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We investigate a family of nonlinear partial differential equations which are singularly perturbed in a complex parameter € and
singular in a complex time variable t at the origin. These equations combine differential operators of Fuchsian type in time ¢
and space derivatives on horizontal strips in the complex plane with a nonlocal operator acting on the parameter € known as
the formal monodromy around 0. Their coefficients and forcing terms comprise polynomial and logarithmic-type functions in
time and are bounded holomorphic in space. A set of logarithmic-type solutions are shaped by means of Laplace transforms
relatively to t and e and Fourier integrals in space. Furthermore, a formal logarithmic-type solution is modeled which
represents the common asymptotic expansion of the Gevrey type of the genuine solutions with respect to € on bounded sectors

at the origin.

1. Introduction

In this paper, we examine a family of singularly perturbed
nonlinear partial differential equations modeled as

Q(0,)u(t, z, €)
= (et)® (13, Ry(2,)u(t, 2, )
+P(t,2, € 10,,0,)u(t, z, €) + f(t, 2, €)

+ H(log (et).z. e {P(@u(tz. )}, {Q @ Ivu(t 2 e)}jd),

(1)

for vanishing initial data u(0,z, €) =0. The constants d,,
8p>1 are natural numbers and Q(X), Rp(X), and P;(X)
for j € J; and Q;(X) for j € J,, where J; and J, are two finite
subsets of the positive integers IN*, which stand for polyno-
mials with complex coefficients. The linear differential oper-
ator P(t,z, €,10,, 0,) depends analytically in a perturbation
parameter € on a disc D, with radius €, >0 centered at 0
and relies polynomially in the complex time t and holomor-
phically with respect to the space variable z on a horizontal
strip framed as Hg={z € C/|Im (z)| < B} in C, for some

given width 2f3 > 0. The forcing term f (¢, z, €) is a map of
the logarithmic type represented as a sum

f(tze)=fi(tz €) +£,(t 2 €) log (et), (2)

where f;(t, 2z, €) and j = 1, 2 are polynomials in ¢, with holo-
morphic coefficients in z on Hy and in € on D, . The map
H(vy, 2, €, {Vj}jeh’ {wj}th) is a specific polynomial of
degree at most 2 in its arguments vy, {v;} _ ,and {w;} _,

Jeh 12jel
which relies holomorphically in z on H 8 and in € on D,,.
The precise shape of H is framed in (36).

The main objective of the work (depicted in Theorem 24
of Subsection 8.2) is the construction of a set of logarithmic-
type holomorphic solutions to the nonlinear Equation (1),
and the analysis of their asymptotic power series expansions
in the small parameter € on sectors in C* centered at 0.

The nonlinear term H of (1) involves not only powers
of P;(0,)u(t,z, €) and j€J;, but also powers of derivatives
of yiu(t,z, €) where y: is a nonlocal operator acting on
u(t, z, €) which represents the so-called monodromy oper-
ator around 0 relatively to &. In the literature, the concept
of formal monodromy around a point a in C appears in
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the construction of formal fundamental solutions to linear
systems of differential equations with a so-called irregular
singularity at the given point a, known as the Levelt-
Turrittin theorem, see [1]. It asserts that a differential sys-
tem of the form

XY (x) = A(x)Y (x), (3)

for analytic coefficient matrix A(x) € M, (C){x} near 0 with
n>1, for an integer r > 2, with an irregular singularity at 0,
possesses a formal fundamental solution with the shape

Y(x) = P(x"*)x" exp (¢(x")), (4)

for some well-chosen integer e > 1, where P(y) € GL,(C[[y]]
[1/y]) is a formal meromorphic invertible matrix, ¢(x'¢) is
a diagonal matrix whose coeflicients are polynomials in
x~¢ with complex coefficients and C € M, (C) is related to
the so-called formal monodromy matrix M € GL,(C) by
the formula M = exp (271iC). It is worth remarking that this
formal monodromy matrix extends in the formal settings
the so-called monodromy matrix that appears in the repre-
sentation of fundamental matrix solutions to systems (3)
with a regular singularity of the form

Y(x) = H(x)x", ()

where H is an invertible matrix with meromorphic coeffi-
cients near 0, for a matrix E giving rise to the monodromy
matrix N € GL,,(C) by means of N = exp (27iE). The matrix
N is obtained as an analytic continuation of the fundamental
matrix solution Y(x) along a simple loop y going counter-
clockwise around the origin 0 with base point x by means
of the identity

Y Y(x)=Y(x)N, (6)

where y*Y denotes the analytic continuation along y, see [2].
In the same manner as the analytic continuation operator y*
acting on analytic functions, a formal monodromy operator
y* acting on various spaces and rings (such as the so-called
Picard-Vessiot rings) through the formulas y*(z%) = 2™ z*
for complex numbers A € C and y*(I) =1+ 2im where I is
the symbol for the Log function has been introduced and
studied from an abstract and algebraic point of view in the
textbook [1].

In our context, the action of the formal monodromy y:
on u(t,z,€) can be reformulated as a shift mapping on
angles 0+ 0+ 2m in polar coordinates by means of the
change of functions

u(t,z,€)=v(t,z,1,0), (7)

for € = reV™'?, with radius r > 0 and angle 6 € R, through the
formula

you(t,z, €) =v(t, z, 1,0 + 2m). (8)
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In this way, the main Equation (1) can be recast as some
nonlinear mixed type partial difference-differential equation
for the map v(¢, z, 7, 8). This class of equations has become
the object of many investigations these last years and pos-
sesses numerous applications to engineering problems and
biology, see for instance the introductive book [3].

In the context of singularly perturbed differential equa-
tions, most of the papers in the literature are devoted to
advanced or delayed equations of the form

€0, x(t, €) = f(t, €, x(t, €), x(t £ 5, €)), 9)

for some vector-valued function f, where € stands for a small
positive parameter and where & >0 is some fixed constant.
Some abstract convergence results and historical back-
ground can be found in [4]. The construction of solutions
x(t, €) having asymptotic expansions of the form

lﬁmé+&@q, (10)

n

x(t, €)=

I

Il
o

with error-bound estimates for the remainder R, n>1, is
extensively discussed for instance in the recent textbook
[5] for the linear setting and in the paper [6] for some non-
linear cases.

In the particular situation of nonlinear difference equa-
tions in the complex domain with the shape

¥z +1)=F(zy(2)), (11)

for C" — valued analytic maps F in a neighborhood of (oo,
¥,) for some y, € C", we notice that important results con-
cerning asymptotic features of their solutions as z tends to
infinity have been obtained by several authors, see [7-9].

In the framework of singularly perturbed partial differ-
ential equations, we refer to some interesting works in the
case involving delay operators such as [10-13] or entailing
nonlinearities with nonlocal operators of integral type
related to the famous Schrédinger equation in physics such
as [14-17].

We highlight our premise that the main Equation (1)
counts in powers of the basic differential operator td, which
is labelled of Fuchsian type. We refer to [18] for many sharp
results about Fuchsian ordinary and partial differential equa-
tions. However, under the sufficient conditions required on
(1) listed in Subsection 2.2, it pans out that (1) will be
reduced throughout the work to a coupling of two partial
differential equations, stated in (81) and (82), that comprise
only powers of the basic differential operator u}flﬂaul, for a
well-chosen integer k, > 1, of irregular type in a complex
variable u,. The definition of irregular-type differential oper-
ators is given in the classical textbook [19] in the ordinary
differential equation settings displayed in (3) and in the
work [20] in the framework of partial differential equations.

In the present contribution, we cook up a set of holo-
morphic solutions to (1) shaped as logarithmic-type maps
that involve Fourier/Laplace transforms. Namely, under the
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list of requirements which mould (1) and detailed in Subsec-

tion 2.3, one can outline

(i) A set of properly selected bounded open sectors
{e } ., for some finite set I; CIN and J centered

at 0

(i) A family of holomorphic functions u,(t, z, €), p €I,
which conforms to solutions of (1) on the domain
I x Hpgx €,. Each solution u,, p €1, is expressed

as a sum

uy(t, 2, €) =uy (1, 2, €) + Uy, (1, 2, €) log (et), (12)

where each component u]-’p(t, z,€), j=1,2, is represented as
a Fourier/Laplace transform

k] J J+OO
- w;, (T,m, €
(27_[)1/2 1) ;,dp( )
TNk g, dT
- exp <— (E) )e 7dm,

where the commonly named Borel/Fourier map w;

uj)p(t, z, €)=

(13)

d, (1, m,
€) stands for a function

(i) Which is analytic near 7=0

(ii) Being (at most) of exponential growth of some
order k; > 1 on an infinite sector containing the half
line Ly = [0,+00)e” " with respect to 7 for suitable
direction d, € R

(iii) Continuous and subjected to an exponential decay
with respect to m on R

with analytic dependence in ¢ on the punctured disc D \

{0}
Furthermore, owing to their Laplace integral structure,
the components {uj,p}PEI1 own asymptotic expansions of

Gevrey type in the parameter e. Indeed, for given j=1,2,
all the partial functions € — u;,(t, z, €), p € I, share a com-
mon asymptotic formal power series expansion

)= G,(tz)— (14)

n=0

on €,, with bounded holomorphic coefficients G,,; on I~ x
Hy. These asymptotic expansions turn out to be of Gevrey
order 1/k; on every sector €,, meaning that constants K, ;,

M, ;>0 can be singled out for which the error bounds
oz, € Z G,;(tz) n'

N+1 N+1 N+1
<K, ;(M,)) F<1+ k, )|€| >

(15)

hold for all integers N > 0, all € € €,, uniformly in t € 7 and
z € Hp. At last, we verify that the formal logarithmic-type
expression

G(e) =G (€) + By(e) log (et), (16)

itself obeys the main Equation (1).
Throughout the proof of our main result, we show that
the components u;,(t, z, €), j = 1,2 of the built-up solutions
L P €1y, to (1) turn out to be embedded in a larger family
of maps u;,(t,z, €), j=1,2, for all integers 0<p <¢ -1 for
some 1nteger ¢ >2. These maps are bounded holomorphic

on products 7 x Hy X €, where € ={€,} _ e , stands for

a set of bounded sectors, entailing €, for p €I, which rep-
resents a good covering in C* (see Definition 18). Each
map u;,(t,z, €), j=1,2, is modeled as a rescaled version
of a bounded holomorphic map (u;,z)— Uj,dp(ul,z, €)

through

ujp(tz, €)= Uyy (et 2, €), (17)

on domains Upa, xHp for any fixed e €D, \ {0}, where
Ul,dp are bounded sectors bisected by the direction dp,

depicted in Definition 19 of the work. The set of maps

{U, dp}o is shown to solve a specific nonlinear partial
<p=¢

differential equation with coeflicients that are polynomial in
uy, holomorphic with respect to € on D, and relatively to z

on Hp displayed in (66). The set of maps {U1 d, }0 e

forms a particular nonlinear partial differential equation
stated in (67) whose coefficients and forcing term bring in
not only polynomials in #; and holomorphic dependence
relatively to € on D, and to z on Hy but also polynomial

reliance on the maps {U
ps { 2,(11,}0§ch_1

COH—

and their derivatives with
respect to u; and z. In this sense, the maps {U dP}0<p<c .
j=1,2, solve a coupling of nonlinear partial differential
equations. The asymptotic property for the components
uj,(t,z,€), j=1,2, of u,(t,z, €) stems from sharp exponen-
tial bound estimates for the differences of neighboring maps
Ujp.1 — Uj, reached in Proposition 21, for which a classical

statement for the existence of asymptotic expansions of the
Gevrey type can be applied, see Subsection 8.1.

In this work, as mentioned above, we restrict ourselves
to quadratic nonlinearities. Besides, they are chosen in a
way to respect the natural triangular structure of the sys-
tems of partial differential equations satisfied by the com-
ponents u;,(t,z,€), j=1,2 stated in (256) and (257),
which stems from the linear part of (1). It means that its
resolution is reduced to the study of a coupling of two
equations which comprise one single equation satisfied
by u,,(t,z,€) and a second equation for u, ,(t,z, €) with
coefficients and forcing term that involve u, ,(t, z €).



From a computational or numerical viewpoint, two
cogent merits of our approach consist in the facts that

(i) The coefficients G,,;(t,z) and n>0 of the formal
expansions @j(e), j=1,2 satisfy simple and explicit
recursion relations (stated in (262) and (270))

(i) The well-known least-term truncation method
applies in our context for the analytic components
u;j, of our solutions u, to (1) since the expansions

involved (15) are of Gevrey type, leading to error

bounds with exponential accuracy. Namely, one
can find constants L;, C;, M; >0, j=1,2, such that

the piecewise holomorphic map

satisfies

~ M;
uj,P(t,z,e)—Gj)L](e)’SCjexp - B , (19)

for all € € €, uniformly in €I and z € Hp. For a

reference about this truncation method, we quote
the textbook [21], Subsection 4.5.

The major drawback of our proposal is that strong regu-

larity (namely holomorphy) is assumed on the solutions u,

we build up and on the coefficients and forcing term of
our main Equation (1). Besides, we need to work with a
complex parameter € € C*. Most of the recent studies in
the domain of singularly perturbed advanced-delay differen-
tial or partial differential equations are obtained under
weaker requirements and involve a positive real parameter
€>0. For an overview on recent numerical approaches
developed for problems both singularly perturbed and
advanced-delay and for statements on their error bounds,
we mention [22, 23].

The approach developed in this work can be extended to
the construction of both formal and genuine holomorphic
solutions to comparable problems as (1) with higher-order
logarithmic terms

n
tz, Z tz,

Jlog (et)y,  (20)

for n>2, for suitable nonlinear terms and forcing terms
chosen properly in a similar way as the ones in the present
work. We focus on the complete description for the case
n=1 for the sake of simplicity in order to give the readers
a clear idea of the main purpose of the study and avoiding
cumbersome notations and computations.
Logarithmic-type solutions have been extensively stud-
ied in the framework of nonlinear partial differential equa-
tions with so-called Fuchsian type and described in the
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Chapter 8 of the textbook by Gérard and Tahara [18].
Namely, these authors consider nonlinear partial differential
equations with the shape

(t3,)"u(t, x) = F(t, x, {(tat)jafju(t, x)}u’a)dm), (21)

where I, ={(j,a) e NxN"/j+|a|<m,j<m} for some
integers m, n > 1, for analytic maps F(t, x, Z) near the origin
in C x C" x €4 ) Under conditions of nonresonance of
the characteristic exponents at x =0 combined with some
Poincaré condition on the characteristic polynomial associ-
ated to (21), they have described the holomorphic solutions
to (21) with at most polynomial growth in ¢ on bounded
sectors centered at 0, for x near the origin in C" as the
maps written in the form of a convergent logarithmic type
expression

U
i+ZJIP1(x)
Z ¢i,j,k(x)t =

(1)oK) €]

(log (1))",
(22)

for J,=
where

{(i, j, k) € N x N# x N/i +2mlj| > k+2m, |j| > 1}

(i) u, stands for convergent power series near the
origin

(ii) p;(x) and 1 <1<y are the characteristic exponents
with positive real parts at x=0

(iii) ;4 (x) are holomorphic coefficients near x =0

In the case of so-called equations of irregular type or non-
Fuchsian type, in which our present work falls, fewer results
are known and represent a favourable breeding ground for
upcoming research. Nonetheless, in that trend, we mention
the remarkable recent general result [24] obtained by Tahara.
This work extends a paper by Yamazawa which treats linear
partial differential equations, see [25]. Therein, the author
examines nonlinear partial differential equations

F(t, %, {(ta,)fa;‘u(t, x)}(m)d) =0, (23)

with L, ={(j,a) e N x NX/j+|a| <m}, for some integers
m, K > 1, which possess a formal series (which is divergent
in the generic situation)

%) = (1), (24)

nx1

solution where each term u,, n > 1, is analytic with respect to
t on some appropriate bounded sector S centered at 0 in C
and holomorphic near 0 relatively to x on some disc Dy in
CX. In general, these expressions u, might involve combina-
tions of functions of the form ) for holomorphic maps A,
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powers of ¢ and log (¢), and analytic functions with respect to
x on Dy. The author introduced a so-called Newton polygon
associated to Equation (23) along the formal solution #(t, x).
In the case this Newton polygon possesses p > 1 slopes and
under some additional technical requirements, the author
builds up a new formal solution

W(t,x) = Y w,(tx), (25)

n=1
to (23) which is subjected to the next two features
(i) The formal series # and @ are asymptotically equiva-

lent in the sense that for any A > 0, there exists N > 1,
such that

sup|(19,)'9; (@i — wy) | < Clt

x€Dy

4, (26)

for all t€S, j+ |a] <m, some constant C >0, any N >N,
where 71 and @, denote the partial sums of the N first
terms of # and @.

The formal series @ is multisummable on S with respect
to t, uniformly in x on Dy, in a sense that enhances the
classical multisummability process described in [19] and
gives rise to a genuine holomorphic solution w(t, x) of (23)
on S x Dy crafted as iterated analytic acceleration operators
and Laplace integral of some Borel transform of @.

Thereupon, it turns out that w(#, x) admits #(¢, x) as an
asymptotic expansion as t tends to 0 on S in the sense that
for any A >0, there exists N, > 1 such that

sup [w(t, x) — Ty (£ x)| < C|t[*, (27)

x€Dp

for all t € S, some constant C > 0, any N > N,,.

