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Abstract: Machine learning (ML) has become more prevalent as a tool used for biogeochemical anal-

ysis in agricultural management. However, a common drawback of ML models is the lack of inter-

pretability, as they are black boxes that provide little insight into agricultural management. To over-

come this limitation, we compared three tree-based models (decision tree, random forest, and gra-

dient boosting) to explain soil organic matter content through Shapley additive explanations 

(SHAP). Here, we used nationwide data on field crops, soil, terrain, and climate across South Korea 

(n = 9584). Using the SHAP method, we identified common primary controls of the models, for 

example, regions with precipitation levels above 1400 mm and exchangeable potassium levels ex-

ceeding 1 cmol+ kg−1, which favor enhanced organic matter in the soil. Different models identified 

different impacts of macronutrients on the organic matter content in the soil. The SHAP method is 

practical for assessing whether different ML models yield consistent findings in addressing these 

inquiries. Increasing the explainability of these models means determining essential variables re-

lated to soil organic matter management and understanding their associations for specific instances. 

Keywords: agricultural data analysis; agricultural business management; tree-based models;  

Shapley values; soil organic matter 

 

1. Introduction 

Machine learning (ML) has emerged as a crucial domain in science and technology, 

exerting a substantial socioeconomic–environmental influence on various aspects of hu-

man and natural systems [1,2]. ML allows us to learn from vast amounts of data and im-

prove the predictive performance of models. However, ML often employs complex algo-

rithms, which results in black box models due to their intricate internal processes that are 

not readily interpretable [3-5]. Such opaqueness may lead stakeholders to overlook mean-

ingful patterns or issues arising from hidden biases in the data. This hinders the handling 

of effective predictive resource management, mainly when based on large-scale ML [6]. 

For example, the accuracy problem of yield mapping is well-known due to errors inherent 

in high data volumes and algorithm opacity [7]. 

Considerable concern has been expressed about relying on opaque models that may 

result in decisions that are not fully comprehended or, even worse, violate ethical princi-

ples regarding business and the environment or legal norms [1,8]. These risks are partic-

ularly relevant for decision-making in real-life scenarios and for access to public benefits 

[9], for example, digitalization in agriculture [10] and terrestrial conservation [11]. This 

partly explains the low adoption rate of current ML-based decision support systems in 

many areas. Land managers, government agencies, and companies that incorporate black 

box ML models into their practices, products, and applications potentially face efficiency, 

safety, and trust issues [12]. Therefore, the lack of interpretability must be addressed, and 

increasing the explainability of predictive modeling for data analysis is becoming 
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increasingly important for mitigating these unintended risks and promoting the correct 

application of ML models in critical domains. 

In 2018, the European Parliament implemented the General Data Protection Regula-

tion, which established provisions regarding automated decision-making [1]. These regu-

lations aim to ensure that individuals have the right to receive “comprehensible explana-

tions of the underlying reasoning” when automated decision-making processes are used. 

Additionally, in 2019, the European Union’s High-Level Expert Group on Artificial Intel-

ligence (AI) introduced ethical guidelines for trustworthy AI, and one of the requirements 

is explainability [1]. This requirement has been incorporated into the proposed EU regu-

lation known as the AI Act [13], which establishes standardized rules for AI, thus affecting 

ML as a subfield of AI. Similar but nonregulatory proposals exist for AI risk management 

in the U.S., such as the “Identifying Outputs of Generative Adversarial Networks Act” 

and the “National Artificial Intelligence Initiative Act of 2020” [14]. Overall, the consensus 

on the importance of developing practical explanation tools is growing. Meaningful ex-

planations are critical for describing data, testing models, identifying potential biases, ad-

dressing risks, and fostering trust and collaboration between humans and their AI assis-

tants. However, this remains an ongoing scientific challenge [5]. 

An optimum model should be highly accurate and easy to interpret [2]; however, 

despite the rising interest in these models, achieving both interpretable and highly accu-

rate model outputs has presented a considerable challenge [15], particularly in response 

to the abovementioned concerns at the management and policy scales. Consequently, the 

development of various explanation methods for black box models has increased in both 

academia and industry [16-20]. Explainable ML emerged in the late 2010s for prediction 

in different systems to better explain black box models and comprehensively address di-

verse aspects of the food and agriculture sector [3,21]. Explainable ML seeks to enhance 

the interpretability of complex algorithms while still maintaining their accuracy. Priori-

tizing interpretable predictions is more important than solely focusing on accurate pre-

dictions when using ML models, especially for decision-making [9,22]. 

