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In this article, we define the new generalized Hahn sequence space hpd , where d = ðdkÞ∞k=1 is monotonically increasing sequence
with dk ≠ 0 for all k ∈ℕ, and 1 < p <∞. Then, we prove some topological properties and calculate the α − , β − , and γ − duals
of hpd . Furthermore, we characterize the new matrix classes ðhd , λÞ, where λ = fbv, bvp, bv∞, bs, cs,g, and ðμ, hdÞ, where μ = fbv,
bv0, bs, cs0, csg. In the last section, we prove the necessary and sufficient conditions of the matrix transformations from hpd into
λ = fℓ∞, c, c0, ℓ1, hd , bv, bs, csg, and from μ = fℓ1, bv0, bs, cs0g into hpd .

1. Introduction and Basic Notations

The set of all complex valued sequences is denoted by ω and
each vector subspace of ω is called a sequence space. The sets
ℓ∞, c, and c0 are bounded, convergent and null sequence
spaces, respectively. Moreover, ℓp, ℓ1, cs, cs0, bs and bv are the
spaces of all absolutely p − summable, absolutely summable,
convergent series, null series, bounded series and sequeences
of bounded variation, respectively, where 1 < p <∞.

The alpha-dual λα, beta-dual λβ and gamma-dual λγ of a
sequence space λ are defined by

λα ≔ x = xkð Þ ∈ ω : xy = xkykð Þ ∈ ℓ1 for all y = ykð Þ ∈ λf g,
λβ ≔ x = xkð Þ ∈ ω : xy = xkykð Þ ∈ cs for all y = ykð Þ ∈ λf g,
λγ ≔ x = xkð Þ ∈ ω : xy = xkykð Þ ∈ bs for all y = ykð Þ ∈ λf g:

ð1Þ

Let A = ðankÞk,n∈ℕ be an infinite matrix and λ, μ ∈ ω. We
write

yk = Axð Þn =〠
k

ankxk ð2Þ

and then we say that A defines a matrix transformation from
λ into μ as A : λ⟶ μ if Ax = fðAxÞng ∈ μ for every x ∈ λ.
We denote the set of all infinite matrices that map the
sequence space λ into the sequence space μ by ðλ, μÞ. Thus,
A ∈ ðλ, μÞ if and only if the right side of (2) converges for
every n ∈ℕ, that is, An ∈ λ

β for all n ∈ℕ and we have Ax
∈ μ for all x ∈ λ. The set λA = fx ∈ ω : Ax ∈ ωg is called the
domain of the matrix H in X: It is known that the matrix
domain λA is also a sequence space. The readers may refer
to these nice papers [1–3] and the textbooks [4–8] concern-
ing domain of special matrices in classical sequence spaces
and the theory of summability.

If a normed sequence space λ contains a sequence ðbnÞ
with the following property that for every x ∈ λ there is a
unique sequence of scalars ðαnÞ such that

lim
n⟶∞

x − α0b0 + α1b1+⋯+αnbnð Þk k = 0 ð3Þ
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then ðbnÞ is called a Schauder basis for λ. The series ∑kαkbk
which has the sum x is then called the expansion of x with
respect to ðbnÞ and written as x =∑kαkbk.

If λ is an FK-space, ϕ ⊂ λ and ðekÞ is a basis for λ then λ
is said to have AK property, where ek is a sequence whose
only term in kth place is 1 the others are zero for each k ∈
ℕ and ϕ = spanfekg. If ϕ is dense in λ, then λ is called AD
-space, thus AK implies AD.

The sequence space h defined by

h≔ x = xkð Þ ∈ ω : 〠
k

k xk − xk+1j j<∞
( )

∩ c0 ð4Þ

is called Hahn sequence space, named after its introducer H.
Hahn [9]. The space h is a BK space with the norm

xk k =〠
k

k xk − xk+1j j + sup
k

xkj j for all x = xkð Þ ∈ h: ð5Þ

Rao [10] proved that the space h is a BK space with AK
with respect to the norm

xk kh =〠
k

k xk − xk+1j j for allx = xkð Þ ∈ h: ð6Þ

Later on Goes [11] introduced a generalised Hahn
sequence space hd ,d = ðdkÞ ∈ ω with dk ≠ 0 for all k, defined
by

hd ≔ x = xkð Þ ∈ ω : 〠
k

dkj j xk − xk+1j j<∞
( )