At last, in the linear setting, some general results reach-
ing beyond the structure of logarithmic-type solutions have
been achieved. Namely, for Cauchy problems

a(x,D)u=v,D}u, =0, 0<h<m, (28)

involving linear differential operators a(x, D) of order m > 1

with holomorphic coefficients in x = (x;) _ in C"*!, exis-
J70<j<n

tence and uniqueness results for so-called ramified solutions
around certain characteristic hypersurfaces K in cHl,
provided that v is ramified around K, have been obtained
by several authors, see [26-28].

2. Layout of the Main Equation

2.1. Formal Monodromy around the Origin. In this subsec-
tion, we define the notion of a formal monodromy operator
around the origin acting on different classes of objects.
Following the description of abstract formal monodromy
operator as stated in Subsection 3.2 of [1], we first provide
a definition of formal monodromy acting on logarithmic

type expressions involving formal power series with coeffi-
cients in Banach spaces.

Definition 1. Let I be a bounded open sector centered at 0
in C* and let

be a strip with width 28’ >0. We denote 0,(T xHp)
the Banach space of bounded holomorphic functions on
T X Hp equipped with the sup norm and we set 0,(J x

H_ )[[€]] as the vector space of all formal series

a(t,z, €) = Zan(t, z)€", (30)

n=0

with coefficients belonging to 0,(7 x Hyr). Let #(t, 2, €)
and #,(t, z, €) be two elements of 0,(T x Hy')|[€]]; we set
the formal logarithmic type expression

u(t,z, €) =1, (t, 2, €) + Uy (1, 2, €) log (et), (31)

where log (x) stands for the principal value of the logarithm
of a complex number x € C*.

We define the formal monodromy operator around 0
relatively to €, denoted y? as acting on # by means of

Yiu(t, z, €) =1, (t, 2, €) + 2V =11, (t, 2, €) (32)
+1,(t, 2, €) log (et).

The next definition of formal monodromy extends the
concept of a monodromy operator around 0 acting on
analytic functions on a punctured neighborhood of 0 as
analytic continuation along a simple loop around the origin
as described in [2], Section 16.

Definition 2. Let 7, € be bounded open sectors centered at 0
in C and Hy be a strip defined by (29). We set 0,(T x

Hg x €) as the Banach space of bounded holomorphic func-
tions on I x Hy x € endowed with the sup norm. Let u,
(t:z,€),uy(t,z,€) be two elements of 0,(T xHy xe).
We set

u(t,z, €) =u,(t,z, €) + u,(t, z, €) log (et), (33)

that represents a holomorphic function for all (t,z,¢€) €
V2 X Hp x € with et ¢ (—00,0]. The formal monodromy

operator around O relatively to € denoted y; acts on u
through the formula

you(t,z, €) = uy(t, 2, €) + 2nvV-1u,(t, 2, €)

+u,(t, z, €) log (et), (34)



Notice that if u;, and u, are holomorphic on a full-
punctured disc centered at 0 relatively to e, the formal
monodromy y: given above coincides with the analytic
continuation along a simple loop skirting counterclockwise
the origin 0 with base point e.

We observe that each components 7,7, of (31) (resp. u,
u, of (33)) can be expressed by means of # and y# (resp. u
and y;u) through the formulas

i,(t,z,€) = ﬁ (y: —id)i(t, z, €),
1
At)) =At)) - *_.dAt), 1 t,
(6.2 €) = (62, ) = |- (v ~ )62, ) | Iog (et
(35)
(2 €) = —— (v~ id)u(t,z,€)
u ,Z,€)= —1 usz, €),
2 2vV-1nm Ye
1
t) > = t) > - *_’d t, > 1 t,
(6% €) =u(t 2, = [ (v ~idu(t 2, )| Iog (et

(36)

where id represents the identity operator acting on 0,(J x
Hpg )[[e]] in (35) and on O}(T x Hy x €) in (36).

2.2. Outline of the Main Problem. The principal problem
under study in this work is shaped as follows:

Q(0;)u(t,z €)
= (et)™(10,)°Rp(0.)u(t, 2, €)
+ Dzl eM1tha)(z, €)(10,)" R,(0,)u(t, 2, €)

=1
+f(t, 2z, €) + ¢ (2 €)

1 * .
. [2\/:71 (y: —id)u(t, z, €)| log (et) + b, (2, €)
. [u(t, z,€)— 2\/1—_171 (y: —id)u(t, z, €) | log (et)]
+b,(z, €) 2\/1__17_[ (y: —id)u(t, z, €)
#0,0,Q4(00) [ (vt ~ (12 ¢
< Q@) (2 -t 2,0
x log (et) + cp p, P (9,)

1

: [u(t, z€) - [2 o (e, e)] log (et)]

<Pa(20) | (- id)u(e 2 )

Abstract and Applied Analysis

1

2\/371
- log (et)] X P,(0,) {u(t, zZ, €)

- L \/1__171 (v —id)u(t, 2 e)] log (et)]
., Pa(02) [ (7 - dute 2|
(y: —id)u(t, z, e)],

o Po(20) 0,2, 6) = | (i)t )

1

2V -1

X P6(az) |:
(37)
for vanishing initial data u(0, z, €) = 0. On the way in reach-

ing our main result Theorem 24, we need to impose a list of
constraints on the building blocks of (37). Namely,

(i) The numbers D>2, dp,8p>1, and A, d,0,>1,
1<I<D-1 are integers that are subjected to the

next restrictions

(1) We assume the existence of an integer k; >1
with

dp =Sk, (38)

(2) The inequalities
d; > 8k, (39)

hold forall 1<I<D-1.
(3) The bounds

k,Sp—12k,3,, (40)

are asked forall 1<I<D-1.

(4) The lower estimates
A= 1+ 6k, (41)
are mandatory for all 1 </<D-1.

(ii) The constants ¢ ., PP, and j=1,3,5 are non-

vanishing complex numbers that are chosen close
enough to 0 (the precise constraints that these num-
bers are asked to obey are stated later on in the
work, see Sections 5 and 6.

(iii) The maps Q(X),R/(X), I=1,---,D, and Q,(X),
Q,(X) along with P;(X), 1<j<6 are polynomials
with complex coefficients. We require that

deg (R;) < deg (Rp), (42)
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for 1<I<D-1 and

deg (Rp) > deg (Q,),
deg (Rp) > deg (Qu),  deg (Rp) > deg (P,),

(43)

for 1 <j<6. Furthermore, we require the existence
of an unbounded sectorial annulus

SQ,RD = {

(44)

with bisecting direction d, € R, aperture 7 >0,
and inner radius rop >0 (prescribed later in the
work), for which the next inclusion

af i)t ()

meR

CSqr,  (45)

occurs.

The forcing term f (¢, z, €) is built up in the next manner.
In its construction, we make use of Banach spaces that have
been introduced in [29] and brought into play in several
works by the author.

Definition 3. Let 3, u € R. We set E(g ) as the vector space of
continuous functions / : R — C such that

I0m) 5 =5up (1 + ) exp (Bl hCm), ()
is finite. The space Eg,) endowed with the norm ||.[/(z,,
becomes a Banach space.

The forcing term is written as a sum

fbm€)=fi(bz ) +f(bz€) log (ef),  (47)

where the components f,, f, are set up as follows. Let ],
J, € IN* be finite subsets of the positive integers. For [=1,
2 and j; € J;, we denote m+— F,; (m, €) maps that

(i) Appertain to the Banach space Eg
and

4 for some £>0

p>deg (R)) + 1, u>max (deg (Q,) + 1,deg (Q,) + 1),

u> max{deg ( ) + 1}

1<j<6

(48)

forall1<l<D-1.

(2) - dQ,RD| <7qR, }’

(i) Rely analytically on e on some disc D, with radius
€y > 0 for which constants F;; . >0 exist such that

su g»m,eH <F. _. 49
eeDF:OH i (- €) (Ba) Mo 49)

For I=1,2, let us introduce the polynomials in the
variable T with coefficients in E( )

)= ) F(me (50)

i€l

Fi(1, m, €)

and set the integral representations

k +00
F|(T,z €)= WL J F(t,m, €)
dyp v

o (e

where L; = [0,+00)eY " is a half line in direction d, € R
that relies on T under the constraint cos (k,(d, —arg (T)))
> 0. We observe that F; and F, are polynomials in T and
can be expanded in the form

> ( >Tfl (52)

(51)

(T.z€)= Y F;(z¢

where I'(x) stands for the Gamma function, for coefficients
given by the inverse Fourier integral expressions

1 +00
Fl’jl (Z) 6) = 72 J gl’jl(m, €)eﬁzmdm, (53)
—00

(2m)
that are bounded holomorphic on the product Hy x D, , for
any given 0 < 8’ < 8, where H p is the horizontal strip given
by (29), for I =1, 2. Eventually, we set the components

fi(t.z, €) = Fi(et, z, €), (54)

of (47) as a time-rescaled version of F), for [ =1, 2, that rep-
resent bounded holomorphic functions on Cx Hg x D, .

The coefficients a,(z, €), 1 <I<D -1, ¢,(z, €), and b(z,
€), j=1,2 are manufactured as follows. Let m +— A;(m, €),
1<I<D-1, m— Ci(m,e), and m— B;(m, €), j=1,2, be
maps that

(i) Belong to the Banach space Eg,), for the real num-
bers 5> 0 and y > 1 given above



(i) That depend analytically in € on D, and for which
positive constants A;, 1</<D-1,C,,and B,,
j=1,2 can be singled out with

sup [[A;(m €)] g, < A,
sup [[Cy(m €)| 5, < Cre,
€

€0

sup HB m, € H

D - ]50
(55)
We set
1 +00 \/_
1
a(z €)= (2n)”? Ay(m, )" dm,
—-00
1 +00 i
—lzm
¢ (z €)= W C,(m, €)e dm, (56)
—00
1 +00 \/_
bz €)= B.(m, €)e" " dm,
]( ) (27_[)1/2 o ]( )

for1<I<D-1,j=1,2.Themapsa, 1 <I<D-1,¢,andb;
j= 1,2 represent bounded holomorphic maps on the product
Hpg x D, , for any prescribed 0 < B’ <B.

3. Couplings of Related Initial Value Problems

3.1. A Coupling of Associated Partial Differential Equations.
We seek for solutions u(t, z, €) to our main Equation (37)
in the form

u(t,z, €)=

for some expression U(u,, u,, z, €) in the four independent
variables u,, u,, z, e. We furthermore assume that U is an
affine map relatively to u, meaning that U is the polynomial
of degree at most one in u,.

We first disclose an equation fulfilled by U(u,, u,, z, €)
provided that u(t, z, €) solves (37) given by (62). According
to the usual chain rule applied at a formal level at this stage
of the work, we first observe that

Ul(et,log (et), z, €), (57)

t0,u(t, z, €) = t[0,(et)] (9, U) (et, log (et), z, €)
[ ((log (€1))](9,,U) (et,log (et), z, €)
= [(w0,, +0,,)U](et,log (et), z €).
(58)
Besides, owing to the assumption that U is affine in u,,
we can decompose U in the form

U(uy, ty, 2, €) = U\ (1, 2, €) + Uy (), 2, €) Uy, (59)

Abstract and Applied Analysis

for some expressions U;(u;,z, €), j= 1, 2. If one sets

uj(t, z, €) =

for j=1,2, through (57), one arrives at the next expansion
of u,

U,(et,z €), (60)

u(t,z, €)=

As a result, in view of formulas (35) and (36) together
with identity (58) and definitions (54) and (60), we check
that u(t, z, €) formally solves Equation (37) if the expres-
sion U(u,, u,,z, €) is subjected to the next equation

u,(t,z, €) + uy(t, z, €) log (et). (61)

Q(0,)U(u1, u, 2, €)
= uy” (1,9, +9,,.)*"Rp(2,)U(uy, . 2, €)
+ Dzl einflia (2, €) (w0, + auz)‘isl(aZ) U(uy, Uy, 2, €)
=1
+ Fi(uy,z, €) + Fy(uy, 2, €)u, + ¢ (2, €)U, (uy, 2, €)u,
bi(z,€)U,(uy,2, €) + by(z, €)U, (1, 2, €)
+¢0,q,[Q1(9;) U, (11,2, €)] X [Q,(0,) U, (141, 2, €) ],
+¢p p,[P1(0,)U; (1), 2, €)] X [P,(0,) U, (uy, 2, €)]
+¢pp,[P3(0,) Uy (uy, 2, €)] X [P4(0,) Uy (uy, 2, €)]
+Cp_p, [P5(0,)U,(uy, 2, €)] X [Py (0,) U, (1), 2, €)].
(62)

In the next step, we derive some coupling of partial
differential equations that the components U, and U,
are asked to fulfill and displayed in (66) and (67).

Owing to the fact that the operators ,0, and 0,
mute to each other, the binomial formula helps us to rewrite
(62) in the form

com-

Q(0:)U(uy 5, 2, €)

dp!
:I/lfu|j Z p ; |( aul)plasz (a )U(ul’uZ’Z’ 6)]
+p,=0p £1°F2°

D-1

+ Z eAl_dlu‘f’al(z, €)
=1

XLZ %( u ) PO R(D,) (ul,uz,z,e)]
+p,=0, L1702
Fi(uy, 2, €) + Fy(uy, 2, €)u, + ¢, (2, €) Uy (uy, 2, €)1y
bi(z, €)U, (1), 2 €) + b, (2, €) Uy (1), 2 €)
+CQIQZ[Q( ) Us (U2, €)] X [Qy(0,) Uy (1), 2, €)]uy

1 €)
+¢pp, [P1(0,) Uy (415 2, €)] X [P2(0,) U, (uy, 2, €)]
+¢p,p, [P3(0,) Uy (415 2, €)] X [Py(0,) Uy (uy, 2, €)]
+p p, [P5(0,) Uy (1, 2, €)] X [P5(0,) Uy (u4y, 2, €)].

(63)
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Besides, from decomposition (59), we observe that
0, U(uy, uy,2,€) = U, (uy,z,€), 002 U(uy, 4y, 2, €) =0,
(64)
whenever p, >2. We reach the next equation

Q(0)[U;(uy> 2, €) + Uy (u4y, 2, €)1y

= “‘fD {(ulaul)aDRD(az)(Ul(ul’ z,€) + Uy(uy, 2, €)uy)
8 (1,9, )™ Rp(3.) Uy (1, e)}
D-1
+ ) @ hua(z ¢) | (1,,)"RI(0.)(Uy (1, 2. ¢)
=1

+ Uy (uy, 2, €)u,) + 6, (uy0, )

Ri(2.)Us (1, 2, €)]
Fi(uy,z €) + (”1>Z>€)“2+C1(z’ €)Uy(uy, 2, €)u,
by(z, €)U;(uy, 2, €) + by(z, €)Uj (uy, 2, €)

+CQlQZ[Q (0,)Uy(uy, 2, €)] X [Q(0,) Uy (uy, 2, €)uy

1 € £)
+¢pp, [P1(02) Uy (11, 2, €)] X [P5(0,) U, (1, 2, €)]
+CP3P4[P3(az)U1(u1’Z’ €)] X [P4(0,) Uy (uy, 2, €)]
+cp p [P5(0,)Us(uy, 2, €)] X [Pg(0,) Uy (1, 2, €)].

(65)

Finally, by dint of identification of the powers of u, in
the above equality, it turns out that this last Equation (65)
holds if the expressions U; and U, are asked to satisfy the
next coupling of two partial differential equations

Q(9; )Uz(”p% €)
=ul [(u a, )

D-1

+ Z e uflal(z, €) (ulaul)(S’Rl(az) Uy(u1,2 €)

=1
+ Fy(uy, 2, €) + ¢,(z, €)U,(uy, 2, €)
+¢0,0,[Q1(0,) Uy (1), 2, €)] X [Qy(0,) Uy (uy, 2, €)],
(66)

p(0.)Us(uy 2, 6)}

Q(9,)U,(uy, 2 €)
= uy” | (14,2,,) " Ro(0.) U (11,2, €)

8-
+3p(113,,)" " Rp(3) (11,2, €)|
D-1
+ SA’_dluflal(Z €) {<ulau1)61Rl(az)Ul(”l’ z,€)

((1:9,,) 7 R(@) Uy 2 €)| +
z,€)U,(uy, 2, €)

Uy (uy5 2, e)] X [P5(0,) U, (uy, 2, €)]
Uy (11,2, €)] X [Py(0,)U, (1), 2, €)]
U, (uy, 2, €)] X [Pg(0,) Uy (uy, 2, €)].

(67)

Fy(up, 2 €)

3.2. A Coupling of Auxiliary Convolution Equations. We
search for solutions to the coupling of partial differential
Equations (66) and (67) in the form of a Laplace transform
of some order k; > 1 and inverse Fourier integral

+00
ky J J wj,dl('r,m,e)
d

(27_[)1/2 L] o

ki
exp ( (1) )em@dm,
Uy T

for j=1, 2, where Ly = [0,+oo)e‘/‘_1d1 stands for a half line in
suitable directions d; € R which depend on 7 in a way that
cos (k,(d, —arg (u,))) remains strictly positive.

Here, we assume that for all € € D, \ {0}, the so-called

Borel-Fourier maps (T, m) = w; 4 (1,m, €), j=1,2, belong

Uja, (42, €) =

(68)

to the Banach space F( Bk for well-chosen constants

v, p>0 and for the prescrlbed constants B, 4 in Subsection
2.2 that is described in the upcoming definition.