The objective of the study was to showcase the potential of explainable ML algo-

rithms in analyzing large-scale data. Agricultural system data and models allow us to ex-

plore the biophysical, practical, and social aspects of food production [23,24]. ML models 

are expected to play a vital role in sustainable agriculture by enabling data-driven deci-

sions for nutrient and water management, which are the main constraints for crop pro-

duction. However, we know little about large-scale controls on soil organic matter and 

how managing them affects crop productivity and resource use efficiencies regionally. 

Furthermore, black box ML often determines false relationships between components in 

the system, making it unsuitable for predicting and explaining [25]. It is important to ad-

dress these issues in this field because agricultural production is influenced by the man-

agement decisions of growers in response to changes in our climate and environment. 

We specifically focused on how different tree-based ML models can uncover novel 

patterns of organic matter in soil from data from Korea’s field cropland, compiled on a 

national scale. Here, we targeted soil organic matter, as it is a significant component of the 

global C cycle and integral to many ecosystem services (for example, food production and 

climate regulation) [26]. At the same time, the soil pools are the most vulnerable to land 

degradation and climate change [17,18] and are constrained by various social, economic, 

and political factors [27]. Therefore, estimating organic matter content is important for soil 

evaluation and management. This approach highlights the dominant controls of soil or-

ganic matter across fields in which its distribution interacts with the environmental state 

and the sociocultural matrix [28,29]. 
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2. Materials and Methods 

2.1. Data Compilation and Processing 

We compiled environmental variables representing soil, terrain, climate, and vegeta-

tion to describe diverse field conditions in South Korea. We categorized explanatory var-

iables into five groups: (1) soil chemical properties, (2) a soil map, (3) terrain, (4) vegeta-

tion, and (5) climate (Table 1). 

Table 1. Proxies for the environmental factors used in the tree-based modeling of soil organic matter. 

Category Variable (Abbreviation) Unit Resolution Source 

Soil 

Organic matter (OM) g kg−1 Field 

[30] 

Available phosphate (AP) mg kg−1 Field 

Available silicate (AS) mg kg−1 Field 

Exchangeable magnesium (Mg) cmol+ kg−1 Field 

Exchangeable potassium (K) cmol+ kg−1 Field 

Exchangeable calcium (Ca) cmol+ kg−1 Field 

pH (1:5 H2O)  Field 

Electric conductivity (EC) dS m−1 Field 

Soil map 

Topsoil texture (TT) class 250 m 

[31] 

Drainage (DC) class 250 m 

Soil order (OR) group 250 m 

Soil structure (SS) class 250 m 

Parent material (PM) type 250 m 

Erosion (EG) grade 250 m 

Terrain 

Elevation (DEM) m 90 m 

[32] 

Slope 1 radians 90 m 

Aspect 1 radians 90 m 

Flow direction (flowdir) 1 m 90 m 

Roughness 1 m 90 m 

Hill shade (hill) 2  90 m 

Topographic position index (TPI) 1  90 m 

Terrain ruggedness index (TRI) 1  90 m 

Upslope contributing area (a) 1  90 m 

Topographic wetness index (TWI) 1  90 m 

Climate 

Mean annual temperature (TA)  °C 1 km 

[33] 

Maximum annual temperature (TAMAX) °C 1 km 

Minimum annual temperature (TAMIN) °C 1 km 

Mean annual precipitation (RN) mm 1 km 

Solar irradiation (SI)  MJ m−2 1 km 

Relative humidity (RHM) % 1 km 

Wind speed (WS) m s−1 1 km 

Vegetation Net primary productivity (NPP) g C m−2 y−1 11 km [34] 
1 Estimated based on DEM data. 2 Computed from slope and aspect values, assuming sun elevation 

and direction (azimuth) angles of 45° and 0°, respectively. 

The National Institute of Agricultural Sciences (NAS) provides data on the soil chem-

ical properties (0–0.15 m depth) of the agricultural fields (Figure 1, Table 2) [30]. Four to 

ten soil subsamples were collected from each field using a random zig-zag method and 

mixed to make one composite sample. The samples were analyzed for organic matter (g 

kg−1), pH (1:5 H2O), available P2O5 (mg kg−1), available SiO2 (mg kg−1), exchangeable mag-

nesium (cmol+ kg−1), exchangeable potassium (cmol+ kg−1), exchangeable calcium (cmol+ 

kg−1), and electric conductivity (dS m−1) [30]. The soil chemical data are updated annually 
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across fields to recommend a crop management plan and fertilizer application rates. The 

dataset is open-source and contains field-specific data for the last three years (2020–early 

2023), which is accessible from the administrative division. Thus, we compiled all data 

within each division organized by location and sampling date. The Rural Development 

Administration (RDA) provides thematic soil maps of 30 physical properties at a 125 m 

resolution (1:25,000 scale) [31]; we selected topsoil (0–20 cm) texture, drainage class, ero-

sion grade, soil order, soil structure, and parent material in this study. 