∩ c0: ð7Þ

Quiet recently a scientific study of a more generalized
Hahn sequence space hd , is carried out by Malkowsky et al.
[12], defined as follows:

hd ≔ x = xkð Þ ∈ ω : 〠
k

dk xk − xk+1j j<∞
( )

∩ c0: ð8Þ

The authors proved that the space hd is a BK space with
AK with respect to the norm

xk khd =〠
k

dk xk − xk+1j j for all x = xkð Þ ∈ hd , ð9Þ

where d = ðdkÞ is an unbounded and monotonic increasing
sequence of positive reals. Besides, the authors stated and
proved various significant results concerning characteriza-
tion of matrix transformations between the space hd and
classical BK spaces, and characterization of compact opera-
tors on the space hd using Hausdorff measure of non-
compactness. We refer to [2, 10, 13–23] and the survey
paper [22] for more studies and results related to Hahn
sequence space.

2. The New Generalized Hahn Sequence
Space hpd

In this section, we introduce the new generalized Hahn
sequence space hpd as follow

hpd = x ∈ ω : 〠
∞

k=1
dkΔxkj jp<∞

( )
∩ c0 ð10Þ

where ðdkÞ∞k=1 is an unbounded monotone increasing
sequence of positive real numbers with dk ≠ 0 for all k ∈ℕ,
1 < p <∞, and Δxk = xk − xk+1.

Remark 1. It is clear that if we consider p = 1, then hpd
becomes hd .

If we consider yk = dkðxk − xk+1Þ = ðExÞk where

enk =
dn , k = n,
−dn , k = n + 1
0 , otherwise:

8>><
>>: ð11Þ

Moreover, if we write the terms of y = ðykÞ starting from
k to m as follow

yk
dk

= xk − xk+1

yk+1
dk+1

= xk+1 − xk+2

yk+2
dk+2

= xk+2 − xk+3

⋮
ym
dm

= xm − xm+1

ð12Þ

and then when we get sum ∑m
j=kðyj/djÞ = xk − xm+1. Then we

have ∑∞
j=kyj/dj = xk whenever xm+1 ⟶ 0ðm⟶∞Þ: Equiv-

alently, the sequence x = ðxkÞmay also represented by x =Gy
where the matrix G = ðgnkÞ is defined by

gnk =

1
dk

, k ≥ n,

0 , 0 < k < n:

8>>><
>>>:

ð13Þ

Clearly G = E−1:

Theorem 2. The new Hahn sequence space hpd is a linear
complete normed space space with the norm defined as

xk khpd = 〠
∞

k=1
dkΔxkj jp

 !1/p

: ð14Þ
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Proof. The linearity is clear. Now, we observe that the
ðhpd , kxkhpd Þ is a Banach space.

(N1) if

xk khpd = 0⇒ 〠
∞

k=1
dkΔxkj jp

 !1/p

= 0⇒ dkΔxk = 0, ð15Þ

since dk ≠ 0 for each k ∈ℕ, Δxk = 0, that is, xk = xk+1 for all k,
and x ∈ c0 implies xk = 0 for all k, that is, x = 0.

(N2) For every x ∈ hpd and λ ∈K,

λxk khpd = 〠
∞

k=1
dkΔ λxkð Þj jp

 !1/p

= λj j 〠
∞

k=1
dkΔxkj jp

 !1/p

= λj j xk khpd
ð16Þ

(N3) For every x, y ∈ hpd ,

x + yk khpd = 〠
∞

k=1
dkΔ xk + ykð Þj jp

 !1/p

≤ 〠
∞

k=1
dkΔxkj jp

 !1/p

+ 〠
∞

k=1
dkΔykj jp

 !1/p

= xk khpd + yk khpd :

