more
scenario-specific improvements to the model.
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Abbreviations
The main notations used in this paper.

Notation
G, G↑ Topology of road network. Overlay graph of G.
R, ri, R↑ Road sections, with |R| =n. The ith road section in R. Edges of G↑.
N, N↑ Road intersections. Nodes of G↑.
A, D; A↑ Adjacency matrix, Degree matrix of G. Adjacency matrix of G↑.
Â, Â↑ Normalized adjacency matrix of A,A↑.
C, Ĉ Contraction correlation matrix. Normalized correlation matrix of C.
D̂, D̂c, D̂↑ Degree matrix of Â,Ĉ,Â↑.
V, vr Traffic load of R. Traffic load on link r.
O, or OD evacuation volume. Evacuation volume on link r.
T, t, m Coarse-grained time slice T. Discrete time points t, t ∈ T. Time interval.
ODs The set of OD pairs for all travelers.
L, l The paths corresponding to ODs. An OD path.
F Traffic assigned probability distribution.
θ Chebyshev polynomial coefficient.
Θ Graph convolution parameter matrix.
Γ Convolution filter.
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