 

Figure 1. Spatial distribution of the field data (n = 9584). Points are field-wide averages of organic 

matter (OM; g kg−1) for the period of 2020 to early 2023. 

Table 2. Descriptive statistics of numeric data (n = 9584). 

 Units Mean Median s.d. Min. Max. 

Organic matter g kg−1 24.2 21.9 11.1 0.6 74.0 

Available phosphate mg kg−1 303.7 199.4 281.5 0.8 3589.7 

Available silicate mg kg−1 191.8 175.9 153.9 0.1 1896.0 

Exchangeable magnesium cmol+ kg−1 1.82 1.60 1.08 0.04 14.56 

Exchangeable potassium cmol+ kg−1 0.74 0.52 0.68 0.01 8.31 

Exchangeable calcium cmol+ kg−1 6.43 6.03 3.08 0.11 31.90 

pH (1:5 H2O)  6.30 6.30 0.68 4.00 9.50 

Electric conductivity dS m−1 0.81 0.56 1.03 0.01 20.00 

Elevation m 71.38 35.89 81.40 0.25 671.00 

Mean annual temperature  °C 12.97 13.26 1.028 6.12 16.02 

Maximum annual temperature °C 18.55 18.57 0.78 11.22 20.40 

Minimum annual temperature °C 8.17 8.68 1.46 2.01 13.19 

Mean annual precipitation mm 1358.28 1269.33 215.95 934.89 2636.66 

Solar irradiation  MJ m−2 13.70 13.71 0.53 10.62 15.78 

Relative humidity % 71.20 72.43 2.98 59.61 76.81 

Wind speed m s−1 1.84 1.93 0.41 0.19 5.46 

Net primary productivity g C m−2 y−1 184.86 188.00 10.41 138.00 255.00 
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We obtained the digital elevation model (DEM) data (90 m resolution) (Table 2), 

which represented a continuous topographic elevation surface, from the National Spatial 

Data Infrastructure (NSDI) portal [32]. We used the DEM data to derive slope, aspect, 

roughness, topographic position index, terrain ruggedness index, and flow direction. Hill 

shade was computed from slope and aspect [35], assuming sun elevation and direction 

(azimuth) angles of 45° and 0°, respectively. Lastly, we estimated the upslope contributing 

area and topographic wetness index according to Quinn et al. [36]. We used a global esti-

mate of annual net primary production in TIFF format from 2019 to 2021 to represent veg-

etation from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard 

NASA’s Terra and Aqua satellites [34]. The spatial resolution of the data is 0.1° (approxi-

mately 11 km). To represent the current climate, we used mean annual air temperature, 

maximum/minimum air temperature, mean annual precipitation, solar irradiation, rela-

tive humidity, and wind speed data based on the Modified Korean-Parameter-elevation 

Regressions on Independent Slopes Model (MK-PRISM, version 1.2). All data were avail-

able from 2000 to 2019, except for solar irradiation (2014–2019) [33]. The MK-PRISM data 

were in netCDF format. All climatic variables were averaged annually and then over the 

entire period, whereas the sum of precipitation values was calculated and averaged over 

the same period. 

According to the land cover data from EGIS [37], agricultural land subclasses include 

the following: (1) fields (including rearranged fields), (2) rice paddies, (3) facility cultiva-

tion, (4) orchards, and (5) pastures and nurseries. Based on the survey of arable land in 

2021 [38], the total field area was 766,000 ha. We first compiled valid soil chemical data 

and the coordinates of the fields (n = 310,716). We then extracted the values of the climate, 

terrain, and soil map variables with the coordinates of the samples. We removed outliers 

from the complete dataset based on Cook’s distance (n = 9584) and scaled the data for 

modeling. All data were compiled and processed in R (version 4.3.1) [39]. 

2.2. Explainable Tree-Based Models 

Several reviews provide an overview of ML models [40,41]. One of the benefits of ML 

is the ability to learn vast amounts of data by exploiting the variation in resources from 

observation and related environmental covariates [42]. Tree-based modeling is the most 

used learning technology in soil mapping. We chose decision tree (DT), random forest 

(RF), and gradient boosting (GB) due to their ease of interpretation and proven success in 

handling structured datasets [43]. The DT algorithm is a recursive partitioning method 

that iteratively generates child nodes, further divided into pairs of nodes. DT serves as an 

interpretable ML model, as the decision path from the root to the leaf or terminal nodes 

keeps track of the features used for predictions. However, DT learning is difficult to com-

prehend and suffers from overfitting when the models become more complex (i.e., with a 

larger maximum depth). 