Definition 4. Let €, v, 5, 4, p >0 be positive real numbers
and k; > 1 be an integer. Let e€ D, \ {0}. We set as S; an

unbounded sector centered at 0 with bisecting direction

d, € R. We denote Fh the vector space of all contin-
(vpopskip.e)

uous maps (7, m) — h(t,m) on (S; UD,) x R, holomorphic

wrtTonS,; UD,, such that the norm

‘ | h(T’ m) || (VsBophokysps€)

€] 7|2k
= sup 1+ |m|)#efm 2 (1 4+ H
TES,, UDP,me]R( 1) |7 € (69)

- exp (—vE‘kl>|h(T, m)|,

is finite. The vector space F< equipped with the

V,Bopk 5 ps€)

norm ||.|| turns out to be a Banach space.

(vBopiskyspr€)

The main purpose of this subsection is to determine cou-
pling convolution equations for the Borel-Fourier maps w; ;
outlined in (83)-(85). We depart from some features of the
Laplace transforms under the action of multiplication by a
monomial and differential operators that were already stated
and proved in our foregoing work [30], Lemma 6.

Lemma 5. The next identities hold.

(1) The action of the differential operator u];’ﬂaul on the
integral representations U, ; is given by
k+18 Uja (up,2, €)
k] J J+OO |:k k ( )
= Tw; g T,m,e}
(m™ ), )t (70)
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(2) Let m' > 1 be an integer. The multiplication by u""
acting on U, ; is expressed through

!

up Uja, (41,2 €)

k +0o ky T 1 (m'1k})-1
= (27T;1/2JL41 LOO [T(r:'/h) L (Tk _5)

(71)

(3) Let m— A(m) be a map that belongs to E g ). We set

_ " m)e¥"*"dm
a(z)—WJ A(m)e M dm.  (72)

The action of multiplication by a(z) on U, is
expressed by means of

“(Z)Uj,d, (up;, z, €)

el ) e

+00
. J Am—mp)w;, (T, my, e)dmll

—00

K
X exp <— (l) > eV 1m ﬁ dm.
u; T

(4) Let H.(X)eC[X], k=1,2, be polynomials. The
action of the differential operators H,(0,) combined
with the product of the resulting functions H(0,)

Uia, for k=1,2, j=1,2 maps Ujq, into a Fourier-
Laplace transform

(73)

[Hz(az) Up,dl (“P z, 6)}

[H1(0,) Uy, (112, €)] %

k1 J‘+00 1 J‘+00 B J~T1
= [ T
(27_[)1/2 L, oo (27_[)1/2 oo 0

1

-H, (\/—_l(m—ml))wl,dl ((Tk‘ —S)Ukl,m—ml, e)

xH, (\/—Iml)wp,dl (s”kl, my, e)
kl d

X exp (— <i> ) /T I
u T

for given 1<, p<2.

dsdml}

1
(Tkl - s)s

Abstract and Applied Analysis

The next useful lemma already stated in the previous
work by Lastra and Malek [31] will show up in the process.

Lemma 6. For all integers p, > 1, positive integers a,, > 1,
for 1<q<p, can be singled out such that

(ulau,)pl = Z qP1 qa (75)

with A1y =0y, =

With the help of this lemma, Equations (66) and (67)
can be remodeled in the form

Q(0)U (11, 2, €)

= ”1 l(Z Ags, ulod )RD(BZ)UZ(uI,z, e)‘|

D-1
+ ) e gz, e (Z a5 Ul u1>R,(a VU, (uy, 2, €)

=1 q=1
+ F,(uy,2,€) +¢,(z, €)U, (1, 2, €)
+€0,0,[Q1(0,) Uz (141, 2 €)] X [Q(0,) U, (41, 2, €)],

(76)

Q(0,)U,(uy 2, €)

%
dp
=1 l(Z aq,%”%i) Rp(0,)Uy(uy, 2, €)
q=1

op-1
+0p ( Z aq,éu—lu?azl ) Rp(0,)Uy(uy 2 e)]
gq=1

D-1
+ ) M u’f’ a)(z, €)

)
‘ l Z “q,a,“?ai) Ri(0,)U, (1), % €)

q=1

1

+9; Z aq,511”‘11azl> Ry(0,)U,(uy> 2 6)]

q=

—

P, (0,)U,(uy, 2 €)] + cp p, [ (az)Ul(uPZ’ €)]
Py(0,)U,(uy, 2 €)] + cp p, [P5(0,) Uy (uy, 2, €)]
P4(0,) U, ( )]

)
RS
N
(L)

(77)

The upcoming identity will also be called into play for
the derivation of the coupling convolution equations. This
technical formula was introduced in the work [32].
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Lemma 7. Let k;,6 > 1 be integers. Real numbers Ay, for
1<p<8—1 can be found such that

p
uf(k,ﬂ)agl =( k+1 ) Z Aap k(5p( ; 1au1) ’
1<p<é-1
(78)

holds, where we assume by convention that the sum
Yicpes-1l--] vanishes for 6= 1.

Owing to the assumption (38), the splitting
dp+q=q(k;+1)+dp, (79)

holds for suitable integers dp,, > 1, provided that 1<g<

8p — 1. Furthermore, under the constraint (39), the decom-
position

di+q=q(k, +1)+d, (80)

occurs for well-chosen integers d,, >
D-1and 1<g<§é,

Ultimately, by means of the above two relations (79) and
(80), Lemma 7 can be applied in order to rewrite both Equa-
tions (76) and (77), only with the help of the basic irregular

differential operator ul

1, as long as 1</<

a . Namely,
Q(0,)Uy(uy, 2, €)
(Z g8, ”1 [( klﬂaul)q
£ Y Ay (u’fl“aul)"] LNCALATRENS)
1<p<g-1
S - ) P
Jara)e 3 st (ava]
“Rp(0,)U,(uy, 2, € (z et d’a (z,€)
{Z aq5”1 {( kil g z quullcl(q-m (uflﬂﬂaul)p}

1<p<q-1
“R)(0,)U,(uy, 2, e)} ) +F,(uy, 2, €) +¢,(z, €)U, (1), 2, €)

+€0,0,[Q1(02) Uy (141, 2, €)] X [Q4(0,) Uy (11, 2, €)],

(81)

together with

Q(0,)U, (uy, 2 €)
8p-1 g
- (Lot (2.)

kl — k]+ P
+ Z Ayt (@-p) (141 1au1) ]RD(az)Ul(ul’Z’ e))

1<p<q-1

11

9
+[(uf;l+laul)n+ S Ayl (i laul)”]

1<p<dpy-1
8p-1

dD,q
)+0p Z g5,-141

q=1

“Rp(0,)U, (4> 2, €
ky(q- k+1 p
Z Aq,pul (a-p) (“1 + aul) ]

ki +1 9
. (u11+ aul) +
1<p<g-1

“Rp(0,)U,(uy,2, € (Z 4 g (z, €)

[Z [( h13,)"

ky(g— Kk +1 p
+ Z Aq,p”1 (a-p) (ul + aul) ]Rl(az)Ul(ul,z, €)

1<p<g-1
-1 i q
S
g=1
ki (q- ki+1 p
+ Z Aq)pul @ P> (“1 ' aul) ]Rl(az)Uz(ul’Z’ €)]>
1<p<g-1
Fy(uy,2, €) + by (2, €)U, (uy, 2, €)

€)
by(z, €)U,(uy, 2, €) + cp p [P1(0,) Uy (1, 2, €)]
X[ 2(0,)Us(uy, 2, €)] + ¢p p [P3(0,) Uy (g, 2, €)]
X [P4(0,)U,(uy, 2, €)] + cp p, [P5(0,) Uy (11, 2, €)]
X [Ps(9,)Us( )

5 (11,2, €)].
(82)

On the ground of the identities disclosed in Lemma 5,
this hindmost coupling of Equations (81) and (82) allows
us to reach the next statement.

The maps U, 4 (4,2, €), j=1,2, displayed in (68) solve
the closing coupling (81) and (82) if the Borel maps
w;q (T,m, €), j=1,2, fulfill the next coupling of convolu-
tion equations

Q(\/:Im> Wy 4 (T, m; €)
dp-1 Tkl k1 L (dngml)*l
= ( Z aq,(;D lm JO (T - s)

q=1
k\ 1 d
()Y (o)
7
+ A
13;;4 ” F(dD,q +ki(q _P)/kl)

. Jrkl (Th ~ S) (dpgtki(q-p)ik, ) -1 (kl (51/k1>k1>p
0
TWy g (s”kl, m, e) ?] X Rp (\/—_lm)>
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)
+ [(kﬂ) Py, (1., €)
k

Tl
* 2 Aaﬂ’f’r(k )= p)iky)

1<p<dp-1
k

[ oo
~w2,d1< sk, m, e) } ><RD<\/_1m)
(-

D-1 . J
A=d;
+;€ [Z q5ll d/k 4[0

)

q=1

1 0 1/k ky
(2n)1/2j Am =m;, & ( ( ))
—00
XR(\/—lm )w (s”kl m e) dsdm
1 1) @24, > My, S 1
k

T 1
+ A
2. A r(dy,+ki(q-p)ik)

1<p<q-1

k

71 dy ki (q-p)/k; )1
J (Tkl—s)(lq (a-p) )
0

o i () ()

d
W, (Sl/kl,ml)e) _SdmIH + F, (1, m, €)
! s

1 +00
* (27-[)1/2 J Cy(m—m,, e)wz,d1 (T, my, €)dm,

—00

+¢q,q, #[:T"IJ Q, (\/—(m ml)>wz,d1
. <(Tkl B s) 1/k1’ m—my, e) xQ, (\/:ml)wml

1
. (s“kl, my, e) dsdm,,
(th —s)s

(83)

along with

(\/“m 4, (T, m; €)

+ A
Zf 0 F(dD,q +k(q _P)/kl)

Abstract and Applied Analysis

()% o (v7im)

+ {(kl h )8DRD (\/——1741) w4, (T, m, €)
K, k

T ! (ky (8p=p)/ky)-1
Ay — ky _
" Z 0P T (k, (8p — p)/ky) Jo (T S>

1<p<dp-1

. (kl (51/k1)kl)pw1)dl (Sukl’ m, e) % x Ry, (\/—Tm)]

ky

( Z Agsp-1 l del/k ) Jr (Tk1 —s) (dpglk))-1
»q
. (kl (sl/kl)k )qwz,dl (s”kl, m, e) %

k

+ZA T

1<p<q-1 ( Dq+k (q p)/kl)

7h dp+y (q-p)/ky ) - P
patki(q-p)/k k,
, J (Tkl _S)( 1 ) K, (qu) s
0
S

q=1 >
J ooAl(m —my, 6) (kl Sl/kl)kl)
><Rl<\/:fm1)w1,d (s”kl m e)?dm1
>
+ A
1<p<g-1 q,PF(dl,q +k1 (q_p)/kl)

_ JT“ (‘rk‘ B S) (ki (g-p) /Ky )1
0
1 +00 k] P
x— | Am-m,e k(s”kl) )
(27_[)1/2 J - l( 1 ) < 1

. R,(\/—_lml)wl,d1 (Sl/kla mys e) ?dmll )

<8l Z A5 [ dl:/k ) JT“ (T"l B S) (dyyfk,)-1 #
[Cmmmeau (o)) r(m)

1/k ds
Xwyg (s L, my, e) ?dm1
k

T 1
+ A
Z q)pr(dl,q*'kl(q_l’)/kl)

1<p<g-1

! dy +ky (q-p)/k; ) -1 1 +00
J (Tkl —s>( hla-p)ik) X 7J A(m—my, €)
0

(27_[) 1/2

—00
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2]

+d(1,m, €), (84)
where
1 +00
d(t,m,e)=F (1,m,€)+ B,(m—-my, €)w
( ) 1( ) (27_[)1/2 J—oo 1( 1 ) 1,d

- (1, my, €)dm, +

+00

. J B,(m—my, €)w, 4 (T, my, €)dm,

—00
ky

SN e

0

(85)

4. Linear and Bilinear Convolution Operators
Acting on Banach Spaces

In this section, we examine continuity properties of several
linear and bilinear convolutions operators that are applied
on the Banach spaces given in Definition 4 and that unfold
in the above coupled Equations (83)-(85),.

Proposition 8. Let y, > 0, y; = —1 be integers and set y, € R.
Let S; be an unbounded sector centered at 0 with bisecting
direction d, € R and fix p > 0 as some positive real number.

13

Let a, (t,m) be a continuous map on the closure (S; UD,)
x R subjected to the upper bounds

My, 86
< 1
’“%(T’ m)‘ S+ (86)

provided that T€S; UD,, all meR, for some constant
M, >0. We take for granted that

1
ylzkl(y3+1),y2>—1,y2+y3+k—+120. (87)
1

Then, we can single out a constant C; > 0 (relying on y;,
j=1,2,3, k;, and v) for which

7K1

a, (7, m)rkljo (Tkl —s) sY3f( stk m>

< C,M, e[| f(r,m)|

(v.Botik.ps€)

(vBopskyp.€)
(88)

holds as long as f belongs to the Banach space F'(iv’)ﬁ%kl’pﬁ).

Proof. Let f € Fh . By definition, the bounds

(vBophsky-ps€)
T 1
< -
|f (7, m)]| ||f|| (vBopikypie) ‘ 1+ |T/€|

. eXP <v’£‘ )(1 + |m|)_#e’ﬁ‘m"
€

ensue provided that 7€ S; UD, and m € R. According to

the assumption (86), the latter bounds warrant the next
estimates

(89)

71

y
a, (t,m)7" JO (Tk‘ - s) i (s“k‘, m) ds

ky 1/k
< M |T|k1 JT (|T‘k1 _ h) yzh]’z h™
0

L+ €l

1 h
e exp | v— | dh
L (2] ( |€"1>

x (1 + |m]) e Pl

RB(T, m) =

forallTeS; UD,, all meR.
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We further perform the change of variable g = h/|6|k1 in
the above integral and get

m) g Myl”fH(v)ﬁ,y,kl,p,e | LRVER ‘lel B Y2
T aemy " o

gwukl b Se"9dg x \e\k1<y2+y3“)(1 +|m|) e Fm,

l+g
(91)

B(,

aslongast€S; UD,and meR.
We introduce the function

1

9 2
1+ged9, (92)

Gx) = Jx(x_ g)Ps ghseirlel
0
for all x>0. In the next lemma, we uncover upper bounds
for G for large values of x.

Lemma 4. The function G(x) is well defined and continuous
for all x> 0. Furthermore, there exists a constant K > 0 for
which

G(x)<Kg——¢€", (93)
forall x> 1.

Proof. We first explain why G(x) is well defined and contin-
uous for x > 0. Indeed, by means of the change of variable
g=xg, for 0< g, <1, we can recast G(x) in the form

1
G(x) :xyz+y3+(1/k1>+lj (1-g,)g" (k) 1 e idg,,

0 1+ (xgl)
(94)

which is a finite quantity for all x >0 and represents a con-
tinuous map w.r.t x, according to the last inequality of (87).

In order to reach bounds for large x > 1, we apply a strat-
egy stemming from Proposition 8 in our joint work [33].
Namely, we split G(x) into two pieces,

G(x) = Gy(x) + Gy (), (95)
where
2 +1/k 1
Gl = | (emg)g ey
(96)
* 1
G,(x) = x—g)lghtlh ey,
2(%) L/z( 9)"g"

We first focus on bounds for G, (x). Two cases arise.

(i) Assume that -1<y,<0. In that situation, we
observe that (x-—g)" < (x/2)" provided that 0<

Abstract and Applied Analysis

g <x/2, for x>0. Therefore, bearing in mind the
constraints (75),

G,(x) < (E)VZ vxIZJ gt k) g
1

— (x/z)y2+y3+(1/k1)+levx/2
p;+ (Lky) +1

>

(97)
for all x>0.
(ii) Suppose that y, >0. We check that (x — g)" <x7
for any 0 < g < x/2. Hence, paying regard to (75),

x/2
Gl (X) <xV evx/ZJ gy3+<1/kl)dg

0
1

y,+ (k) +1

_ (1/2)y3+(1/k|)+1 xyz+y3+(1/k1)+levx/2’

(98)
whenever x > 0.

In the second step, we provide upper estimates for G, (x).
We notice that 1+ g> > 1+ (x/2)°, for x/2 < g < x. Hence,

1 * G, (x)
G < - — g\ gtstk)gvag, < 207
(%) 1+(x/2)2J S I= 14 ()
(99)
where
Go()= [ (x-gpgMetdg  (100)
0

for all x> 0. From the sharp bounds established in Proposi-
tion 8 of [30], we can pinpoint a constant K; > 0 (depending
on y,, y;, ki, v) with

G, (x) < Ky x5tk gvx (101)
for all x> 1, under the conditions (87). As a result, we get
that

XVt (ki)

G,(x) <K, ————¢™*

1+ (x/2)? (102)

provided that x > 1.
At last, gathering the bounds (97), (98), and (102), we
deduce the awaited bounds (93) from the splitting (95). [

We turn to the bounds for the map % (7,
two alternatives.

m). We identify

(i) Assume that 7 € Sa, UD, is chosen such that

>1. (103)
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Owing to Lemma 4 and the first constraint of (87),
we get from the upper bounds (91) some constant
C, ;>0 with

)< M |z|ft e s DK

AB(, <
(m) < =G
Tkl
o (42)

+(1/ky)
()"
x (1+ |m|)"“e‘ﬁ|m‘

1+ |t/e[

T/€E
<CLM, |50 £ [7/e

-exp(H) (1 + |m|) e Pml,

(104)
forall T € Sq,UD, chosen under (103).
(ii) Suppose that 7 €S, U D, fulfills
ky
0< |T|k <1. (105)
le[™

Based on (91), we arrive at some constant C, , > 0 such
that

Ky otk K, "
B(t,m) < wmklﬁrl Nel (|| ~,
(1+ |T|)Yl 0 |€|k1
1
y3+(17ky) 4
9 1+ gz g

X exp (V‘—‘ ) |€|k1(Y2+Y3+1)(1 + |m|)_ﬂe_ﬁ‘m|
X (1 + |m|) e Pm

2k
. [cu|r|’ﬁ'l|e|’<l<yz“>|e|“k”3Myl ("))

|T/e\

A HfH(v,/},y,kl,p,e ‘ Tle |2k

+1)
< [Crady, & ™2 1 PV g e
Jue < ‘ ‘ ) (1 + |m]) e B,
1+|T/€|

(106)

whenever T € Sq,UD, is restricted to (105).