ð17Þ

Now we should show that the space ðhpd , kxkhpdÞ is com-

plete. Suppose that x = ðxðnÞÞ∞n=1 be a Cauchy sequence in
the space hpd . Therefore, for every ϵ > 0, there exists a natural
number N ∈ℕ such that

x nð Þ − x mð Þ
��� ���

hpd

< ϵ

2 ,∀m, n ≥N: ð18Þ

Since the Cauchy sequence x = ðxðnÞÞ∞n=1 is in the space
hpd , we obtain

〠
∞

k=1
dkΔx

nð Þ
k

��� ���p <∞,and x nð Þ
k ⟶ 0 k⟶∞ð Þ: ð19Þ

Now we can write the following inequality for fixed ℓ ≥ k,
m, n ≥N by considering the inequality

a + bj jp ≤ 2p aj jp + bj jp� � ð20Þ

for 1 < p <∞ that

x nð Þ
k − x mð Þ

k

��� ���p = 〠
ℓ

j=k
Δx nð Þ

k − Δx mð Þ
k

� �
+ x nð Þ

k+1 − x mð Þ
k+1

� ������
�����
p

≤ 〠
ℓ

j=k
dkΔ x nð Þ

k − x mð Þ
k

� �
+ x nð Þ

k+1 − x mð Þ
k+1

� ������
�����
p

≤ 2p 〠
ℓ

j=k
dkΔ x nð Þ

k − x mð Þ
k

� ���� ���p + x nð Þ
k+1

��� ���p + x mð Þ
k+1

��� ���p
 !

:

ð21Þ

Then we have the following result since xðnÞ, xðmÞ ∈ c0 for
all m, n ∈ℕ

x nð Þ
k − x mð Þ

k

��� ��� ≤ 2 x nð Þ − x mð Þ
��� ���

hpd

+ x nð Þ
k+1

��� ��� + x mð Þ
k+1

��� ��� < ϵ ð22Þ

Therefore, x = ðxðnÞÞ∞n=1 is a Cauchy sequence of Complex
numbers for each k ∈ℕ. Since ℂ is complete, then x =
ðxðnÞÞ∞n=1 converges to an arbitrary sequence x = ðxkÞ ∈ℂ as
n⟶∞, that is, for every ϵ > 0 there exists N0 ∈ℕ such that

x nð Þ
k − xk

��� ��� < ϵ ð23Þ

for each k ∈ℕ. Therefore, we have the following with an
arbitrary ℓ that

〠
ℓ

k=1
dkΔ x nð Þ

k − x mð Þ
k

� ���� ���p
 !1/p

≤ x nð Þ − x mð Þ
��� ���

hpd

< ϵ ð24Þ

hence, by letting limit as m⟶∞ over (24) we obtain

〠
ℓ

k=1
dkΔ x nð Þ

k − xk
� ���� ���p

 !1/p

≤ x nð Þ − x
��� ���

hpd

< ϵ ð25Þ

Moreover, we obtain by (23) for any n ≥N0 and 1 < p <∞

0 ≤ xkj jp ≤ 2p xk − x nð Þ
k

��� ���p + x nð Þ
k

��� ���p� �
⟶ 0 k⟶∞ð Þ ð26Þ

which says that x = ðxkÞ ∈ c0. Furthermore,

xk khpd = 〠
∞

k=1
dkΔxkj jp

 !1/p

= 〠
∞

k=1
dkΔ xk − x nð Þ

k + x nð Þ
k

� ���� ���p
 !1/p

≤ 〠
∞

k=1
dkΔ xk − x nð Þ

k

� ���� ���p
 !1/p

+ 〠
∞

k=1
dkΔx

nð Þ
k

��� ���p
 !1/p

<∞:

ð27Þ

So, it shows that x ∈ hpd.

Corollary 3. The Hahn sequence space hpd is a BK space.
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Theorem 4. The space hpd does not have AK property.