Ensemble methods, such as RF and GB, are used instead to address this issue. By 

incorporating multiple decision trees, these approaches produce robust and accurate 

models. Leveraging the diversity of individual trees, they mitigate overfitting while en-

hancing overall performance. RF uses feature randomization to create each tree. At each 

split, a random subset of features is considered to determine the best splitting point for 

the node. This randomness increases the diversity among trees and enhances the general-

ization capability of the ensemble model. GB is an alternative ensemble learning technique 

in which an additive model is constructed by sequentially combining predictions from 

multiple decision trees, thus creating a robust predictive model. RF primarily aims to re-

duce variance through subset (i.e., bagging) and feature randomization. In contrast, GB 

focuses on diminishing bias and enhancing predictive accuracy through iterative optimi-

zation processes. Among the models, the DT algorithm is relatively simple, and its inter-

pretability is high. The RF and GB models are composed of many trees that have been 

combined, which, therefore, must be supplemented with interpretable methods for un-

derstanding model behavior. 
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2.2.1. Model Evaluation 

We integrated the Shapley additive explanation (SHAP) method, developed by 

Lundberg and Lee [44], with the optimized ML to interpret the prediction criteria of the 

models and the level of contribution of the individual features that strongly correlate in 

organic matter prediction. Feature importance provides a crucial reference for feature se-

lection [45]. A higher feature importance value, compared with another, implies the 

greater importance of the feature for generating a prediction. Shapley values quantify the 

contribution of each explanatory variable in each instance. The term “additive” signifies 

that the corresponding Shapley value for each explanatory variable of an instance can be 

additively combined [46]. This approach provides quantitative information to explain 

how individual explanatory variables either positively or negatively impact the target var-

iable of interest in the model. The following formula represents the Shapley value, ϕi(v): 

𝝓𝒊(𝒗) =
𝟏

|𝑵|!
∑ |𝑺|

𝑺⊆|𝑵|\{𝒊}

! (|𝑵| − |𝑺| − 𝟏)! [𝒗(𝑺 ∪ {𝒊}) − 𝒗(𝑺)],  

where v(S) represents the output of the ML model being explained with a set S of features, 

and N refers to the entire set of available features. The Shapley value or contribution of a 

specific feature i (𝜙𝑖) is calculated as the average contribution across all possible permu-

tations of the feature set [47], akin to determining the marginal contribution 

([𝒗(𝑺 ∪ {𝒊}) − 𝑣(𝑺)]). This method evaluates the unique impact of feature i by assessing 

how the inclusion or exclusion of this feature alters the model’s output, mirroring the pro-

cess of assessing a feature’s extra value in the model. Additionally, it applies a weighting 

factor (|𝑺|! (|𝑵| − |𝑺| − 𝟏)!) to account for every potential combination of features, ensur-

ing that the influence of each feature is measured fairly and equitably. Lastly, summing 

over all coalitions and normalizing with denominator |𝑵|! aggregates the contributions 

of each feature to recognize the significance of individual features in proportion to their 

effect on the model’s performance. 

The Shapley-based feature importance method, however, does not provide insights 

into two crucial aspects: (1) how changes in these important features affect predictions 

and (2) whether a specific threshold for these key features can enhance the accuracy of 

predicting the target variable. To address these concerns, we employed partial depend-

ence (PD) plotting, which enabled us to analyze how specific input features contribute to 

variations in the expected response of the target variable. One-dimensional PD plots illus-

trate how changes in the chosen independent variables impact the expected value of their 

dependent variable while other independent variables remain constant. Furthermore, 

two-dimensional PD plots are used to assess predicted values for their dependent variable 

as both independent variables simultaneously vary. 

PD plots are a tool for comprehending the impacts of features in any ML model [48], 

such as 𝑓(x). The explanatory variables x = (𝑥𝑠, 𝑥𝑐) can be divided into two subsets to em-

phasize the concept and effectively convey this relationship and visualization: 𝑥𝑠 and 𝑥𝑐. 

𝑥𝑠 represents the “chosen” independent variable, and 𝑥𝑐 comprises the set of other inde-

pendent variables. The function that represents PD is defined as follows: 

𝑃𝐷 =  
1

𝑛
∑ 𝑓(𝑥𝑠, 𝑥𝑖𝑐).