Eventually, the combination of the above bounds (104)
and (106) yields the expected result (88).

(sBiskip€) | e
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Proposition 10. Let Q(X), R(X) € C[X] be polynomials and
u >0 be a real number subjected to the constraints

deg (R) = deg (Q),R(\/jm) #0,u>deg (Q)+1, (107)

for all meR. Then, a constant C,> 0 (depending on Q,R,
and p) can be selected such that

1 +00
WJ_ f(m=m;)Q (WMJ) (t,m;)dm,

< G M) g 9 M) gk )

(v:Bopikpsps€)
(108)

holds provided that f € E(g ,y and g € F (Baikpe)”
Proof. The proof mirrors the one of Proposition 10 in our
recent work [34]. Indeed, let us choose g in F(v,ﬁ,y,kl,p,s)
The very definition of the norms displayed in Definitions 3

and 4 allows the bounds
exp (v’z kl)
€

(109)

T
T, m < ’7
95012 0t e 1 1y

X (1 + |m|)#ePml,
provided that 7, € S; UD, and m, € R together with
(110)

F(m)| < [|f ()] g,y (1 + [m]) e P,

for all m € R. These two bounds (109) and (110) yield the
next estimates

1

|€ (7, m)| = Wr:f(m— ml)Q(\/—_lml)g(T,ml)dml
1
< F) g 195t ol T o

-exp(‘ ‘ ) (1+|m|)#ePmc, |,
(111)
where
e_ﬁ‘m_mll

1 +00
‘R(ﬁm)’Jm(1+lm—m1|)“

Q(v-1m
M Hmldm,

Cy1 = (L+|m|)ef™

(112)
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According to the triangular inequality, we observe that

[m| < [m—m[+|m], (113)
for all real numbers m, m; € R and by the construction of
the polynomials R, Q asked to fulfill (107), two constants
2, R > 0 can be pinpointed such that

Q=T [ <201+ pmp* . [r(vTm)]

(114)
>R (1 + |m|)de B,
whenever m, m; € R. Thereby, the next upper bounds
Cor < sup(1+ )= 9
R meR
(115)

+00 1
J —
oo (L [ =y ) (1 |y |8 (9

my,

are reached whose right hand side is a finite quantity under
the restrictions (107), owing to Lemma 2.2 from [29] or
Lemma 4 of [35].

Eventually, gathering (111) and (115) yields the foretold
bounds (108). O

Proposition 11. Let k; > 1 be an integer. Let Q;(X), Q,(X),
and R(X) be polynomials with complex coefficients such that
deg (R) > deg (Q,), deg (R) > deg (Qz),R(\/qm) #0,

(116)

or all m e R. We require the positive real number u >0 to
q p u
satisfy

p>max (deg (Q;) + 1,deg (Q,) + 1). (117)

Let m— b(m) be a continuous function on R such that

1

Ib(m)]| < W,

(118)

for all m e R. Then, one can find a constant C; > 0 (relying
on Qp, Qs Ry, ky, and v) such that
1/k,
- s) , - m1>

oo Cate-m((
dsdm1

-0

o (Fma(em)

< C3||f(T’ m) H(v)ﬁ,p.,kl,p,e) Hg(T’ m) ||(v,ﬁ,y,,k1,p,e)’

(v:Popiskps€)
(119)

d;
forall f,geF (v.Bopikpspr€)

Abstract and Applied Analysis

Proof. Take f, g in the space F( Bivkipe)’
definition of the norm, the next two bounds

According to the

()
exp (VE )

(120)

T
€X]
51 st e e

X (1 + |m|) e Plm,

T
19(2 m)[ < (|Gl (v,8.k, prc)

‘ el + \T/e|

X (1 + |m]) e Plm,

hold provided that 7€S; UD, and m € R. These bounds
together with the assumption (118) prompt

k1

D, m) = ‘b(m)r"ljo j:Q (V== m))

(=)

< (m)o(#%m)

dsdm,

e
1
ez | =)

[ @a (VT )| (1 g e B
X (Lt ) e Bl £

<

Lakip )19l sk )
. 1/k,
[« (7] = h
| 1
T 1
2
0 |€| 1+ ((llel —h) /‘€|2k1>

Al 1 1

el 1y GERICEEL
Tk

X exp (V‘E‘ ),

dh

(121)

forallTeS; UD, and meR.

By construction, we check that some positive constants
£2,,92,, and R can be picked out in a way that

(v

(m— ml)))<D(1+|m m, |)de8 (@ (\/_m)
<y (1+ |y )** @), |R (x/“m)]

> R(1+|m|)*e ®,

(122)
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for all m,m; € R. As a result and keeping in mind the
inequality (113), we deduce the next bounds for the first
piece of the right handside of (121), namely,

o (n)

’R(VI:M)‘J:‘QI (V=10m=m)|
“(1+|m- m1|)’”e’/3""*’”1| x(1+ |ml|)"‘e’ﬁ|’”1‘dm1
D;RQZQZ

< S ) e,

(123)

where

D= sup (1+|m|)%s ®

meR

+00 1
. dmy,
J_oo(1+|m—m1|)”_deg (Q1)(1+|m1|)ﬂ—deg (@) 1

(124)

is a finite quantity under conditions (116) and (117), as
explained in Lemma 6.2 from [29] or Lemma 4 of [35].
Besides, according to Lemma 7 of our recent work [36],
there exists a constant K (relying on k;) such that

[ () e
© 1+ ((T|k1 —h>2/|e|2k1>

hl/kl 1
e ek, e
1+ <h2/|e|2k1) (|r|’<1 —h)h L+ |r/e[™

(125)

forall 7eS; UD,, allee D, \{0}.

Counting up the above two bounds (123) and (125), it
results from (121) that

D(1,m) <

2,
< 19{ 2 9I<k1 ||f|| (vB.psky,p5€) ||g||(v,ﬁ%k1’P’e)
|t/€]

1+ |t/ef

(1+ |m|)’”e“6‘m| X exp (V’Z

ky
>
€

(126)

whenever 1€ Sq, UD, and meR. The estimates (119)
follow. O

5. Solving the First Convolution Equation (83)

In this section, we uniquely solve the auxiliary convolution
Equation (83) stated in Subsection 3.2 within the Banach
spaces displayed in Definition 4. Our approach consists in
rearranging (83) into a fixed point equation (disclosed later
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on in (173)). In the first stage, we ask to perform a division
by the next parameter depending polynomial

P.(1)= Q(\/—_lm) - RD<\/—_1m) kf"rkl‘sb, (127)

provided that 7 € §; UD,,. Decisive lower bounds concern-
ing P,, are displayed in the next lemma.

Lemma 12. For a convenient choice of the inner radius
rqr, >0 and aperture 1o, >0 of the sector Sqp — (intro-

duced in (44)), unbounded sectors Sa, centered at 0 with

bisecting direction d; € R and a small radius p > 0 can be dis-
tinguished in a way that the next lower estimates

k.0
[P, (T)] = CP(”Q,RD)” ’

Ry (V=1m) |(L-+]])>,
(128)

hold for some well-chosen constant Cp > 0, provided that T €
S84, UD,, forallm e R.

Proof. Owing to the fact that the complex roots g,(m), 0 <
1<k, 8,-1 of 7+ P, (7) can be explicitely computed, we
factorize the polynomial as follows:

Py(1) = ~Rp (VIm ) KPIT (- qy(m)), (129)
with
1/k, 8
ai(m) = 2(v=tn)] exp
[Ro (v=Tm) [
Q(V-1m 7l
(e i)
(130)

for all 0<I<k 8, -1, for any 7€ C and m e R.
We pinpoint an unbounded sector S; centered at 0, a

small disc D, and we position the sector S, = given in
(44) in a way that the next two properties hold:

(1) A constant M, >0 can be found such that

|7 = qy(m)| 2 M, (1 + ), (131)

for all 0<I<k§,-1, all meR, whenever T¢
S4, UD,.
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(2) There exists a constant M, >0 with

‘T—qlo(m)‘ =M, |q, (m)|, (132)

for some 0 <[, <6pk; — L allmeR,allTeS; UD,.

We now explain how the above two bounds can be
established.

(i) We deem the first inequality (131) in observing that
under hypothesis (45); the roots g;(m) are bounded
from below and obey |q;(m)| = 2p for all m € R, all
0<I<d8pk, —1 for a suitable choice of the radii
R, P> 0. Furthermore, for all meR, all 0</<
Opk; — 1; these roots are penned inside an union @
of unbounded sectors centered at 0 that do not cover
a full neighborhood of 0 in C* whenever the aperture
Nor, >0 of Sqp, is taken small enough. Hence, a

sector S; may be chosen such that

Sdl ﬂ@zg (133)

Such a sector satisfies in particular that for all 0</<
Opk, — 1, the quotients g;(m)/7 lay outside some small disc
centered at 1 in C for all T€S§,, all meR. Eventually,
(131) follows.

The sector S; and disc D, are selected as above. The sec-
ond lower bound (132) ensues from the fact that for any
fixed 0<Iy<dpk, -1, the quotient 7/q; (m) stays apart a
small disc centered at 1 in C forall 7€ S; UD,, all m e R.

Departing from factorization (129) and paying regard to
the two lower bounds (131) and (132) reached overhead, we
arrive at

[P (7)| = My M,

(v=im)
(v \ ™

o) e

)% Ry (VT | (1 )0,

(134)

(1 [z

> CP(rQ,RD

aslongast€S; UD,, forall meR. O

We introduce the next nonlinear map

=1

6p-1 Tkl
%wmmm=<2%%bxmﬁaﬁﬁ

ki

T dD, /k] -1 dS
J (Tk‘ —s)( i) k‘fsqw(s“k‘,m)—
s

0

Tk‘

" Z A‘“’p (T (dD,q+k1(Q‘P)/k1>

1<p<g-1

Abstract and Applied Analysis

e
0

xRD(\/—_lm)> + [ > A(SD’pI)m(T);—(](SD—I))
8- lkpspw(sllkl m) ] XRD(\/“m)

1<p<ép-1

Tkl

H%mewm

k (dtq/kl)‘l 1 " q
L ——— | A (m—my, e)kist
(‘r s) B [(m—my, €)kis

d
X Rl( —lml)w(sllk‘, m1> Sdml

» arp (T (dyg + Ky (q - p)lky)

1<p<q-1
ki

. JT (Tk‘ _ S) (digthi(g-p)lky)-1
0
1 +00
_J Ay(m—my, e)Ks"R, (\/__lml)w(sllkl, ml)
-0

(27_[)1/2
‘ éd””‘l + Foln €) + 1/21

s P, (1) (2m)""P,,(1)

+00 1
J C,(m—-my, €)w(t, m;)dm, +chsz

T e mje( ) nem)

xQz(\/_m) (l/lm) dsdm1

(135)

In the next proposition, we establish that %, represents
a shrinking map on some suitable ball of the Banach space
mentioned in Definition 4.

Proposition 13. Let us select a well-chosen inner radius
rqr, > 0and aperturengp > 0 of the sector So g | jointly with

an unbounded sector S; and radius p >0 that heed the
requirements of Lemma 12 and obey the additional condition

~1¢S, UD,. (136)

Then, one can single out a radius €,> 0 small enough,
constants C; . > 0and c, o € C” close enough to 0 and a fit-

ting radius ®, > 0 in a way that for all € € D, \ {0}, the map
X . enjoys the next two features

(i) The inclusion

X (sz) CB,,

2

(137)
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holds, where we denote B@Z, the closed ball of radius
d,

®, > 0 centered at 0 in the space F (ofikpre)”

(ii) The 1/2 — Lipschitz condition

||%e(w1) - %€<w2)”(v,ﬁ,[4,k1,p,e)

] (138)
< 5 ||w1 - wZH(v,[f,y,kl,p,e)’
occurs for all w,;, w, € F?\I),ﬁ,y,k,,p,e)'

Proof. We take aim at the first item stating the inclusion
(137). We prescribe some real number @, > 0 and take w(7,

. .
m)in F, g 1 o for given €€ D, \ {0}, such that

<a,. (139)

”wH (vBopskyop.€) =

We provide explicit bounds for each term of the map #’,
applied to w.

According to Proposition 8 and Lemma 12, we observe
that

ky

.
T T k (dn,q/kl)’l q 17k ds
1 — R 71 l’ —
ol ) el
G (6pa)k
= a7 I M
(140)
for 1 <gq <68, -1 along with
Tk‘ = k (dn.ﬁkl(‘l’l’)/kl)’l ds
11— : q — 1k, p
pol, () Ro(Fme(s )
C (Sp-p)k
< ——— |eV'P Hlw(T, m s
c (fQ,RD)”k"S”l | lo@ M) gk, pe)
(141)
for1<p<g-1with1<g<é,-1and
ky 41 Sp—p-1 d
PT—J (‘rkl —s) ° s1R}, (\/—lm)w(s”kl, m) iad
n(®) Jo : (vBwkyp.e)
G, Sp-p)k
< — s e[ oz, m))| ,
1/k,8 (v:Popikyspi€)
Co(rar,) " o

(142)
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as long as 1 <p <8, — 1. In order to handle the next piece,
under the constraint (136), we can recast

&, (t,m, €)
ket dy 1k, )1 [+00
S J (Tk‘ —s)( k) J A(m—my, €)s1
Pm(T) 0 —00

X Rl(\/:ml)w<s”k', m1> ?dm1
B RD(\/—_lm) (1 +7)kiop7! 1
‘ D
. J+OOAl(m —my, €)R, <\/:Im1)
- s) (dl’q/kl)ilsqw (s”kl, ml) ?} dmy,

(143)

.’_Jﬁ Jrkl( i
X | — T!
(1 + T)k16D71 0

forall 7eS; UD,, meR with 1</<D-1and 1<q<§,
Based on Lemma 12, we check that

R, (\/—1m) (1+7)k%! ) "
< >
P, (1) Cp(rom, )%

provided that T€S; UD,, m€R. Owing to assumptions
(42) and (48), Proposition 10 together with (144) yields

& (T, m, €)] (vBiskypo€)

1
< G| Ay(m, €)||
Tk 8, 21148 (Bw)
Co(rar,) "
ky T dp, 1k, )-1
o L
1¥D
(1+7) 0 (vBopisky,ps€)
(145)

Besides, a constant M, 5 >0 can be picked up such that

1
(1 + 1)k

My s,

T (14 gkt (146)

for all T€S; UD,, assuming condition (136). Condition

(40) together with (146) enables us to apply Proposition 8
and prompt

k 751
T k (deq/kl)_l q 1/k ds
7(1+r)k180’1 L (T‘—S) sw(s l,ml)?
(v:Popk.p.€)
d
< Clel,ﬁn ‘ €| b ||(,0(T, m) H (v:Botiskyopi€)
(147)
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Eventually, bearing in mind (55), we deduce from (145)
complemented by (147) that

|| g1 (T’ m, 6) || (v,Bopsky5p€)
1

d
< ks, Cofre, CiMy 5, €] (T m) |

1/k;8p v, Bk 5p,€)
Ce(rax,)

(148)

The ensuing block is remodeled as

()
. J+OOA,(m - my, €)R, (\/—_lml)

—00

y h JTkl (Tk1 ~ S) (drgth(g-p)iky)-1
(1+1)k071
d
. sf’w(s“kl, m1> _5] dm,,
N
(149)

forall 7€S; UD,, meR with 1</<D-1,1<q<¢, and
1 <p<g-1, under (115).