Proof. If the sequence space hpd has AK property, then every
sequence x = ðxkÞ∞k=1 ∈ hpd is the limit of its m − section x½m�

=∑m
k=1xke

ðkÞ, i.e.,

x = lim
m⟶∞

x m½ � = lim
m⟶∞

〠
m

k=1
xke

kð Þ = 〠
∞

k=1
xke

kð Þ: ð28Þ

Let us consider dk = k and xk = 1/k for all k ∈ℕ. Then
obviously x = ðxkÞ ∈ c0 and, since p > 1,

〠
∞

k=1
dk xk − xk+1j jð Þp = 〠

∞

k=1
k
1
k
−

1
k + 1

����
����

� 	p

= 〠
∞

k=1

1
k + 1

� 	p

<∞,

ð29Þ

that is, x ∈ hpd . But, if we write x
½m� =∑m

k=1xke
ðkÞ for every m

∈ℕ as the m − section of the sequence x, then we obtain
for all m ∈ℕ

x − x m½ �
��� ���p

hpd

= m xm+1j jð Þp + 〠
∞

k=m+1
dk xk − xk+1j jð Þp ≥ m

m + 1
� �p

:

ð30Þ

Hence, x½m�½x as m⟶∞. It completes the proof.

Theorem 5. The space hpd is linearly isomorphic to the space
ℓp:

Proof. Let us define the mapping T : hpd ⟶ ℓp by y = Tx =
Ex: Linearity of T is obvious. Since the triangle E is the
matrix representation of T , therefore T is invertible too.
Now, let y ∈ ℓp and consider the following equality:

xk khpd = 〠
∞

k=1
dkΔxkj jp

 !1/p

= 〠
∞

k=1
ykj jp

 !1/p

= yk kℓp <∞:

ð31Þ

This implies that T is onto and preserves the norm.
Consequently T defines an isomorphism from hpd to ℓp: This
completes the proof.

Theorem 6. Let us define a sequence qðkÞðdÞ = fqðkÞn ðdÞgn∈ℕ
of elements of the space hpd for every fixed k ∈ℕ by

q kð Þ
n dð Þ =

1
dk

, k ≥ n,

0 , 1 ≤ k ≤ n − 1:

8<
: ð32Þ

Then the sequence fqðkÞðdÞgk∈ℕ is a basis for the space hpd
and any x ∈ hpd has unique representation of the form

x =〠
k

λkq
kð Þ dð Þ, ð33Þ

where λk = ðExÞk for all k ∈ℕ and 1 < p <∞.

3. α − , β − And γ − Duals of hpd
In this section, we first calculate the γ − dual of the space hd
and then we give some basic lemmas to prove the α − , β −
and γ − duals of the space hpd . The following calculations
on the β − dual of the space hd has been stated by Goes
([11], 4.1 Theorem, p. 485) and it has recently been proved
by Malkowsky et al. [12], Proposition 2.3., p.5) as

hdf gβ = bsd = a ∈ ω : sup
n

1
dn

〠
n

k=1
ak

�����
�����<∞

( )
: ð34Þ

Moreover, Goes ([11], 4.2 Corolary (b)) showed the α −
dual of the space hd as follows:

hdf gα = a ∈ ω : sup
n

1
dn

〠
n

k=1
akj j<∞

( )
: ð35Þ

Now we can calculate the γ − dual fo the space hd .

Lemma 7. fhdgγ = fa ∈ ω : sup
n
ð1/dnÞj∑n

k=1akj<∞g:

Proof. Suppose that a = ðakÞ ∈ ω and x = ðxkÞ ∈ hd be given.
Then we have the nth − partial sum of the series ∑kakxk as

zn = 〠
n

k=1
akxk = 〠

n

k=1
ak 〠

n

j=k

yj
dj

 !
= 〠

n−1

k=1
〠
k

j=1

aj
dk

 !
yk + yn dnð Þ−1 〠

n

j=1
aj = Byð Þn,

ð36Þ

where the infinite matrix B = ðbnkÞ is defined as

bnk =
1
dk

〠
k

j=1
aj , k ≥ n,

0 , k < n:

8>><
>>: ð37Þ

It gives that ax ∈ bs, that is, z ∈ ℓ∞ whenever x ∈ hd if and
only if By ∈ ℓ∞ whenever y ∈ ℓ1. Therefore, a ∈ fhdgγ if and
only if B ∈ ðℓ1, ℓ∞Þ. By Lemma 10(d) and since kxkhd =
kykℓ1 =∑kjykj <∞ we have that

sup
k

1
dk

〠
k

j=1
aj

�����
����� <∞: ð38Þ

This completes the proof.