𝑛

𝑖=1

  

𝑃𝐷 represents the partial dependence of a subset of features 𝑥𝑠 on the model’s pre-

dictions, illustrating how the average prediction changes when the values of 𝑥𝑠 are al-

tered while all other variables (𝑥𝑖𝑐) remain constant. The term 
1

𝑛
∑𝑛

𝑖=1  signifies the cal-

culation of an average, where the model’s predictions for each instance (from 1 to n, with n 

being the total number of instances in the dataset) are then divided by n. The prediction func-

tion, 𝑓(𝑥𝑠, 𝑥𝑖𝑐), calculates the prediction for each combination 𝑥𝑠, and the other features 𝑥𝑖𝑐 , 

enabling the assessment of how changes in 𝑥𝑠, alone influence the model’s predictions. 
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2.2.2. Assessment Statistics 

To train the model, we performed five-times repeated fivefold cross-validation. Grid 

searching was employed for exhaustive searching to systematically tune the hyperparam-

eters in ML from a predefined set of values to enhance performance and mitigate the risk 

of overfitting (Table 3). 

Table 3. Optimal hyperparameters of three tree-based models. 

Model Parameter 
Parameter 

Grid 

Decision 

Tree 

Random 

Forest 

Gradient 

Boosting 

Maximum depth of a tree [6, 8, 10, 12] 6 12 8 

Minimum samples per leaf [8, 12, 18] 12 8 18 

Minimum number of samples [8, 16, 20] 8 8 8 

Number of trees [10, 100] - 100 100 

To assess the performance of the models, we computed the root mean squared error 

(RMSE) to quantify the inaccuracy of the estimates, the mean absolute error (MAE) to 

quantify the errors between modeled and observed values, and the coefficient of determina-

tion (R2). The RMSE accounts for both the bias and the imprecision of the analysis. We report 

the mean and standard deviation of the assessment statistics from the cross-validations. 

3. Results 

3.1. Comparison of Selected Tree-Based Models 

Among the models, GB exhibited the best performance, as indicated by the highest 

R2 of 0.59 (Figure 2). Following closely, RF demonstrated comparable predictive ability 

with an R2 of 0.57. Lastly, the DT model displayed the weakest performance, with an R2 

of 0.45. Furthermore, the RF and GB models exhibited higher prediction accuracy with 

fewer errors. Moreover, these two models showed a more concentrated distribution of 

estimates around the observations, suggesting increased consistency and reliability in 

their predictions compared with those of the DT model (Figure 2). 

 

Figure 2. Scatter plots of predicted-versus-observed organic matter stocks in soil by using tree-based 

model. Points are field-wide averages for the last three years (2020–early 2023). Dashed line is 1:1. 

The optimal values for the hyperparameters of each model used in the study are 

summarized in Table 3. For the DT model, a maximum depth of six was selected to pre-

vent overfitting caused by the excessive expansion of the tree structure. The minimum 

number of samples per node was set to 12. In the RF model, a maximum depth of 12 and 

a minimum number of eight samples per leaf were chosen. In the GB model, a maximum 

depth of eight and a minimum number of 18 samples per leaf were chosen. Additionally, 

an internal node requires at least eight samples for splitting to manage complexity and 
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minimize overfitting concerns. Our RF and GB models comprised 100 trees to ensure accurate 

results. However, adding more trees beyond this point yielded no further improvements. 

3.2. Feature Overall Importance Analysis 

The global feature explanation obtained from the SHAP method for the three tree-

based models is shown in Figures 3 and 4. We represent the average impact of each vari-

able on soil organic matter based on the global feature importance, which is the mean 

absolute representative SHAP value for that feature over all the given samples (Figure 3). 

Figure 4 illustrates the impact of the features on the model’s predictions. Higher SHAP 

values for precipitation, indicated in red, signify a large and positive average impact on 

predictions, suggesting a higher likelihood of increasing the prediction accuracy due to 

the high mean absolute SHAP values. 

The features are ordered from top to bottom by their predictive importance. In this 

case, we found that all models consistently identified the mean annual precipitation as the 

primary predictor. This was closely trailed by exchangeable K content in the DT and RF 

models (Figure 4). Similarly, the GB model acknowledged exchangeable K as one of the 

top five predictors; however, it attributed relatively less importance to it (Figure 4). 

 

Figure 3. Global feature explanation through the Shapley additive explanation for three tree-based 

models. The range of Shapley values was computed for each explanatory variable to determine its 

impact on soil organic matter content. For abbreviations, refer to Table 1. 