Assumptions (42) and (48) and the upper bounds (144)
warrant the application of Proposition 10 which triggers

H g1 (T’ m, 6) || (v,Botisky5ps€)

‘l’kl

(1 + 1)k~

1

< -
Cp (T’Q’RD) 1/k;8p

71 d
gtk (g—p) Tk, -1 ds
. (Tkl - s) ! Sw (s”kl, m) =
0 s

GCollAi(m, €)] 4, >

(vBotikyps€)
(150)

Condition (40) coupled with (146) grants the use of
Proposition 8 and beget

U%’;(HSDIJ;M (Tk, —s) (d'ra*kl(‘f’l’)/k‘)flspw< ki )dss
(vBoikysps€)
<CiMy s, |e] 4t 1 @) || ooz, m) | (vBopkip€)”
(151)
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At last, not forgetting (55), we deduce from the joint
bounds (150) and (151) that

” %2 (T’ m, 6) ” (vBopsk 1 5p5€)

1
< CA C My 5 |e|athila)

CP (TQR ) 1/k,8p

M@ M)l puk pe)-

(152)

We control now the piece F,(t, m,€)/P,, (7). In accor-

dance with Lemma 12, we notice that

1
P, (7)

1 1
< max >

CP(rQ,RD)l/k‘BD mRAR, (\/—_1m)

(153)

provided that 7 €S; UD, and m € R, whose right handside

is a finite quantity since RD(\/ 1m) # 0 holds from (45) for
all m e R. Besides, owing to the definition of &, given in
Subsection 2.2 and bounds (49), we deduce

|Fr(rm )| < Y By o (14 |m]) e Fap,
J2€)2

(154)

for all T € C, m € R. The combination of the bounds (153)
and (154) grants

”972(‘[’ m, e)/Pm (T> ”(v,,B,M,kl,p,e)

1 1
CP(rQ,RD)”k o mek R (\/ m)
X sup

k
(1+ Iml)"eﬁ‘m“f‘ (1 + Hz 1)
T€S,, UD,,meR T €

Tk —u - i
- exp (—V’E’ ) X (Z FZ,jz,eo(l +|m|) e ﬁ|m|r|12>
J2€l2

1 1
< max sup

CP(rQ’RD)”k 10 meR R (\/ m) 7€84,UD,

o (o) () (g et

1 1

< max
C (T )l/klaD meR R \/j
P\"QRr, D m
2k =1 j,-1
1) Z szjz>€o 6(7]2 X2

j2€J,

€o

X supe’v’ckl (1 +x
x20

(155)

which represents a finite quantity bearing in mind that
J, € IN* contains only positive integers.
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We address the ensuing linear part of % . Paying regard
to (153) and the bounds (55), Proposition 10 prompts

1 +00
%J C,(m—-my, e)w(t, m)dm,

- (vsPowkysps€)
1 1

ks, max
Cp (rQ:RD) RD (\/—lm)
“G[Ci(m, € g llw(T,

<

m) H(v,ﬁ,‘u,kl,p,e)
1 1

< max % (\/:m)

CZCI,SO Hw(T’ m) H (VBosky,p.€)”

CP (rQ,RD) 1/k,0p, meR

(156)

At last, we manage the nonlinear tail piece of 7#,. We
first factorize

1 1
P, RD<\/:Im> oem 17
where
1% (v, m)| < ! (158)

CP (TQ’RD) 1/k15D ’

forall T € 84, UD, and m € R, according to (128). This latter

decomposition together with the assumption (43) enable the
application of Proposition 11 which yields

1
P, (7)

k Uk,
cwl (Tt - ,m—m;

[ [ o)

—00

1
XQZ(\/ 1m1> ( Vky ml) 7( - dsdm,
Tl_s)s (vsBothskrps€)
C, )
< —— s, le(mm)]| -
1/k,8p (vBoppskysps€)
Cr(ro,) ‘
(159)

We select €,>0, C,, >0, and ¢ , € C* close enough

to 0 and take suitably @, >0 in a proper way that the next
inequality

8p-1 C
kfi 1 €(5D q)k 1@
(Z’ 2.0p [ ,q/kl) 1 ’ )1/k6

CP(rQRD

1
' Z ’W| +k1(‘1_P)/k1)

1<p<q-1

¢ 8pp)ki
K 1 17k, 3, 6(() Y wZ])
Cp (rQ,RD)
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K C,

(8p=p)k,
€ @
p) CP( ok, )I/k 10p 2

|J<p<é‘D 1’ 6DP| 8
D-1

1 1
+Zeld1[2|qﬁl[ dl/k)(

2 k
= 27_[) 1/ CP (rQ’RD)l/ 1517

1,'1
CoAL, CiMy 5 €@+ Y |A
1<p<q-1

k117 1 1
F(dl,q + kl(q_P)/kl) (2m )1/2 CP( QRD)l/kl%

|

d +k, (q-p) 1
G, CiMy 5,60 ‘DZH + Uk;3p
Co(raw,)
1
- max |—————| €, X supe"""k1 (l + x2k1>
meR RD( /_lm) x>0
1 1
. z 6"2 x]z
2,j»€0 1/2 17k,
i ") Ce(ror,) "
71 C,C . @
- max
meR R (\/-_m> 2 1’60 2
1
< @ <@,

+ |CQ1’Q2| (27_[)1/2 CP (T’Q)RD)I/klaD 2

(160)

holds. Observe that the first six blocks of the left handside of
(160) can be made small since they contain positive powers
of €,, owing in particular to the constraint (41) imposed
on (37) and its last two terms can be dwindled provided that

the positive constants C, , and ¢, , are chosen nearby the
origin.

Eventually, the collection of all the bounds overhead
(140)-(142), (148), (152), (155), (156), and (159) restricted
by (160) gives rise to inclusion (137).

We mind the second item addressing the 1/2 — Lipschitz
feature. Take w;,w, inside the ball sz of the space

Fh whose radius @, has been prescribed in the first
(vBopiky pi€)

item discussed above. We display norm estimates for each
block of the difference # ' (w,) - #.(w,). Based on the
bounds reached formerly in the proof of the first item, we
check the next list of six estimates. Namely,

B (dpglky)-1
P (1) JO (‘rkl—s) Dok quD(\/—_lm)

d
(o (sm) e ($om) ) S
(vBaok1pre)

C 5,-q)k
S gy [l T oy (7 m) — @y (7, m)|
Cp(ror,)

(vBophskyspr€)

(161)
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for 1 <gq <68, -1 along with

ko Th dp+k; (g-p)/k, )-1
’ J (Tk‘—s)(D’q+ (a-p)iks) quD(\/:Im)

Pm(T) 0

ds
X (a)l <sl/k1, m) - W, (s”kl, m)) —
s

(vBophskysps€)
G Sp-p)k
< 1/k, & |€|( b Pk le (T’ m) - wZ(T’ m)”(v,ﬁ,ﬂ,kl,p,e),
Cr(ramr,)
(162)
for 1<p<g-1with1<g<d,-1and
k k1
T Sp—p-1
J (Tkl —s) ’ sPRD(\/—lm)
Pm(T) 0
. (w1 (Sllkl’ m) -, (Sllkl’ m)) ds
s
(vBopiskyps€)
< O 1l () ~ g m) |
- 1 > bl b
Cp (rQ’RD> Vkidp (vsPopskysps€)
(163)
as long as 1 < p <8}, — 1. Furthermore,
h 7t k (dlq/kl)—l +0o
1 — ! A — ) q
O e T
ds
: (x/:ml) X (wl (s”k', ml) -w, (s”k‘,ml)) ?dm1
(Bpskyspie)
1
<——— —CA, O, M, 5 ||
Cp(rQ,RL))l/klaD 2%, <117 k0)p |
[wy (7, m) —w, (7, m)”(v,ﬂ,;l,kl,p,e)’
(164)
holds for 1 <I<D -1 and 1 < g<§; together with
Th T (dz, *kl(‘rp)/kl)’l (T
ds
. <\/jm1> X (‘01 (sl/k', ml) -w, <s”k', ml)) ?dml
(vBopiskyops€)
1
€ ————5 CoAy, CiMy 5, ] ot 07P)
Cp (TQ)RD)llklav
lwy (7, m) —w, (7, m)||(v,ﬁ,,4,kl,p,e)’
(165)

for1<I<D-1,1<g<§;,and 1<p<g-1in arow with

oo | Calom =€) 5 ) = e

(vBoskspie)

1 1

(V)

“GCy g, [y (T m) = w, (7, m) I

" Colror,)™™ ekl

v.Bopiskyspi€)”
(166)
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Upper estimates for the rear part of # (w,) — # .(w,)
ask some groundwork. Indeed, according to the classical
identity ab —cd = (a— ¢)b + ¢(b - d), we reshape

Keeping in mind the factorization (157) with (158),
Proposition 11 sparks a constant C; > 0 with

k

nwl (VT =m))

S R R ()

X Q, (\/—_lm)wl (s”kl, ml) ﬁd“l”ﬁ

1
< Cyllw, (1, m) - w,(z, m)|

1k, &, 3101 2 (v,Bouskyp.€)
Co(ror,) " '

: le (T’ m) H (vsBoiky ps€)’

(v-Bkips€)

(168)
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dsdm,

1
(Tkl - S)S (vsBophskysps€)

1
< Cs||wy (1, m) — w,(1, )||
ko, ~311%1 2 vBikpoe)
Co(ror,) " 1
. ”(")Z(T’ )” v,Bouky.p.€)

(169)

The remodeling (167) of A(t,
(169) leads to

m) together with (168) and

HA<T’ m) ” (vBoisk 1 5p5€)
1

< -

- 1/k, 8,
Cp(ror,) "
s (01 (5 m) st e * 19025 M)t )
X ||(U1 (T’ m) ) (T’ m) H(v,ﬁ,y,kl,p,e)

S ke, G320, ||w, (7, m) = w, (7, m)|| (v Bk pe)’
Co(raxr,)

(170)

We enclose the constants €,>0, C,. >0, and ¢ €
0 Le, Q,Q,

C” in the vicinity of the origin allowing the next inequality

(el s

1
* 2 Ml vk =)

1<p<g-1

C Sp-p)ky
kll) 11/k1606(()D ) ])
CP(rQ,RD)

Cl €<8D_‘1)k1
) 1/k,6p 0

) LP;D-II 8”‘0‘ 8kp P) Cp(r Qzl)l/klab €(()5D—p)’<1]
+ 264 d1[2| 5 [ 7} /k)ﬁ

: C, (rQ,RlD) e, CoAie, CiMy 5, el

+1<p2<;1 I‘qu| I, +kkpq p)/k)(zﬂl)m
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1 dy +k (g-p)
: 17k, 0p CZAl,eoclel,(?DeOIq '
Co(ror,)
1 1 1
+ max G,C,,
()" Co(rqn,) ™™ " Rp (v=Im)| ~
+ |c | ! G 20
Q1.Q 172 k.6 2
vl (2m) CP(rQ)RD)” 19p
<1/2.
(171)

The merging of the above bounds (161)-(166) and (170)
subjected to (171) triggers the 1/2 — Lipschitz attribute of
Z .. Notice that the foremost five blocks of the left handside
of (171) can be taken small scaled since they contain positive
powers of g, due to the constraint (41) imposed on (37) and
its two tail terms can be downsized provided that the posi-
tive constants C, . and ¢,  are chosen close to the origin.

In the closing part of the proof, we fix the radius @, >0
and select the quantities €,>0, C;. >0 together with
€Q,0, € C” close enough to 0 that conforms both (160) and
(171). For these values, the map 7, is endowed with both
inclusion and shrinking properties (137) and (138) for all
e €D, \ {0}. Proposition 13 follows. O

The forthcoming proposition displays a solution to the
first convolution Equation (83) shaped in the Banach spaces
described in Definition 4.

Proposition 14. Let us choose an appropriate inner radius
rqr, > 0 and aperture 1o, >0 of the sector Sqp  together
with an unbounded sector S; and radius p > 0 that conforms
the requirements of Lemma 12. Then, a radius €,> 0 and
constants C, . >0, ¢q o, € C* can be pinpointed sufficiently
close to 0 together with a proper radius @, > 0 in a manner
that for all € € D, \ {0}, a unique solution w,, (7, m, €) to
(83) exists such that

(i) The map

jod under the constraint
(vBopisk-p5€)

(T, m) > w,, (T,m, €) appertains  to

sup sz,d, (T,m, €) ||
eeD,,\{0}

<@,. 172
(vBkppe) = 2 (172)

The partial map € w,, (T,m,€) stands for an
analytic map from D, \ {0} into C, for any prescribed
T€S; UD, and meR.

Proof. We take the constants €, >0, C;, >0, ¢ o €C”
together with @, >0 reached in Proposition 13. We observe

1
that the closed ball B, , C F (Biky pee)
metric space for the distance d(x, y) = [|x = ¥l gk, pre)-

) represents a complete

Proposition 4 claims that # . induces a contractive map
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from (B‘Dz’ d) into itself. It follows from the classical Banach
fixed-point theorem that #’, possesses a unique fixed point
@, 4, (7, m, €) inside the ball B, , for all e € D, \ {0}, mean-
ing that

H (g (T,m, €)) =, 4 (T, m, €), (173)

holds. Furthermore, the map w, 4 (7, m, €) relies analytically
on € since %, does on the domain D, \ {0}. On the other

hand, we check that the convolution Equation (83) can be
rearranged as the Equation (173) by shifting the term

()"

from the right to the left handside of (83) and dividing by
the resulting equation by the map P, (z) given by (127).
As a result, the unique fixed point w,, (7,m, €) of ¥,

RD(\/:Im) Wy 4 (T, M, €), (174)

enclosed in sz precisely solves (83). The result follows. [J

6. Building Up a Solution to the Second
Convolution Equation (84) with (85)

In this section, we cook up a unique solution to the auxiliary
convolution equation reached in (84) with (85) inside the
Banach spaces described in Definition 4.

The roadmap follows the one of the previous section
and consists in recasting (84) with (85) into a fixed-
point equation for a certain nonlinear map &, stated in
Proposition 16.

The map &, is set up as follows. We mind the map
Wy 4 (1, m, €) stemming from Proposition 14 and the poly-
nomial P,,(7) displayed in (127). Let

Ge(w(r,m))

6p-1 Tkl
—_ a _—
(; 40p [Pm(r)r(daq/kl)

ky

T dpglk; ) -1 ds
J (‘rkl—s)( J/k) k?sqw(sllkl’m)_
s

0

T

' _Z Harp (T (dpg + ki (9 - p)lky)

(Tkl _S) (dogtky(a-p)/ky) -1 " Pw( Ukl’m) f]
)

h S) W, (Sl/kl’ m) ? <R, (\/_—1m>]

Sp-1 Tkl
(o8 e i

k

°
2 Ao P, (1)I'(6p = p)

1<p<dp-1
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k

7 dp 1k ) -1 ds
Dg! K1
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P, (z)T (dy, + Ky (q-p)iky) Jo
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—1/2J A,(m—ml,e)szspR,<v—lml>
-0

“om)

, ds ot
. a)(gl/ L m1> ?dm1]> + (61 ‘; aq,5rl

. i Jfkl (Tkl ~ S) (diglki)-1 1
P, ()T (dyylky) Jo

(27_[)1/2
+00
| = R (V) 0, (5 )

00
ds 7
-—dm, + A
s 1<1,Zq1 WP, (1) (dg +ki(q-p)/ky)
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+00
J Al(m—ml,e)klfspRl(v—1m1>w2’d1
00
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(175)
where
Fi(t,m, € 1
dy (1,m, €)= i )+ =
P,(7) P, (7)(2m)
+00
J B, (m —my, €)w(t, m;)dm,
—00
N 1 J+OOB ( )
- m—m,, €)w
P (r)(2m) o T T
1
(t,my,€dm, +cp p ————
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[ e (v o (2 -5) )

xPz(\/_m>w2d( k’m1’€>m
L[ (- m)

P3P, Pm(T)(ZT[)UZ oo o
17k,
.w((fkl_s) mm) Po(VTm Yoo, m,)
1 1 +00
. (—Tk1 —s)stdml +Cp.p P p P (r )(271)1/2J Th

[ A ()

><P6(\/_m>w2d( ,ml,)

dsdm,

dsdm1

l—s

(176)

In the next proposition, we discuss the 1/2 — Lipschitz
feature of &, on some well-chosen ball in the Banach spaces
depicted in Definition 4.

Proposition 15. Let a timely inner radius o > 0 and aper-
ture fjqp > 0 of the sector S in a row with an unbounded
sector Sy and radius p > 0 chosen to fulfill the specifications

of Lemma 12. We also take for granted the additional condi-
tion (136) required for the sector S; and the disc D,,.

Then, one can target a small radius €,> 0 along with
constants B;. >0, cp p €C*, for j=1,2 and k=1,3,5
proximate to 0, coupled to a fitted radius @, >0 in a way
that for all € € D, \ {0}, the map &, boasts the next two
properties

(i) €. maps B, into itself, where B, stands for the

closed ball of radius @, centered at 0 in the space
d,
F(vyliu,k; P€)°

(ii) The norm downsizing condition
H ge(wl) g (wZ) ||(v,,8,y,k1,p)€) le w2|| v, Btk 5p5€),

(177)

holds whenever w,, w, € F%!
P2 =5 (vBukppe)

Proof. We heed the first item asserting the inclusion. We fix

some real number @, > 0 and pick up an element w(7, m) in
d .
F(‘lj’ﬁ%kl’;”e), for e € D,, \ {0}, with

1l (v gk, ey < @1 (178)

Concrete bounds are presented for each piece of the map
g applied to w.
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The estimates for the first three blocks of &, are merely
the same as the ones obtained in (140)-(142). Namely,
owing to Proposition 8 and Lemma 12, we observe that

ky

T ™ (dpglh)-1 1/ S
e JO <Tk‘ —s) ot quD<\/jm>w<s kl,m)%

(vsPoskysps€)
G 8p-q)k
< 1@ wo(r, m))| ,
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for 1 <q <38, -1 along with
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1 i P _ 17k, _
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< ——|€|'? Haw(t,m s
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ky 4 Sp—p-1 d
el (=) (i)
n(Jo * (vsPokysps€)
G Sp—p)k
S —— s e[ oz, m)| ,
1/k,8, (vsPokysps€)
Cp(ror,) " '
(181)

aslongas 1<p<dp-—

The next two pieces of &, follow from Proposition 8 and
Lemma 12 together with the estimates (172) reached in
Proposition 14. Indeed, we arrive at

k

LJTI (T"l 75) (o) quD(‘/“m)w” (S o €> .
0

(vBatkype)
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C,
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for1<p<g-1with1<g<é,-
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The estimates for the following two components of &,
simply recast the ones obtained in (148) and (152). Indeed,

k k1 +00
T dj,lky)-1
J (‘rkl - s)( ) [ A(m—my, e)s?