Now we have the following useful Lemmas for the
further computations.

Lemma 8 (see [12], Theorem 11., p.8). We have
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(a) A ∈ ðhd , ℓ∞Þ if and only if

Ak k hd ,ℓ∞ð Þ = sup
n

Ank kbsd = sup
n,m

1
dm

〠
m

k=1
ank

�����
����� <∞: ð39Þ

(b) A ∈ ðhd , cÞ if and only if (39) holds, and the limits

αk = lim
n⟶∞

ank exist for all k: ð40Þ

Lemma 9 (see [12], Theorem 13., p.9). We have A ∈ ðhd , ℓ1Þ
if and only if

Ak k hd ,ℓ1ð Þ = sup
m

1
dm

〠
∞

n=1
〠
m

k=1
ank

�����
�����

 !
<∞: ð41Þ

Lemma 10 (see [4], Theorem 9.7.3, p.356). Let 1 < p <∞, q
= p/ðp − 1Þ. Then we have

(a) A ∈ ðℓp, ℓ1Þ if and only if

sup
N∈ℕFinite

〠
∞

k=0
〠
n∈N

ank

�����
�����
q !

<∞: ð42Þ

(b) A ∈ ðℓp, cÞ if and only if (40) holds and

sup
n
〠
k

ankj jq <∞: ð43Þ

(c) A ∈ ðℓp, ℓ∞Þ if and only if (43) holds

(d) A ∈ ðℓ1, ℓ∞Þ if and only if

sup
n,k

ankj j <∞: ð44Þ

Theorem 11. Let 1 < p <∞, q = p/ðp − 1Þ. Then

hpd

 �α = a = akð Þ ∈ ω : sup

N∈ℕf inite
〠
k

〠
n∈N

an
dk

�����
�����
q

<∞
( )

: ð45Þ

Proof. Suppose that a = ðanÞ ∈ ω be given and consider the
following equation that

anxn = ak 〠
∞

k=n

yk
dk

= 〠
∞

k=n

an
dk

yk = Dyð Þn, n ∈ℕ, ð46Þ

where the matrix D = ðdnkÞ is defined as

dnk =
an
dk

, k ≥ n,

0 , k < n

8<
: ð47Þ

for all k, n ∈ℕ. It gives us that ax = ðanxnÞ ∈ ℓ1 whenever x
∈ hpd if and only if Dy ∈ ℓ1 whenever y = ðynÞ ∈ ℓp. Therefore,
a = ðanÞ ∈ fhpdg

α
whenever x ∈ hpd if and only if D ∈ ðℓp, ℓ1Þ.

Therefore, the condition in (42) of Lemma 10(a) holds with
dnk instead of ank, that is,

sup
N∈ℕFinite

〠
∞

k=0
〠
n∈N

an
dk

�����
�����
q !

<∞: ð48Þ

It gives the α − dual of the space hpd .

Theorem 12. fhpdg
β = fa = ðakÞ ∈ ω : supnð1/jdnjqÞ∑k

j∑n
j=kajjq<∞g:

Proof. Suppose that a = ðakÞ ∈ ω and x = ðxkÞ ∈ hpd are given.
Let us consider the following equality.

sn = 〠
n

k=1
akxk = 〠

n

k=1
ak 〠

n

j=k

yj
dj

 !
= 〠

n

k=1
〠
k

j=1

aj
dk

 !
yk = Byð Þn,

ð49Þ

where the matrix B = ðbnkÞ is defined as in (37) for all k,
n ∈ℕ. Then we can say that ax = ðakxkÞ ∈ cs whenever x
= ðxkÞ ∈ hpd if and only if By ∈ c whenever y = ðykÞ ∈ ℓp.
Therefore, a = ðakÞ ∈ fhpdg

β
if and only if B ∈ ðℓp, cÞ. Then

the condition in Lemma 10(b) holds with bnk instead of
ank, that is

lim
n⟶∞

bnk exist for all k ;

sup
n
〠
k

bnkj jq <∞:
ð50Þ

Thus, we can obtain that fhpdg
β = fa = ðakÞ ∈ ω : supn

ð1/jdnjqÞ∑kj∑n
j=kajjq<∞g ∩ cs. It is clearly seen that

a = akð Þ ∈ ω : sup
n

1
dnj jq 〠k

〠
n

j=k
aj

�����
�����
q

<∞
( )