 

Figure 4. Shapley-based feature importance of environmental variables for global explanations of 

soil organic matter content, expressed as mean Shapley values. For abbreviations, refer to Table 1. 

3.3. Feature Partial Dependence Analysis 

Subsequently, we undertook a more in-depth investigation into the impacts of pre-

cipitation and exchangeable K on soil organic matter content. This choice was driven by 
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the results of the DT and RF analyses, which highlighted these variables as being within 

the top two regarding Shapley-based feature importance (Figures 3 and 4). In Figure 5, we 

present PD plots illustrating how the three models portrayed the connections between 

precipitation and organic matter content; all models consistently showed a positive corre-

lation between them. Nonetheless, we identified disparities in the strength and form of 

the relationships across the models. Specifically, the DT model exhibited a distinct, step-

like association centered around a precipitation value of 1400 mm (Figure 5). However, 

both RF and GB models suggested a positive yet nonlinear relationship. 

When scrutinizing the association between soil organic matter content and other var-

iables, all three models concurred on the positive nature of these relationships for precip-

itation, exchangeable K, and available P. Notably, only the DT model revealed a conspic-

uous stepwise linkage, discernible at the values of precipitation (1400 mm), K (1 cmol+ 

kg−1), and available P (600 mg kg−1). 

Two-dimensional PD plots were employed to visually determine the interaction effects 

between precipitation and exchangeable K (Figure 6). All models indicated that organic matter 

is contingent upon both precipitation and K. The observed patterns across all models dis-

played distinct divisions in the patterns along the K contents around the value of 1 cmol+ kg−1 

and along the amount of precipitation of approximately 1400 mm. This observation strongly 

suggests the presence of an interaction effect between these variables. The presentation of PD 

plots focusing on precipitation while conditioning on varying K thresholds effectively demon-

strates this interaction effect (Figure 6). Specifically, as precipitation increased within the 1400–

1700 mm range, the RF model showed a more gradual rise in soil organic matter content from 

30.53 g kg−1 to 33.66 g kg−1 and 36.79 g kg−1, smoothing out the potential anomalies through 

averaging multiple outputs, while the GB model displayed fluctuations, with predicted values 

falling from 7.48 g kg−1 to 4.82 g kg−1 before rising again to 7.48 g kg−1, due to its sequential 

approach that may capture complex patterns as well as anomalies. 

 

Figure 5. Partial dependence plots of soil organic matter content with precipitation (RN), exchange-

able potassium (K), available phosphate (AP), and exchangeable calcium (Ca) (global explanations). 
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Figure 6. Partial dependence of soil organic matter between precipitation (RN) and exchangeable 

potassium (K). The numbers on the plot are the predicted value of soil organic matter in g kg−1. 

In contrast, for DT and RF, the most important variables are precipitation and K, 

while for GB, the most crucial variables are precipitation and P, with K ranking fourth in 

importance, suggesting why there were fluctuations. The GB model recognized exchange-

able K as one of the top five predictors but assigned it relatively lower importance (Figure 

4), indicating a different predictive behavior that might lead to the observed fluctuations. 

In contrast, the DT showed a different type of fluctuation, where the predicted values 

shifted from 30.89 g kg−1 to 37.13 g kg−1 and then settled at 34.01 g kg−1, potentially reflect-

ing overfitting to the training data, resulting in abrupt threshold effects. A discernible 

pattern emerges from these plots, showing that the association with precipitation exhibits 

heightened strength when the level of exchangeable K surpasses 1 cmol+ kg−1. 

4. Discussion 

Tree-based modeling can lead to the reliable prediction of organic matter content in 

soil (Figure 2). Based on the model performance analysis results, we found that GB ex-

plained 59% of the nationwide variation in soil organic matter and yielded the highest 

accuracy among the models evaluated, followed by RF and then DT. The precipitation 

variable consistently emerged as the most influential predictor in all these models under 

Korean conditions. Therefore, the results suggest that the promotion of supplemental ir-

rigation is necessary for sustainable crop production due to changes in precipitation 

[49,50]. Subsequently, we found that soil organic matter content under field crops also 

depended on soil macronutrients, such as K, P, and Ca levels. Since the soil supply of these 

nutrients is often supplemented by fertilizer, this suggests the importance of efficient soil 

fertility management under variable climates. In addition, analyzing the bee swarm sum-

mary plots provided a more comprehensive understanding of how other variables influ-

enced the prediction (Figures 3 and 4). Here, GB uniquely identified precipitation and 

available P as the most influential variables, unlike DT and RF, which prioritized precipi-

tation and K. Such differences in captured feature importance in complex data might ac-

count for improved predictive accuracy. All models revealed positive relationships be-

tween macronutrients and soil organic matter (Figure 5), but the intensity and shape of 

these relationships varied among the models. For example, the two-dimensional PD plots 

illustrated the divergent interaction effects of precipitation and exchangeable K (Figure 