Pm(T) 0
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1/k,0 I (VP p.€)’
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(184)

for 1<g<d;and 1<I<D-1 in parallel with

k k1 +00

ki dyy ke, (q-p) k-1

J (Tkl —s) kR XJ Aj(m—my, )R,
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Cp(ror,)
: Hw<T’ m) ” (v,Bpsky pi€)?

(185)

for 1<p<q-1 and 1<q<§; with 1<I<D- 1. Further-
more, the two ensuing constituents of &, mirror the one
reached in (148) and (152) and draw on the estimates
(172) from Proposition 14. Namely,

k

P dy ly )1 [0
J (Tkl—s)(lq ) J A(m—my, €)s

Pm(T) 0 —00

d
X R, (\/—lml)wzd (s”kl, my, e) —Sdm1
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1 d

- 1/k15[) C2IAI’EOCIMkv‘leéw quz’

Cp(rom,)

(186)

for 1<g<§,-1and 1</<D-1 in tandem with

k
Tkl J~T‘ (Tkl ~
Pm (T) 0

d
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Cp(ror,)
. sz»dl (t,m, €) H(v,ﬁ,y,kl)p@

Abstract and Applied Analysis

1 dy+k, (g
< ———5 GAL CM 5 |e|” i g,,

(187)
Cp (T’Q’RD) llkISD
provided that 1<p<g-1 and 1<gq<§,-1 with 1<I<
D-1.

The next element of &, we pay regard is F, (1, m, €)/
P, (1) and is displayed in (176). Its bounds are obtained in
a similar way as the ones reached in (155). Indeed,

HP/TI(T, m, €)
P, (7)

(vBopokyps€)
1 1
< ks, max
CP(rQ,RD) o meR AR (\/—17}1)

—vxk1 2k =1 j -1
x supe ¥ (1+x ’) Z Fl)jl,eoef)‘ K,

=0 el

€ (188)

which can be subsided close to 0 provided that €, > 0 is tiny
enough since 0 ¢ J;.

We handle the second and third pieces of &/ (7, m, €).
Paying heed to (153) and the bounds (55), Proposition 10
kindles

1 +00
TG J B, (m—my, €)w(t, m;)dm,

-0 (vBpoky-ps€)
1 1
< ks, max
CP(TQ,RD) 1°D me RD(\/—lm)
189
CallBym &) g (B M ey )
1 1
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Cp (rQ’RD) k0 meR Rp (v—lm)

: CZBI,SO Hw(T’ m) “ (v.Boisk5ps€)°

and bearing in mind the estimates (172) from Proposition 14,

1 +00
- B —my, T, my, €)d
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1 1
< max

CP(rQ)RD)Uk”S” meR RD(\/jm)

CyBy e, @

(190)

ensues.
Thanks to factorization (157) with (158) and the bounds
(172) from Proposition 14, we can apply Proposition 11 in
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order to address the last three terms of g (7,m,e€).
Namely,

k

L J+Oork1 JT 1 P, (\/:T(m - ml))w
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as well as

pum |, P
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s O e,
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(193)
We pin down the constants ¢, >0 and Bye, >0, cpp |

C*, for j=1,2 and k=1,3,5 proximate to 0 together
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with a suitable radius @, >0 in a way that the next
inequality
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Cp(rom, )Uk‘sD meR RD(\/:m)
) Z F1] 60611 i1

el

x supe (1 +x*
x=0
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+ ! ! ! CB, @
max | —————— |, by ¢ Wy
(27_[)1/2 CP(TQ,RD)l/klaD meR RD (\/:Im) €
+ ! ! ! CB, @
max|—— |G,B, . @,
(27_[>1/2 CP(T’Q,RD)I/kIBD meR RD< ,—_1m) €
+|cpp, | ! < @,®
PP, (27.[)1/2 CP(TQR )1/k16D 1772
>Rp
1 G 2
+ ‘CPS'PA‘ (27_[)1/2 CP(rQR >1/k16D @
>Kp
1 G, 2
+ |CP5»P5‘ (27_[)1/2 CP<T’QR >l/k15D (2)2'
»p
(195)

We check that all the terms on the left handside of
(194) except A can be tapered off since they contain pos-
itive powers of €,>0 in particular due to the constraint
(41). Besides, the constant A¢ can be lessen provided that
the constants ¢, and Bj,eo’ Cp.p,,.> for j=1,2and k=1,3,5
are taken in the vicinity of 0.

At last, stacking up all the above bounds ((179)-(193),
under the contingency (194) yield that &€, maps E’@l into
itself.

In the second part of the proof, we address the second
item of Proposition 15. Let w,,w, be elements of the ball

Bwl of the space F?Vl’w with radius @, >0 chosen as

K1.p)
in the first part of the proof.

We provide norm estimates for each part of the differ-
ence & (w;) — & (w,). The bounds for the foremost five
blocks of the difference are barely the ones found in

(161)-(165). Namely,

k;

B (dpyk, )1
P, (1) Jo <Tk1 _s) ey (\/__1’”)

(s -en(m))

(vBopikyps€)
G dp-a)k
S s €[N @y (1, m) — wy (7, m) | ,
1/k,8 (v,Bophsky pi€)
Cp(ror,) " vk pe
(196)
for 1 <q <8, -1 along with
o k1 L (d,)lq+k, (q—p)/kl)—l
J (T : —s) Ry (\/—_hn)
P, (1) Jo
d
x (w0 (s,m) — (s, m) ) =
s
(v-Bopikyspo€)
G Sp-p)k
S g €l lwy (7, m) — wy (1, m) | )
Co(ror,)"™" ! 2 (vBpkypee)

(197)
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for1<p<g-1with1<g<é8,-1and

ky 74 Sp—p-1
;J (‘rkl —s) o SRy (\/—lm)
Pm(T) 0

(ans7om) - sm))

G

(vBopiskyps€)

Sp—p)k
< |e| 0P|, (1, m) — wy(T, M) v ks prc)?

Cp(rom,) "

(198)
as long as 1 <p <&}, — 1. Furthermore,

k, 71 d Ik, )-1 [To0
! J (Tk' - s)( k) J A(m—my, e)qul(\/—lml)
—00

Pm(T) 0

ds
X (wl (s”kl, ml) - w, (s”kl, m1)> ?dml

1 d
< ———5 GAL, CiM, 5, €™

- CP (rQ,RD) 1/k,6p

w7, m) = w, (1, m) ”(v,ﬁ,y,kl,p,e)’

(v.Botikyps€)

(199)
holds for 1 <I<D -1 and 1 < g <§; together with

k

Th Jfl ( . )(dl,q+k1<q—p>/k1)—1
Tl—5

Pm(T) 0
+00
: J Aj(m—my, e)spRl<\/—1m1)
—00
d
y (wl (Sl/kl’ ml) ~w, (Sllkl’ m1)> —Sdml
s
(vBopskyps€)
1
<— _CA_CM
= 17k, 0 24 ey V147 k0
CP(TQ,RD) 19D 0 YD
d vk, (q-
- |e%a” 1l p)le(T’ m) — w,(T, m)”(v,ﬁ,y,kl,p,e)’
(200)

for1<I<D-1,1<g<é;and 1<p<q- 1. Besides, bounds
for the sixth piece of &_(w,) — & (w,) result from (189) and
are written

%J+m31 (m—my, €)(w, (T, my) = w, (7, my))dm,

-00 (vBopiskrops€)
1 1
= ko, nax
Co(ron,) RD(\/—lm)
' CZBl,eo ”wl (T’ m) W (T’ m) ”(v,ﬁ,y,kl,p,s) :
(201)
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The treatment of the seventh piece of ¥, (w,) —
springs from (191). Indeed,

?a(wZ)

ky

! roorklr P, (\/—T(m—ml))

%—m 0

. 1/k,
S ON (T‘—S) ,m—m
P 17k,
—w, (‘r ! —s) , M —m x P, (\/—lml)wz)dl

1
. (s”k', my, e) —————dsdm,
(th —s)s

(v:Bopisky»ps€)

C3
< [y (7, m) = w, (7, m)||
1/k8 (v:Poiskyps€)
Corar,) "
24, (v m.€) H(v,ﬁ%kme)
C3
S ————||w (1, m) — w, (T, m)|| @
1/k,8 1 2 (v.Bopskypre) 2
Colror,)
(202)
The hindmost term of the difference & (w,) - & (w,)

can be processed in a similar way as for the difference
(167) given by (170). Namely,

! J+Oork1JT P3(\/—(m m1)>

Pm(T) —00 0
P 1/k,
N (T ! —s) , m—m, ><P4(\/—1m1)
1 1 +00
17k, _ ky
w; (s ,ml) - s)stdml e Jioor

L))

x P, (\/—lml)w2 (sllkl, ml) T dsdm,
(th —s)s
(vBopikyps€)
< ! C
= 1/k6p 3
Co(rar,) "
(n (M)l e * 190205 M) it )
X ||lw, (7, m) = w, (T, m) ||(v,ﬁ,‘u,kl,p,e)
1
< T G320, ||w, (1, m) — w, (1, m) ||(V,ﬂ%k]’P)€).
Co(raw,)
(203)

We skirt the constants €,>0, B, . >0, and ¢p p € C",
cpp, € C* nearby the origin in a manner that the next
inequality

Sp-1 c
X 1 e(%fq)kl
<Z| q% ,q/kl) ICP(rQRD)ukléD 0
1
+ A
1<p<zq 1’ qp' gt ki(q-p)rk,)

29

C _
K 1 PPk + A
1 CP(T"Q,RD)Ukl&D ’ 15}23:1)—1’ 50)1)‘

kY o}
p~P) CP(

e(sD_P)kl
) 1k 8, 0

T

D-1
+ €y
=1

Idl

1
Z| g0, [ dl /k)w

MI
CAL CiM, 5 €+ Y |A
1<p<g-1

1
1/k,8 %p’

Cp(rom,) "
K 1
T (dy, +k (q-p)lk,) (2m)"

CoA e, O M, 5, €07 ™ ”>H +Sg

’ 1/k;®
Cp(ror,) "
1
< 5 ,
(204)
holds where
1 1 1
Sg= C2B1,
(27_[)1/2 CP(rQ)RD)I/k (SD mE]R R (\/_m) €
+lepp | — S o
PP, 172 k6, 2
2 ( ) Cp( )1/ 10D
+lepp | — = B
PP 12 k.8 1
S (27‘[) CP (erRD) K b
(205)

We notice that all the terms appearing in the left hand-
side of (204) excluding Sy, can be dwindled since they involve
positive powers of €, according to the constraints (41). Fur-
thermore, the term S¢ can be depleted whenever the con-
stants B, . >0and ¢p p € C*, ¢cp p, € C* are taken close to 0.

=0 142 344

In the end, the coupling of all the above bounds
(196)-(203)under condition (204) triggers the shrinking
feature (177) for the map &..

In conclusion, we select the radius @, >0 and pinpoint
the constants €, >0, B, >0, for j=1,2, along with ¢, p
€ C*, for k=1,3,5 nearby the origin, in a way they obey
both (194) and (204). These values taken for granted, the
map &, fulfills both inclusion and shrinking properties
described in the items of Proposition 15.

The oncoming proposition provides a solution to the
second convolution equation (84) with (85) crafted in the
Banach spaces displayed in Definition 4.

Proposition 16. Consider an appropriate inner radius rqp
>0 and aperture 1o, > 0 of the sector Sqp ~together with
an unbounded sector S; and radius p >0 that respect the
requirements of Lemma 12. Then, a radius €,> 0 along with
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constants B;, >0, for j=1,2 and cp p €C", fork=1,3,5
»€0 kot k+1

can be pinned down nearby 0 together with an appropriate

radius @, >0 in a way that for all € € D, \{0}, a unique

solution w, 4 (t,m, €) to (84), (85) exists that is favoured with

the next features

(i) the map (1,m)— w4 (7,m €) belongs to
dl . .
E(} puk,pee) under the restriction
W (004 ()] gy SO (209

v.Bopkpp€) T
eeD, \{0} Bikop.€)

(ii) the partial map € = w, 4 (7, m, €) stands for an ana-
Iytic map from D, \ {0} into C, for any prescribed
T€S; UD, and meR.

Proof. Let the constants €, >0, Bj,eo >0, for j=1,2 and
Cpp,,, € C*, for k=1,3,5 together with @, >0 be fixed as
in Proposition 15. The proposition 6 asserts that &, induces
a contractive map from the closed ball and complete space
B,, into itself for the distance d(x,y) = [Ix =¥l 5., pe)

inherited from the norm on the Banach space P .
(vBopisky»pr€)
The classical Banach fixed point theorem then claims

that &, boasts a unique fixed point w, ; (7, m, €) inside the
ball B, , for all e € D, \ {0}. In other words,

Ge(wig, (T m, €)) = w4 (7, m, €), (207)

holds. Furthermore, the map w, 4 (7, m, €) depends analyti-
cally on € since &, itself does on the domain D, \ {0}. On
the other hand, we observe that the convolution equation

(84) can be reorganized as the equation (207) by moving
the term

(klrkl)(SDRD (\/—_lm) wy g4 (T, m, €) (208)

from the right to the left handside of (84) and dividing by the
resulting equation by the map P, () given by (127). As a
result, the unique fixed point w, ; (7, m, €) of &, penned in

Bwl precisely solves (84) and (85). The result ensues. O

7. Building up a Finite Set of Holomorphic
Solutions to the Coupling of Partial
Differential Equations (66) and (67)

7.1. Fourier-Laplace Transforms Solutions to the Pairing (66),
(67). In this section, we exhibit genuine analytic solutions
expressed by means of Fourier-Laplace transforms to the
coupling (66) and (67) reached at the end of Subsection
3.1.
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Proposition 17. For all unbounded sectors S; with bisecting
direction d; € R and disc D, that obey the demands of
Lemma 12, we introduce the two partial maps

(upz) = Uj,dl(ul,z, €)
k] +00

= w;q (T, m; €)

1/2 I
(271) Ldlm —-00

k;
- exp <— (i> > e 1em dr dm,
u, T

for j=1,2, for all € € D, \ {0} where the Borel map w,, is
manufactured in Proposition 14 and solves (83), the Borel
map w, 4 is crafted in Proposition 16 and fulfills (84) and
(85), and the radius €, > 0 is taken in agreement with Propo-
sitions 14 and 16 and Ly, = [0,+00)e" 1 stands for a half-
line in a direction d;, €R suitably chosen and described
below.

The maps U, 4 (u;,2,€), j=1,2, are endowed with the
next two properties.

They define holomorphic functions that are bounded by a
constant not relying on & on a product U;; x Hp where

U,q, represents a bounded open sector centered at 0 with

(209)

bisecting direction d,, for any given 0< ' < .

(i) The map U, (u;,z, €) solves the Equation (66) for
prescribed initial data U, (0,z,€)=0. The map
Uia, (4,2, €) is subjected to the Equation (67) for
vanishing data U, ; (0,2, €) =0

The sector U, is submitted to the next technical
constraints:

(1) A positive real number A; > 0 can be singled out with
the next property: for all u; € Uy, , a direction d,

€ R (that might rely on u,) can be favoured with
e/ 1 ¢ Sa,»cos (k;(d;, —arg (u;))) >4, (210)
(2) The radius ry >0 of U, withstands the next
upper bounds
ik, ___|€l

0< TULdl <A1 m,
v+d,)

for some positive real number A, > 0, where A, > 0 is
defined in the above item.

(211)

Proof. We discuss the first item of the proposition. We mind
the maps w, ; and w, ; constructed in Propositions 14 and

16, and we select a bounded sector U, ; that matches the
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above prerequisite (210) and (211). We set u; € U;; and
take

T=re’ % ¢ L, ,

Luy

(212)

for given real number r>0 where d,, is the direction

chosen above. Then, then next two inequalities for the Borel
map hold.

(i) A constant @, >0 can be found for which the next

bounds
ky
exp (-(l) )Heﬁm‘
Uy
u —glml L r\k
< @,(1+|m|) e P! ‘H exp <V<E> )

- exp (— <ﬁ> " cos (k;(d,,, —arg (”1))))

~m Im (z)

’ 1

w34, (7, m,€) -

-e

<@,(1+ |m|)*P’e*(5*ﬁ')\m\% exp (V <é>k1>
r ky
o ( () Al)
<01+ ) e I L exp ( <|Ak>k>

(213)

hold for all >0, all m € R.

(i) Similarly, a constant @, > 0 can be singled out with

the bounds
ky
U
i —(B=p"\im| 1 A
<@, (1+|m|)¥e (BRI ‘E exp (—(@)Tka,

(214)

’ 1

Wy g, (1,m, €) .

provided that r >0 and m € R.

As a result, we reach the next two upper bounds for the
maps U;;, j=1,2. Namely,

k@, [t 1 A
U Uy, 2, € S—l 2 J — ex Y rkl
| Z'dl( 1 )| (27_[)1/2 0 |€‘ p |€|k1

+00 '
-er e (BB)Iml gy

—00

k@ +00 - +00 .
[ on o

—00

(215)
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by means of the change of variable r = |¢|r; in the integral
together with

‘Ul,dl(ul, zZ, €)| <

klwl +00 ~ kl
(27_[)1/2 Jo exp (—Alrl )dr1

. J (B8 )l g

—00

(216)

for all u; €Uy, z€ Hy and all e€ D, \ {0}. We observe

that the right handside of both (215) and (216) are uncon-
strained constants relatively to € on D, \ {0}. The first item

ensues.
Concerning the second item, we remind from Proposi-
tion 14 (resp., Proposition 16) that the Borel map w,; (7,

m, €) (resp., w4 (T,m, €)) is shown to solve the associated

convolution Equation (83) (resp., (84) and (85)). By tracking
reversedly the computations made in Subsection 3.2, we
deduce that for all € € D, \ {0}, the next properties hold.