⊂ cs ð51Þ

and then

hpd

 �β = a = akð Þ ∈ ω : sup

n

1
dnj jq 〠k

〠
n

j=k
aj

�����
�����
q

<∞
( )

ð52Þ

as we desired.
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Theorem 13. fhpdg
γ = fa = ðakÞ ∈ ω : supnð1/jdnjqÞ∑k

j∑n
j=kajjq<∞g:

Proof. Since we have similar pattern with Theorem 12, we
can conclude the proof with the following computation only.

Let us say that ax = ðakxkÞ ∈ bs whenever x = ðxkÞ ∈ hpd
if and only if By ∈ ℓ∞ whenever y = ðykÞ ∈ ℓp. Therefore,
a = ðakÞ ∈ fhpdg

β
if and only if B ∈ ðℓp ; ℓ∞Þ. Then the

condition in Lemma 10(c) holds with bnk instead of ank,
that is

sup
n
〠
k

bnkj jq <∞: ð53Þ

Thus, we can obtain that fhpdg
γ = fa = ðakÞ ∈ ω : supn

ð1/jdnjqÞ∑kj∑n
j=kajjq<∞g as we desired.

4. Some Matrix Transformations from and into
the Space hd

In this section, we characterize the classes ðhd , λÞ, where λ

= fbv, bvp, bv∞, bs, cs,g, and ðμ, hdÞ, where μ = fbv, bv0, bs,
cs0, csg.

Remark 14. If dk = k for every k ∈ℕ, then characterization
of Theorem 17-Corollary 23 yields the characterisation of
ðh, λÞ, where λ = fbv, bvp, bv∞, bs, cs,g

Definition 15 (see [8], Definition 7.4.2). Let X be a BK space.
A subset E of the set ϕ called a determining set for X if
DðXÞ = �BX ∩ ϕ is the absolutely convex hull of E.

Proposition 16 (see [12], Proposition 3.2, p.8). Let

s d, kð Þ = 1
dk

· e k½ � for each k ∈ℕ, and E = s d, kð Þ: k ∈ℕf g:

ð54Þ

Then E is a determining set for hd .

Theorem 17. The infinite matrix A = ðankÞ ∈ ðhd , bvÞ if and
only if

sup
m∈ℕ

1
dmj j〠n

〠
m

k=1
ank − an−1,kð Þ

�����
����� <∞: ð55Þ

Proof. Suppose that E = fð1/dmÞe½m� : m ∈ℕg is a determin-
ing set for the sequence space hd . The sequence space bv is
BK space with k:kbv . Let yðmÞ = ð1/dmÞe½m� ∈ E. Then

Any
mð Þ = 〠

∞

k=1
anky

mð Þ
k = 1

dm
〠
m

k=1
ank for all n = 1, 2,⋯ ð56Þ

Hence,

Any
mð Þ

��� ���
bv
=〠

n

Any
mð Þ − An−1y

mð Þ
��� ��� =〠

n

1
dm

〠
m

k=1
ank −

1
dm

〠
m

k=1
an−1,k

�����
�����

= 1
dmj j〠n

〠
m

k=1
ank − an−1,kð Þ

�����
����� <∞

ð57Þ

which gives the condition in (55).

Proposition 18 (see [1], Lemma 5.3). Let X, Y be any two
sequence spaces, A be an infinite matrix and U a triangle
matrix. Then A ∈ ðX, YUÞ if and only if UA ∈ ðX, YÞ.