6). The findings suggested that the relationship with organic matter is more robust when 

exchangeable K exceeds 1 cmol+ kg−1 and annual precipitation surpasses 1400 mm. Thus, 

organic matter content is contingent upon both precipitation and K on a large scale, sug-

gesting specific field conditions where practices effectively increase soil organic matter 
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[51]. This assessment comprehensively explains the varying importance levels attributed 

to main predictors using distinct modeling approaches. However, the impact of these fea-

tures on the model is still not fully understood [52]. 

Only the DT model revealed a conspicuous stepwise linkage, discernible at specific 

values of precipitation (1400 mm), available P (600 mg kg−1), and K (1 cmol+ kg−1) (Figure 

5). The DT model tended to create distinct, threshold-based splits in the data. In contrast, 

the RF and GB models captured smoother and more nonlinear relationships that offer a 

comprehensive understanding of how variables incrementally affect soil organic matter 

in a more detailed and integrated manner. This PD analysis underscores the nuances in 

how different models represent the intricate interplay between soil variables and organic 

matter. This insight provides valuable clarity regarding these two variables’ complex in-

terplay and collective impact on soil organic matter. Up to this point, our focus was on 

elucidating the overarching behavior of global models, aiming to comprehend the insights 

derived from the data. However, this approach falls short in explaining the nuances of 

local model behavior, a critical aspect in discerning the factors deemed important by the 

models when predicting values for specific instances. We also employed the SHAP 

method to assess the importance of variables at a specific local site. The results indicated 

that pH was more important than precipitation, identified as the most influential factor in 

controlling global model behavior. Therefore, future research is needed to gain a more 

general understanding of local factors and site-specific targeting for more efficient organic 

matter management. 

Tree-based modeling, using Shapley values, can lead to the identification of vital en-

vironmental factors that affect organic matter content nationwide. This knowledge is es-

sential for managing the soil’s health and the sustainability of cropping systems and for 

fine-tuning fertilizer and water use management. Moreover, when addressing agricul-

tural challenges, especially with adopting alternative production systems [53,54], the re-

sults can support the selection of a farm location to improve not only soil organic matter 

and fertility conditions but also the marketability and profitability of crop harvests. For 

example, in Kenya, agricultural practices include the use of fertilizers, pesticides, and ir-

rigation to enhance soil organic matter, potentially producing premium-market-priced or-

ganic products [55]. When premium prices are available for organic produce, the organic 

system yields significantly higher net returns than conventionally managed systems, 

achieving a gross margin that is 1.3 to 4.1 times higher. Additionally, intercropping vari-

ous crops enhanced overall productivity and profitability [55]. Thus, these results provide 

insights into the economic implications of choosing an alternative farming system based 

on soil organic matter levels and related conditions. In enhancing soil organic matter con-

tent, several viable management approaches may offer additional means to boosting ag-

ricultural productivity, including soil amendment; yet, the economic evaluation of each 

of these methods has been limited, and a gap exists in terms of the comprehensive evalu-

ation of the socioeconomic impacts, necessitating further research in this area. Petersen 

and Hoyle [56] modeled the benefits of soil organic carbon, mainly focusing on the in-

creased availability of nitrogen and increased plant-available water-holding capacity 

(PAWC). The value of soil organic carbon is estimated to be between AUD 7.1 and 8.7 

Mg−1 ha−1 annually. This valuation includes approximately 75% for carbon sequestration 

and smaller proportions for productivity improvements. The enhancements in PAWC 

(~5%) and nitrogen replacement value (~20%) contribute to higher agricultural productiv-

ity. An increased PAWC allows for increased water retention in the soil, and increased 

nitrogen availability supports healthier plant growth. Both soil quality and profit result in 

higher-quality land having a higher market value, providing an additional incentive to 

adopt a soil-conserving crop production system. 

Mikhailova et al. [57] evaluated the monetary value of soil organic carbon stocks in 

the U.S., considering various factors such as soil order, depth, and geographic region. 