The holomorphic map U,, (4,2 €) given by the
expression (209) for j =2 obeys the Equation (81), then ful-
fills (76) and finally solves (66) on the domain Ui xHpg,
for prescribed initial data U, ; (0,2, €) =0.

The holomorphic map U, (4,2, €) expressed in the
form (209) for j=1 conforms to the Equation (82), then
satisfies (77) and finally is subjected (67) on the domain
U,4, X Hp, for vanishing initial data U, ; (0,2, €) =0.

The second item of Proposition 17 follows. O

7.2. Construction of a Finite Family of Genuine Solutions to
the Coupling (66) and (67) and Sharp Bounds for the
Neighboring Differences of Related Maps. We need to refer
to the usual definition of a good covering in C* given in
the textbook [37].

Definition 18. Let ¢>2 be an integer. We consider a set
&={%,} of open bounded sectors &, centered at
0<p<e-1 p

0 endowed with the next three properties

(1) The intersection of two neighboring sectors &, and
&,,1 is not empty for any 0<p<¢-1, where the
convention &= & is chosen

(2) The intersection of any three sectors &, &, and &,

for distinct integers p,q,7 € {0, -+, ¢ — 1} is empty

(3) The union of all the sectors %P is subjected to

)

_1 U
© = ___

Vs = op (217)

Il
(=]

for some neighborhood U of 0 in C.

Such a set & is designated as a good covering in C*.

The next definition displays some domains in C which
are crucially involved in the set up of genuine solutions.
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Definition 19. We consider two finite sets of bounded open
sectors centered at 0,

%1 = {Ul,dp}ogpsc_l’gz {%P}ngsc—l (218)

and a bounded sector I centered at 0, for which the next list
of constraints is required.

(1) For each 0<p<¢-1 and fixed e€D, \{0}, for
some given radius €, > 0, the sector Ui, has bisect-

ing direction d, € R and obeys the next three rules

(i) For each 0<p<¢—1, one can single out an
unbounded sector Sdp centered at 0 with bisect-

ing direction d,, that is subjected to the require-
ments of Lemma 12 (namely, for which the
lower bounds (131) and (132) hold).

(ii) For each 0<p<¢—1, a positive real number
A, >0 can be selected in a way that for all u,
€Uy, a direction d,, (that might depend

on u,) can be found with

VT

/M €Sy, cos (ky(dy,, —arg (1)) > 4.

(219)
(iii) The radius r;, >0 of U, is constrained to
Ldp >p
the next upper bounds
€l

~ N\ Uk’
(v + Ap)

for some positive real number Ap >0, where
Ap > 0 is determined in the above item.

0<ry,, < Ak (220)

(2) The radius ry >0 of the sector I satisfies the
restriction

1/k,
N

~ N\ Uk’
(v + Ap)

where A, Ap are specified in 1. for 0<p<¢-1.

< (221)

2

Besides, the sectors &, share a common radius given
by €, for 0<p<¢—1.

(3) Forall 0 <p<¢ -1, the sectors %P and I stick to the
feature
etelU,, (222)

provided that e€ &, and t€ 7.
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(4) The set & stands for a good covering in C*. Further-
more, the aperture of the sector I is taken nearby 0
in a way that the set

e c—1
I = {pe {0675} ¢ (~00,0], forall € € %p,auteff},

(223)

is not empty.

These sets %, and & and the sector I form a so-called
fitting collection of sectors.

In the next proposition, we shape a finite family of
analytic solutions to the coupling of auxiliary problems
(66) and (67).

Proposition 20. We consider a fitting collection of sectors % ;,
&, and T in the sense of Definition 19. The solutions to (66)
and (67) are cooked up as follows.

Equation (66) possesses a finite set of holomorphic
solutions (u,z) — Uz)dp(ul,z, €), for 0<p<¢—1, on the
domain Uja, xHpg, for all € € D, \ {0}, where €, is proxi-
mate to 0, for any 0< ' < B, that fulfills the initial condition
Uz, (0,z, €) = 0. These maps enjoy the next two qualities: for
each 0<p<¢—1,

(1) The map (u;,z) — Uz)dp(ul,z, €) is bounded by a
constant unconstrained to € in D, \ {0}, on the
product Upa, xHpg.

(2) The map Uz,dp(ul,z, €) is represented as Fourier
inverse and Laplace transforms

+00
ki J J wz,dp(T’ m, €)
d

Uz,dp(“p z,€) = (27[)1/2 .
—00

12101

K,
- exp <— (l) ) e/ rem dr dm,
u, T

(224)

where the Borel maps (T, m) — W4, (t,m, €) apper-

tain to the Banach space.

d
, .
F (v pie) OT€ subjected to

<@,

(225)
(VBophsksp5€)

sup )

w4 (T, m, €)
eeD, \{0} ’

for suitable constants @, >0 and radius p >0, for all €€
D, \{0}.

Equation (67) (where the expression U,(u,, z, €) needs to
be replaced by Uz,dp (u;, z, €)) owns a finite set of holomorphic

solutions (u;,z) — Uz,dp(”p z,€), for 0<p<¢—1, on the
domain Uq, x Hg, for all € € D, \ {0}, where €, is closed
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to 0, for any 0< B' < B, with the initial condition Ui, (0,2,

€) = 0. These maps are endowed with the next two features:
foreach0<p<¢—1,

(1) The map (u;,z)— U1,dp(”1,z) €) is bounded on the
product Uja, xHpg by a constant not relying to € in
D, \{0}.

(2) The map Ul,dp(ul,z, €) is expressed by means of a
Fourier inverse and Laplace transforms

k1 +00
Upg, (412, €) = WJL J w4 (T m, €) exp
dpy, ¥ T

k;
. <— (l) > e/ 1em é dm,
u, T

(226)

where the Borel maps (t,m)— wl,dp(‘r, m, €) are
crafted in the Banach space.

d
F(‘p”ﬁ’ﬂ»kpp,e) with bounds
Sp [0, (5 m€) <a, (227)
SEDe{,\{O} P (v Bakpe)

for appropriate constants @, >0 and radius p >0, for all
eeD, \{0}.

Proof. Proposition 20 is a downright consequence of Propo-
sition 17 and of the very definition of fitting collections of
sectors depicted in Definition 19. O

In the next proposition, we examine a finite set of maps
related to the analytic solutions of the coupling (66) and
(67). In particular, we obtain a control on their consecutive
differences which turns out to be an essential information
in the study of their parametric asymptotic expansions.

Proposition 21. Let us prescribe a fitting collection of sectors
U,, &, and T in accordance with Definition 19. For each
0<p<¢—1, we set up the maps

uip(t:2,€) = Ujg (et, 2 €), (228)

for j=1,2, where Uja, are described in Proposition 20. The
next attributes hold: for all 0<p<¢-1,

(i) The maps u;,(t,z,€), j=1,2, are bounded holo-
morphic on the product T xHg x &, and satisfy
u;,(0,z,€) =0,
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(ii) One can exhibit constants M,;>0 and K,;>0 such
that

Ky,j
|Ujpri (12 €) =14, (£, 2, €)| <M, ; exp _W ,

(229)

forallte T, allec &, ,N&y,allzeHp, forj=1,2,

where we adopt the convention u;. = u;,.

Proof. The first item is a direct outcome of the properties of
the maps Ujg,i=12 stated in Proposition 20 and from the
characteristics 2 and 3 of the sectors &, and J listed in

Definition 19.

The second item follows from a path deformation argu-
ment. Indeed, let us take p € {0, --,¢— 1} and j € {1, 2}. For
any given m € R and fixed € € D, \ {0}, the partial maps
T w;, (1,m, €), k=p,p+1, represent analytic continua-
tion on the sector §; of a common analytic map we
denote 7+ wj(T, m, €) on the disc D,.

For any prescribed € € &,,, N &, and t € 7, we deform
the oriented path Ly, —La into the union of three ori-

ented curves

(i) Two halflines

d
a2 T [P/2,+Oo)eﬁ e [,

Ld p.et3PI2
oV et

P

(230)
=—[p/2,+00)

(i) An arc of circle

pl2eV 10
Cp,p+1,et;p/2 = — a9

centered at 0 with radius p/2 that connects the above
two halflines.

€ (dp,et’ dp+1,et) }: (231)

Then, the classical Cauchy’s theorem enables us to
reshape the next difference into a sum of three contributions

Ujpe (52, €) = uj (1,2, €)

kl J J+OO ( ) < T\ ki
_ R wyay (mm &) exp (L) )
(27T) " Layy1,eror? —0 M et
. eﬁzmﬂd kl J

+00
o dm (271)”2 J wj)dp(‘r,m,e) exp

Ldp,el:plz -0

ky d k
. (—(1) >e‘/‘_lzm—Tdm+ —11/2J
et T (27-;) c

p.p+1et;pl2
+00 k dT
. J wj(T, m, €) exp (— (l) 1) AL )
—oo €t T
(232)
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We provide upper bounds for the first piece of (232)

1=

kl J +00
_— w; T,Mm, €

12 j»d, (’ > )
(27-[) Ldp+l’€t;P/2 -0 -

- exp (— (é) kl) e/ tem ? dm

Based on the bounds (213)-(225) and (227) together
with the requirements asked in Definition 19, we arrive at

(Dk +00 ’ +00 1 A
I, < jill/zj e‘(ﬁ—ﬁ )\mldm % J ~exp | - p;l i gy
(27)" ) oo pi2 L€l le]
2(Dk +00 ’ +00 ky
< JI}ZJ o (BB )mdmxj EIC i 1
(2m)"* )o o2 |€] Ay k ki

. —Apﬂ k7t exp ——Ap“ i dr
e+ ER
1

20k 1 |eft!
<

provided that €€ &,,, N &, 1 €T and z € Hp.

In the same vein, we can get upper bounds for the
second piece

kl +00
2 W JLd 13pI2 J—oowj)dp (T’ " e)
Pe (235)
TN&Y g dT
. Y zm 7d R
e ((3)" Jesram
of (232). Namely,
|| < 20k 1 Jef 1 exp (-2 (B)kl
@m)2p-p 4, k(pr2)" e \2
(236)

forallee &, ,N&, teT andzeHp.

At last, we handle the integral along the arc of circle clos-
ing (232),

I, =

+00
J w;(T, m, €) exp
(69)

.

pp+letp2 !

() et
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Owing to the bounds (225) and (227), we observe that

2 2 ky
)] < @1+ i e P exp ( o )
€ 1

(238)
aslongasteC

pprletpr MER and e € &, N &, Besides,

in view of the restrictions discussed in Definition 6.1, it
follows that

cos (k (0 —arg (et)))> A

ppe1 =MiN (A, A

p+l)’ (239)

forallt€ T, e€ &,,; N &), granted that the angle 6 belongs
to (dyep dpirer) O (dpyy e dye). By virtue of (238) and

p.€et>
(239), we come up with some constant A, ., >0 with

ppt
. +00 '
T -co

Gt 1 (p12)" (p/2)" P
X —exp | v exp | — A ~do
Jdp,e[ el P( |€|k1 p \et|k1 o+l | 5
2k, @

- 1 _Ap,pﬂ P\ P
< (271)1/2(/3_/3,> |dp i1t dp,et|H exp ( €™ (E) >§’

(240)

contingent upon t€ 7, €€ &,,; N &,, and z € Hy. Hence,
we deduce that

2k, @; pl

< W |dp+1,et - dp,et| > m

o (R0 (U5 )
(241)
< ke
e (5-#)

A k,
exp [ ——222L (B) ,
P < 2|€|k1 2

holds, where

|d

P
p+let dp,et’ 5 (gk

1Py i1

A K,
i -spren (<27 ()], o)

x>0

aslongas €€, ,N&, €T andzeHp.

In summary, the splitting (232) along with the bounds
(234), (236), and (241) beget the awaited estimates (229). [
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8. Main Statement of the Paper:
Construction of a Finite Set of
Holomorphic Solutions to the Leading
Problem (37)—Description of their
Parametric Asymptotic Expansion

8.1. Parametric Gevrey Asymptotic Expansions of the
Associated Maps (228). We first call to mind a result known
as the Ramis-Sibuya theorem, see Lemma XI-2-6 in [37].

Theorem 22. Let {&,} be a good covering in C* be
0<p<¢-1

fixed as described in Definition 18. We denote (F, ||.||p) a

Banach space over C. For all 0<p<¢—1, we set G,: &,

—> F as holomorphic functions that obey the next
requirements

(1) The maps G, are bounded on &, for all 0<p<¢—1

(2) The difference ©,(¢) =G,,,(€) - G,(€) defines a
holomorphic map on the intersection Z,=&,,,N &,

which is exponentially flat of order k,, for some inte-
ger k; > 1, meaning that one can select two constants
C,» A, > 0 for which

A
16,(e)|[=<C exp( ﬁ) (243)

holds provided that e € Z,, for all 0<p<¢—1. By
convention, we set G. =G, and &_=&,,.

Then, one can find a formal power series G(€)=
Y.20G,€" with coefficients G, belonging to F, which is the
common Gevrey asymptotic expansion of order 1/k; relatively
to € on &, for all the maps G,, for 0 < p < ¢ — 1. It means that

two constants K,, M, >0 can be singled out with the error
bounds

N
N+1
G,(€)= ) G,e" SKPM;\’“F(I * )|€|N+1,
n=0 F 1
(244)

for all integers N >0, all e € &, all 0<p<¢— 1.

In the next proposition, we exhibit asymptotic expan-
sions of Gevrey type for the two sets of related maps intro-
duced in Proposition 21, {u;,(t,z e)}ogpgc_l, ji=1,2,

relatively to the variable e.

Proposition 23. We denote Fy g5 the Banach space of
bounded holomorphic functions on the product 7 xHg

which are C —valued, equipped with the sup norm. Then,
for j=1,2, a formal power series

ZG t,z)—

n=0

(245)
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with coefficients G, ;(t,z), n >0, in Fg 5 can be shaped that
obey the next error bounds. For all 0<p<¢—1, two con-
stants K, ;> 0 and M, ;> 0 can be chosen with

N n
€
sup ‘u (t,z,€) - ZGM(t Z)W
teT n=0 :
ZEH/jr (246)
N+1 N+1 N+l
Ky (0,) ' (10 5D e

for all integers N >0, all € € &,,.

Proof. Let j=1,2. For all 0<p<¢—1, let us define the
maps G;, : &, — Fp 5 by the expression G;,(€):=(t,z)
—u;,(t,z,€). For 0<p<¢-1, these functions share the
next two features:

(i) The maps
tor &, according to the first item of Proposition 21

G;, are bounded holomorphic on the sec-

(i) The differences ©;,(€) = G, ,.;(€) - G, ,(€) are sub-
mitted to the bounds

K, .
Ol <My (7). o)

for the constants Mp,j >0 and Kp,]- > 0 obtained in

Proposition 21, whenever € € &,,; N &,, where the
convention G; . =G;, and & =& is in use.
As a result, requirements 1 and 2 of Theorem (22) are

matched for the sets of maps {G]P}0<p<c pJ=12. We

deduce the existence of formal series GJ( €), j=1,2, which
are the Gevrey asymptotic expansion of order 1/k, relatively
to € on &, shared by all the maps G;, for 0 <p <¢ - 1. This
is tantamount to the statement of Proposition 23 and the
awaited bounds (246). O

8.2. Statement of the Main Result. The next statement stands
for the pinnacle of our work.

Theorem 24. Let us prescribe a fitting collection of sectors % ,,
&, and T accordingly to Definition 19. We take for granted
that all the conditions (38)-(45), (47)-(49), (54), and (55)
enumerated in Subsection 2.2 are fulfilled.

Then, provided that the constants €y>0 and C;. >0,

B, >0, j=1,2, along with ¢, o, € C* and Cpp,, € C* j=

1,3, 5 are nonvanishing and taken proximate to 0, the main
equation

Q(0,)u(t, z, €) = (et)™(td,)° Ry (3, ) u(t, z, €)
+ 3 IeAlt 4q,(z, €)(td,)°'R,(D, )u(t, z, €)

=1
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+f(t,z,e)+c1(z,e){

1 . .
o in (ve —idu(t,z, 6)}

- log (et) + b,(z, €)

: {u(t, z€) - L \/1—_171 (y: - id)u(t, 2, e)} log (et)}

+by(z€) % (v - idyu(t, 2 €)
00,010, |7 (42 - .2, )
< Q02) [ 0~ date 5 )
<log (ef) + e, P, (2.
ez | = idpute 2 )| g (o)
P2 | (02 =i, 2,)] . Pr(20)
(b 2€) = |5 47 = a2, €)| o er)
<Pi(0) |ult 2 €)= | (42 it 2, )| log 1)

+cpp P5(0,) {

1 . .
S (e )

1
X Pg(0 . —id)u(t,z, €) |,
02 |5 (2 = i)l )|
(248)
with vanishing initial data
u(0,z,€)=0 (249)

possesses a finite set of bounded holomorphic solutions (¢, z,
€) — u,(t, z,€), for all p €I, where I, is the subset of {0,
---,¢— 1} introduced in item 4 of Definition 19, on the
domain I x Hy X &,,. In Equation (248), the formal mono-
dromy operator around 0, y. acts on the analytic map €
u,(t, z, €) through Definition 2 by use of (34). The next addi-
tional features hold.