Corollary 19. The infinite matrix A = ðankÞ ∈ ðhd , bvpÞ = ðhd ,
ðℓpÞΔÞ if and only if

sup
m∈ℕ

1

dmj jp 〠n
〠
m

k=1
ank − an−1,kð Þ

�����
�����
p

<∞, 1 ≤ p <∞ð Þ: ð58Þ

Corollary 20. The infinite matrix A = ðankÞ ∈ ðhd , bv∞Þ = ðhd ,
ðℓ∞ÞΔÞ if and only if

sup
m,n∈ℕ

1
dmj j〠n

〠
m

k=1
ank − an−1,kð Þ

�����
����� <∞: ð59Þ

Theorem 21.The infinite matrixA = ðankÞ ∈ ðhd , bsÞ if and only
if

sup
m,n∈ℕ

1
dmj j 〠

n

k=1
〠
m

j=1
akj

�����
����� <∞: ð60Þ

Proof. The proof is similar to that of Theorem 17 with the norm
k:kbs replaced by the norm k:kbv. Therefore, we have only the
following norm

Any
mð Þ

��� ���
bs
= sup

m∈ℕ
〠
n

k=1
Aky

mð Þ
�����

����� = sup
m∈ℕ

〠
n

k=1

1
dmj j〠

m

j=1
akj

�����
�����

= sup
m∈ℕ

1
dmj j 〠

n

k=1
〠
m

j=1
akj

�����
�����:

ð61Þ

If we take supremum n ∈ℕ from both sides of above
equality, then we can easily see the condition in (60).

Theorem 22. The infinite matrix A = ðankÞ ∈ ðhd , csÞ if and
only if the condition in (60) holds and

lim
n⟶∞

〠
n

k=1
ank = αk exists for each k ∈ℕ: ð62Þ

Proof. Suppose that A = ðankÞ ∈ ðhd , csÞ. Then Ax exists and
is in cs for each x = ðxkÞ ∈ hd . Thus, the partial sum of the
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series Ax converges, that is the condition in (62) is immedi-
ate. The rest of the proof is similar to that of Theorem 17 by
replacing the norm k:kbv with the norm k:kbs = k:kcs. Hence,
we obtain the necessity of the condition in (4.4).

Corollary 23. The infinite matrix A = ðankÞ ∈ ðhd , cs0Þ if and
only if the conditions in (60) and (62) hold with αk = 0 for
every k ∈ℕ.

Theorem 24. The infinite matrix A = ðankÞ ∈ ðbv0, hdÞ if and
only if

lim
n⟶∞

〠
m

k=1
ank = 0 ð63Þ

sup
k∈ℕ

〠
∞

n=1
dnj j 〠

m

k=1
ank − an+1,kð Þ

�����
����� <∞: ð64Þ

Proof. Suppose that E = fe½m� : m ∈ℕg be a determining set
of bv0 and yðmÞ = e½m� ∈ E for each m ∈ℕ. Then the kth

column of AyðmÞ where

Aky mð Þ = 〠
∞

k=1
anky

mð Þ
k = 〠

m

k=1
ank, for n = 1, 2,⋯ ð65Þ

Then,

Aky mð Þ
��� ���

hd
= 〠

∞

n=1
dnj j 〠

m

k=1
ank − an+1,kð Þ

�����
�����, for all k ∈ℕ:

ð66Þ

Hence, the sequence fAkyðmÞg∞k=1 is bounded in hd if and
only if supkkAkyðmÞkhd <∞ which shows the necessity of the

condition in (64). Moreover, AkyðmÞ ∈ c0 for all k ∈ℕ, then
the condition in (63) is also immediate.

Corollary 25. The infinite matrix A = ðankÞ ∈ ðbv, hdÞ if and
only if the conditions in (63) and (64) hold, and

Ae ∈ hd ð67Þ

Theorem 26. The infinite matrix A = ðankÞ ∈ ðbs, hdÞ if and
only if

sup
K∈ℕf inite

〠
∞

k=1
〠
n∈K

dn bnk − bn+1,kð Þ
�����

�����, ð68Þ

lim
n⟶∞

〠
∞

k=1
bnkj j = 0 ð69Þ

where the matrix B = ðbnkÞ is defined as bnk = ank − an,k+1.

Proof. Suppose that A = ðankÞ ∈ ðbs, hdÞ and Ax exists and is
in hd for every x ∈ bs. Thus, An ∈ bsβ = bv0 ⊂ c0. Let x be a
sequence such that vk =∑k

i=1xi. If v ∈ ℓ∞ and xn = vn − vn−1,
then x ∈ bs. By ([8], Lemma 8.5.3(i)), we can say that Ax =
Bv. It says that B ∈ ðℓ∞, hdÞ. So the necessity of the condi-
tions in (68) and (69) are immediate.