They estimated the total value of soil organic carbon storage to range from USD 4.64 tril-

lion to USD 23.1 trillion. This valuation highlights the critical role of its management in 
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delivering environmental and economic benefits. Similarly, Dube et al. [58] offered a de-

tailed financial analysis of ecosystem services from healthy soils in Vermont, highlighting 

benefits such as increased carbon storage (USD 19 acre−1 year−1 in climate mitigation), re-

duced phosphorus losses (USD 8 acre−1 year−1 in water quality), erosion control (USD 2 

acre−1 year−1 in waterway damage reduction), and enhanced water retention (USD 2 acre−1 

year−1 in flood damage reduction), cumulatively valued at over USD 25 million annually. 

This emphasizes the economic importance of soil health investment and preservation. 

Hacisalihoglu et al. [59] used the “market value of soil” method to calculate the cost of soil 

erosion, considering nutrient loss and fertilizer market prices. They estimated an average 

economic loss of USD 59.54 per hectare per year in pasture lands and USD 102.36 in agri-

cultural lands in Turkey due to soil erosion. This erosion, which tends to remove the nu-

trient- and organic-matter-rich topsoil, diminishes soil fertility, provides nutrients, sus-

tains structure and moisture, and affects economic values by depleting a crucial soil com-

ponent. Additionally, Kane et al. [60] found that counties with higher soil organic matter 

levels had increased yields, lower yield losses, and lower crop insurance payout rates. A 

1% increase in soil organic matter corresponded to a yield boost of 2.2 ± 0.33 Mg ha−1 and 

a notable reduction of 36 ± 4.76% in the average proportion of liabilities paid. Sparling et 

al. [61] quantified the monetary value of soil organic matter in enhancing crop production 

in New Zealand soils. This value was determined by estimating the worth of dairy milk 

solids, derived from a computer simulation modeling the yield of dry pasture matter and 

the accumulation of organic matter. The findings revealed that soils with lower organic 

matter levels yielded between 8.5 and 47.7 kg fewer milk solids per hectare annually, 

translating to a financial impact of NZD 27 to NZD 150 per hectare. Over recovery periods 

of 36, 90, and 125 years, the cumulative loss per hectare at Pukekohe, due to reduced 

productivity, was estimated to be NZD 1239 with a 3.5% discount factor and NZD 772 

with a 10% discount. 

Finally, Fan et al. [62] showed that field practices with varying organic matter inputs 

could affect the total ecosystem service valuation in organic cereal crop production sys-

tems. This impact likely stems from altered soil properties due to long-term diverse field 

management. The authors estimated the economic value of ES in these systems under dif-

ferent management strategies, finding that the economic values ranged from USD 1492 to 

USD 1969 per hectare per year. Reyes and Elias [63] demonstrated that drought and excess 

precipitation were the primary causes of crop losses in the U.S. from 2001 to 2016, leading 

to over USD 440 billion in economic damage. These studies emphasize the importance of 

understanding and predicting environmental factors in agriculture. Therefore, tree-based 

modeling for predicting organic matter in soil and identifying key factors can help im-

prove soil health and contribute to more sustainable and profitable agricultural practices. 

5. Conclusions 

We introduced the SHAP method to address the lack of interpretability of ML mod-

eling to gain more insight into large-scale agricultural management. Specifically, we se-

lected three tree-based models (decision tree, random forest, and gradient boosting) and 

focused on the global factors contributing to the soil organic matter content across the 

fields. We found that tree-based explainable ML enables the reliable prediction of the or-

ganic matter content in soil and identifies vital environmental factors that are relevant to 

organic matter management. Soil organic matter, as an example, can provide multiple 

benefits as a valuable resource but represents challenges commonly faced in agriculture. 

This new knowledge is essential but still limited in terms of managing soil health and the 

sustainability of cropping systems and fine-tuning fertilizer and water use management. 

Therefore, our approaches can be applied to the sustainable management of other agricul-

tural resources at a large scale. We further examined the potential interactions between 

selected variables within the top four as determined by the Shapley-based feature im-

portance. Based on our results, we need to further consider incorporating deep learning 

into our analytical framework to provide considerable benefit. Deep learning has 
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demonstrated remarkable capabilities in handling complex data patterns and may pro-

vide enhanced insights when applied to agricultural science. For future studies, our prior 

emphasis on overall feature importance analysis should complement the uncertain con-

tribution of local factors. Whereas overall feature importance analysis provides valuable 

insights at the global level, there is the need for local analysis, which allows for a more 

granular understanding of how specific features impact the system under investigation. 

This perspective can lead to more precise and actionable recommendations for resource 

management. Lastly, employing feature elimination represents a meaningful avenue for 

analysis. This approach can aid with dimensionality reduction and identifying critical fea-

tures, potentially simplifying the model while preserving its predictive power. Such 

streamlining can enhance model interpretability and efficiency, which are paramount in 

agricultural science. 
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