(i) For each p €1,, the solution u, can be expressed by

means of a Fourier/Laplace transform

uy(t, 2, €) = ,(t, 2, €) + Uy, (1, 2, €) log (et),

(250)
where
k] +00
u;,(t,z, € =—J J w4 (T,m, €
P ) (27_[)1/2 R . ]'dp( )
T\ ki \/szdT
exp( (E) )e 7dm,
(251)
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for Borel maps (t,m) = w;,; (7, m, €), j=1,2, that

14
d,
belong to the Banach space F” v under restric-

tions (194) and (196).

Botsk ,p€)

(ii) The two components u;,(t,z, €), j=1,2, of u,(t,z,

€) are endowed with Gevrey asymptotic expansions
Gj(e) given by (245) of order 1/k, relatively to € on
&, displayed in (246).

(iii) If one sets the formal expression

G(e) =G, (e) + G,(e) log (et), (252)
then, G(e) conforms to the next equation

Q(0.)G(e)
= (et)* (19,)°"Rp(2.)G(e)

+ Y eMthiay(z, €)(t3,)"Ry(3,)G(€) + f (£ 2, €)

I=1

i id)@e)] log (et)

[ (e)- [—( (- id)6(e)

- log ( €t]+b2 \/_ (y: —id)G(e)
(

ca, @)[2 (i) ()}

+¢p Py (az) G(E)— 2\/:7_[()}6 ld)G( )
log (e)| x(0.) | 12 - (o)
1, P3(20)[B(6) = | (v = id) ()

- log (e1)| xP,(2.)|6(¢)

- [ﬁ (y: - id)é(e)] log (et)]

+cpp P5(0,) [ﬁ (ve - id)@(e)}
<Po(20) | (=B |

(253)

where the formal monodromy operator around 0, y,

acts on the formal expression € — G(€) by means of
the formula (32) from Definition 1.
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Proof. For all p € I, where I, is the set described in item 4 of
Definition 19, we define

uy(t,z,€) =uy,(t, 2, €) + U, ,(t, 2, €) log (et), (254)
where the maps u;, are introduced in (228) of Proposition 21.
As a result of the definition of I, together with the
first item of Proposition 21 and the classical limit
lim, ,x* log (x) = 0, for any natural number « > 1, we check
that the map u,(t,z, €) represents a bounded holomorphic
function on the product X Hy x &, that vanishes at =0,
meaning that ,(0,z,e)=0forall z € Hﬁ, and e € &,

According to Proposition 20, we know that for each
e€D, \{0}the map (u;,z)— Uz)dp(ul,z, €) stands for a
solution of Equation (66) on the domain Upa, xHp.

The map (u;,z) — U1,dp(”1) z, €) embodies a solution of
(67) where the expression U, (u,, z, €) is asked to be replaced
by Uz,dp(”p z, €) on the domain U, x Hg.

Then, on the basis of the computations (65), (63), and

(62) performed reversedly from Subsection 3.1, we deduce
that u,(t, z, €) solves the main Equation (37), rephrased as
(248), on the domain I x Hﬁf X %p, forall pel,.

The first item of Theorem 24 follows from the Fourier/
Laplace representation of the maps Uj,dp(ul,z, €), j=12,
displayed in Proposition 20 that are used to define the com-
ponents u;,(t,z, €) in (197).

The second item of Theorem 24 merely restates the
result obtained in Proposition 23.

We focus on the third item. We first need to disclose par-

tial differential equations that the maps u;,(t,z, €), j=1,2

turn out to fulfill. Indeed, the usual chain rule enables the next
computation

t0,u;,(t, 2, €) = (ulaul Uj,dp> (et,z, €), (255)
forall 0<p<¢-1,j=1,2, provided that t € 7, € € &, and
z € Hp. According to the statement discussed in Proposition
20, the partial map (u;,z) — Uz, (uy, z, €) matches Equation
(66) on the domain Upa, xHp, whenever € € D, \ {0}; we
observe that the map u, ,(t, z, €) satisfies the next equation
d
Q3.)1 (122 €) = (1) [ (80, Rp (3. )1, (1,2, €)]

D-
+ Z e“ta)(z, €)(t0,) " R)(D,)uy (1, 2 €)
=1

,_‘

+ Fy(et,z, €) +¢,(2, €)uy, (1,2, €)
+ CQsz [Ql (az)uZ,p(t) Z, e))}

x [Qy(0,)u, (1,2, €)],
(256)

aslongast €7,z € Hy,and € € &,. On the other hand, since
the partial map (u,z) — Ul)dp(ul, z, €) obeys Equation (67)
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on the domain Ura, x Hgs for ee D, \ {0}, it follows that
the map u, ,(t, z, €) fulfills the next equation coupled to (215),

Q3.)u1,p(1:2:€) = (et) [(12,) R (3. )y (1,2, €)
+85(t2,)° Ro(8. )t (1,2, )|

D-1
+ ) etha(z, )| (10, MR8,y (2 €)
=1

+8,(19,)° R0, (12, €)|
+F(et,z,€) + by (2, €)uy (1, 2, €)
+b,(z, )uzp(t zZ, €)
+CPP[ 1(0 )“1p(t Z, )]
X [Pa(0,)u, (1 2, €)]
+Cp,p, [P3( z)ulp(t 2z, )]
X [Py(0,)u (1 2, €)]
+ Cp,p, [Ps(az)uZp(t Z )]
X [Ps(0,) (1 2, €)]
(257)

provided thatt € 7, z€ Hy and e € &,,.

The next classical result (stated in Proposition 17 p. 66
from [19]) will be essential to deduce recursion relations
for the coefficients G,,;(t,z), n>0 of G, j(€) from the partial
differential equations that govern the components uj,(t,z,

€),j=1,2. O

Proposition 25. Let f : G — F be a holomorphic map from
a bounded open sector G centered at 0 in C* into a complex
Banach space F equipped with a norm ||.||. The next state-
ments are equivalent

(i) There exists a formal power series f(€) = Y usof n€" 0!
in F[[€]] which is the asymptotic expansion of f on G,
meaning that for all closed sector S of G centered at 0,
one can associate a sequence (c(N, S))y, of positive
real numbers such that

o(N,S)elN,  (258)

H Zfe/n'

for all € €S, all integers N > 1.

(i) All n— th derivatives of f denoted f)
uous at 0 and satisfy

(€) are contin-

lim =0, (259)
e—0

eeG

f(n)(e) _fn E

for all integers n> 0.
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We first derive some recursion relations for the coeffi-
cients G, ,(t,z), m>0. To that aim, we take the derivative
of order m >0 on the left and right handsides of (256) rela-
tively to € for any integer m > 0. Indeed, owing to the Leibniz
rule, we deduce

Q2,02 (1,2, €)

|
= Y (00 ) (12, Ry 0.)

m+m,=m

D-1 m|
- [0 uy (1, 2, €) +Z Z ]

I=1 my+my+ms=m
- (0T e™)th x [(022ay(2, €))]
x (t0,)"R)(2,) [0 uy (1, 2, €)] + OL'F, (et, 2, €)

+ Z #r'n'[a ey (2, )]x[a?zuz,p(t,z,e)}

m+m,=m

T Z

1 [Qu(0.)00 1, (82 €)]

x [Q,(0,)07 1y (1,2, €)],

ml'm2

(260)

for all m>0, all t€J, zeHp and €€ &,. Owing to the
asymptotic expansion (246) for j=2, the application of
Proposition 25 yields the next limits

lim sup 08U, (.2, €) = G, 5 (1, 2)| =0,

e—0 teT

66% ZEHﬁ,

(261)

for all integers m >0 and any given 0 <p<¢—1. We let €
tend to 0 on the sector &), in the above equality (260) and
with the help of (261) combined with the observation that
both maps u,,(t,z, €) and G,,,,(t, z) are holomorphic with
respect to (t,z) on the product X Hp, we reach the next

relation for the coefficients G, ,(t, z), m >0,
Q(az)Gm,Z(t’ Z)
= m! m e dp, o
- mﬁ-;z =m myIm,! <a )(O)t (£0:)

- m!
"Rp(0:)Gp,2(1:2) + Z Z mylm,\m;)

I=1 m+my+mz=m
(9™ (0)t% x [(0¢2ay) (2, 0)]
X (taz)‘isl(az)Gmyz(t, z) +01'F, (et z, €) =0

b Y @) (20)] X6y a(62)

my+m,= mml'm !
m!
+¢ ——1Q,(9,)G,, ,(t,2)
Ql)szﬁ%‘;:m mllmzl[ 1\Y2)Pm, 2 ]

X [Q(0.)Bp,2(1:2)],

(262)

for all m >0, provided that t € 7, z € Hp.
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This enables us to display some partial differential equa-
tions fulfilled by the formal expansion G,(€). Namely, we
know that the maps e+ e, e €%, e a)(z, €) together
with € — F,(et, z, €) are analytic on the disc D, . Their con-
vergent Taylor series are expressed as

i _ y (92€™)(0) ,,
€ —mZO - €,
_ v (07e™)(0) ,

al(z’ 6) = m!

>

m=>0

>

¢ (Z, 6) — Z (a?cl)(z 0) emn

|
m=0 m:

(264)

le=0 m

07'F,(et,z, €),,_
— "

F,(et,z, €)= Z

|
m>0 m

forall € € D, . Then, departing from (245), we get the formal

Taylor expansion of the next pieces that involve G,(e).
Namely,

(et)® (13, Rp(3.)6s )|
(07 e?)(0)

eyl 3 SO

m=0 | my+m,=m

- (10,) Ry (2,) —e2 )

eVtha(z, €)(19,) R

o7 e (0 "2a;)(z,
eg] 3 g

m20 | my+my+my=m

X (19,)"1Ri(0,) —2 =

my]
3 (265)
along with
(2 e)@z_ (€)
[Qi( )éz(e)]X[Qz(aJGz(eﬂ (266)
:go ,,,1;2 :Ql(az)iiT'IZ(t’ 2)}
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As a result, relation (262) and the above formal expan-
sions prompt the next partial differential equation satisfied

by @2(€)>

Q(3.)6,(€) = (1) [(13,) Ro(3.)Gs €)|

+ Y etlha(z,€)(1d,) " R (2,)B(¢)

I=1
+ F,(et, z, €) + ¢, (2, e)@z(e)

+cq,0,[Q1(9.)G5 (€)] x [Qy(0,)G (e)]

(267)

In the next part of the proof, we exhibit recursion rela-
tions for the coefficients G, (t,z), m>0. We proceed by
taking the m — th derivative of both handsides of (257) with
respect to e for any given integer m > 0. Indeed, the Leibniz
rule yields

Q@) (1,2 €)
mr i
]

[ta %RD a 2u1,p(t,z, e)}

+0p(t3,)° " Rp(2,) [00uy , (1, 2, e)”
D-1 o

+ 7 x am] €Al td’
;ml+m§m3:m mllmz!m3! [ € ]

X [(@2a) (@ €))% [ (1) Ri(@.)[ (31 m,) (2. €)]
+8,(19,)° 7 R(8.)[(3]" ) (1.2:6)] | + 0 (Fi (et 2.¢)

Py @)@ o) (0, (7))

m=m,+m 'm|
m! . ;
D CIACER CEIE)
m! .
v, T g PO O ) (62 0)

X [Pz(az) (52"2 ”2,p(t> 2, 6‘)}

m! m
+CP3P4 Z W [P?)(az) (aelul,p) (f, Z, 6)]

m=m,+m,

X [P4(0,) (072 uyp(t, 2, €)]
m!
g Y [P0 (00 ,) (12 €)]

m=m,+m,

X [P6(az) (8:‘2 ”2»17) (t,z, e)] ,
(268)

for all m>0, all teT, zeHﬁr and €€ %P. Besides, the

asymptotic expansion (246) for j=1 warrants the applica-
tion of Proposition 25 in order to reach the limits
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lim sup |07'u,,(t, 2, €) = G, (t,2)| =0, (269)
20 e
€c pZGHﬁ/

for all integers m >0 and any prescribed 0 <p<¢—-1. We
allow the parameter € to get close to 0 in relation (268).
Based on the above limits, (269) combined with (261) and
the fact that the maps u;,(t,z, €) and G,,,(t, 2), j= 1,2 rely
holomorphically in the variable (¢,z) on the product I x
Hp, we obtain the next relation for the coefficients G,,,; (t,
z), m=0,

Q(0,)G,,1 (1 2)

> [( o)

[ (3,)°"Rp(2,)G,, , (1, 2)
+6D<ta,> Rp(2.)Gy,(2)]

-1

Z ml!

m; A d
5 oy emtrmym m,lm,lm,] X [(aele 1)(0)]t l

X [(30ar) (2, 0)] x [ (£0,)" R(2.)G, 1 (1:2)

+

+81(12,)° 7 RI(8.)G,, (1, 2)] + O (Fr(et2,€)) g
+ Y (0062 0)] Gy (12)

- L!Z_Ka;"lbzxzm]xﬁmz,zu,z)

X [pz(az)Gm Z(t Z)]

m!
+c —_—
P3P, Z | |
m=m, +m, mymy:

X [P4(0,)Gp,1(1:2)]

m!
+cC ]
PsPg Z | |
m=nm, +m, myim,.

X [P6(az)Gm2,2(t’ Z)] >

[P3(9,)G, 1 (1:2)]

[P5(9,)G,, 2(5:2)]

(270)

for all m >0, whenever t € 7 and z € Hp.

This latter recursion relation leads to some partial differ-
ential equation governing the formal expression G, (€) given
by (245). In the process, we use the convergent Taylor

expansions (263) together with

0"F, (et z, €), _
Fl(et’ z, e) = Z %em)
"= @) ’0) (271)
€j Z, m
bi(z, €)= Z #e ,

m=0
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for j=1,2 which are valid for all € € D and from which
the next list of computations are deduced

(et)™ |(12,)°Rp(0.)5 (€) + 35(13,) " Ro(2.)Gs )|

AP

m>0 | m=m;+m,

(8¢"e™)(0)

!
m;!

IR
810, Ry 2,) 122 H ¢,

a2, €) [ (9, Ry(2,)8 (€) + 81(19,)" ' R, (2.)6; (e)

3 3

(0e*)(0) _ (@7a)(z,0)

m=0 [ my+my+my=m ml! mz!
G, (. 2)
S AN
J[CORICRE
3!

G t,
0,19, Ry (2, 2 )H

m;!
(272)
along with
b €16(e)= 3 [ y & f;l)fz P OmaC) e
(273)
for j =1, 2. Futhermore, the next identities hold
[P1(0.)G (€)] x [P>(3.)G,(e)]
_ Gml,l (t’ Z)
B rgo m:r;-*-mz [Pl(aZ) mI! :| (274)
X |:P2(az) sz;’;i!t) Z)H €
with
[P3(0.)Gy (€)] x [P4(0.)G (¢)]
G, 1(t
=mz>0 m:mzwn |:P3<az> mlr)nff Z):|
x |:P4(az) Gml};j? Z)H e,
(275)

[P5(3,)G,(€)] x [P5(2,)G, ()]

SN I NRENCEE

m20 | m=m +m,

X {P6(az) M} ] €e"”,
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As a consequence of the above computations, relation
(270) triggers the next partial differential equation fulfilled
by G, (€) and coupled with (267),

Q(.)B(€)
= (et) [ (10,)°" Ro(2.)6, (€) + 6,(10,)" ™ Ry(2.)Bs(e)

D-1

+ ) ttaz €) (19, Ri(2.)G (¢)

I=1

(276)

In conclusion, we have checked by means of (267) that
the power series G, (€) formally solves the same partial dif-
ferential equations as the function u,,(t,z €) stated in
(256). In addition, through (276) and (257), we observe that
the formal power series G, (€) and the map uy,(t, 2, €) obey
identical coupled partial differential equations. Then, drew
on the computations (65), (63) and (62) performed rever-
sedly from Subsection 3.1, we deduce that the formal expres-
sion G(e) stated in (252) conforms the same equation as the
analytic map u,(t,z, €) given in (248) and recast as (253)
where the formal monodromy operator around 0 given by
¥ acts on the formal expression G(€) by dint of the formula
(32) in Definition 1. This completes the proof of the third
item of Theorem 24.

9. Conclusion and Perspectives

In this work, we have considered an initial value problem
that is singularly perturbed in a complex parameter and pos-
sesses an irregular singularity in a complex time at the ori-
gin. This problem involves specific nonlocal nonlinearities,
where the so-called formal monodromy operator plays a
central role and can be viewed as a mixed-type partial differ-
ential and difference nonlinear equation when aiming at
potential applications.

The presence of these nonlocal monodromy operators,
which is the main novelty of our approach, enables the con-
struction of holomorphic solutions with logarithmic expan-
sions of finite type given by (12) or (20) in a more general
setting. It is worth noting that in the case of polynomial non-
linearities involving only powers of the solution and its
derivatives, logarithmic expansions of infinite type might
appear (i.e., infinitely many powers of log (et) might be
encountered), as shown in the studies [18, 24] quoted in
the introduction of this work.

The terms comprising the nonlinear part of our problem
are suitably selected in a way that the construction of
logarithmic-type solutions can be reduced to the study of
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analytic solutions to a coupling of two singularly perturbed
initial value problems with quadratic local nonlinearities
with a particularly simple shape of triangular form. The
treatment of more general nonlinearities leading to non-
triangular structures looks far more challenging and is post-
poned to a future investigation.

At last, we expect that our approach can be adapted to
other related problems, for instance in the context of g —
difference equations which is another field of research of
the author and his colleagues.
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