Theorem 27. The infinite matrix A = ðankÞ ∈ ðcs0, hdÞ if and
only if the condition in (68) holds and

lim
n⟶∞

bnk = 0 ð70Þ

where the matrix B = ðbnkÞ is defined as bnk = ank − an,k+1.

Proof. The proof is similar to that of Theorem 26 with An

∈ csβ0 = csβ = bv ⊂ c and by ([8], Lemma 8.5.3(i)), we can
say that B ∈ ðc0, hdÞ. So the necessity of the conditions in
(68) and (70) are immediate.

Corollary 28. The infinite matrix A = ðankÞ ∈ ðcs, hdÞ if and
only if the conditions in (67), (68), (70) hold.

Remark 29. If we consider dk = k for every k ∈ℕ, then the
characterization of Theorem 17, Corollary 19-Corollary 23
yields the characterisation of ðh, λÞ, where λ = fbv, bvp, b
v∞, bs, cs,g, and the characterization of Theorem 24-Corol-
lary 28 yields the characterisation ofðμ, hÞ, where μ = fbv, b
v0, bs, cs0, csg (see [18], p.13-16).

5. Matrix Transformations on the Hahn
Sequence Space hpd

In this section, we characterize matrix ðhpd ; λÞ and ðμ ; hpdÞ
where λ = fℓ∞, c, c0, ℓ1, hd , bv, bs, csg and μ = fℓ1, bv0, bs, cs0
g, respectively. The following lemma is significant for our
investigation:

Lemma 30 (see [1]). Matrix transformation between BK
-spaces are continuous.

Theorem 31. A = ðankÞ ∈ ðhpd , ℓ∞Þ if and only if

sup
n,m

1
dmj jq 〠

∞

k=1
〠
m

j=k
anj

�����
�����
q

<∞, ð71Þ

sup
n

〠
∞

k=1

1
dkj jq 〠

k

j=1
anj

�����
�����
q

<∞: ð72Þ

Proof. Let 1 < p <∞ and A ∈ ðhpd , ℓ∞Þ: This means that Ax
exists and is contained in the space ℓ∞ for each x ∈ hpd:
Apparently ðankÞ∞k=1 ∈ fhpdg

β
: This establishes the necessity

of condition in (71).
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We recall that yk = dkΔxk or equivalently xk =∑∞
j=kyj/dj

for each k ∈ℕ: This leads us to the following equality

〠
∞

k=1
ankxk = 〠

∞

k=1
ank 〠

∞

j=k

yj
dj

=〠
k=1

ank 〠
∞

j=k
Δxj = 〠

∞

j=1
〠
j

k=1
ank

yj
dj

ð73Þ

for each n ∈ℕ: Since hpd and ℓ∞ are BK spaces, Lemma 30
ascertains that there exists a positive number M <∞ such
that

Axk kℓ∞ ≤M xk khpd ð74Þ

for all x ∈ hpd: Therefore, by the aid of Hölder’s inequality
together with (73) and Theorem 5, we get

Axk kℓ∞
yk kℓp

= sup
n

∑∞
k=1∑

k
j=1anj yk/dkð Þ

��� ���
yk kℓp

≤ sup
n

〠
∞

k=1

1
dkj jq 〠

k

j=1
anj

�����
�����
q !1/q

<∞

ð75Þ

for all x ∈ hpd: This establishes the necessity of condition in
(72).

Conversely, assume that conditions in (71) and (72) hold

and take any x ∈ hpd: Then ðankÞ∞k=1 ∈ fhpdg
β
which implies

that Ax exists. Again applying Hölder’s inequality and the
fact that y = ðykÞ ∈ ℓp, we deduce that

Axk kℓ∞ = sup
n

〠
∞

k=1
〠
k

j=1
anj

yk
dk

�����
����� ≤ sup

n
〠
∞

k=1

1
dkj jq 〠

k

j=1
anj

�����
�����
q !1/q

〠
k=1

ykj jp
 !1/p

<∞:

ð76Þ

Consequently, A ∈ ðhpd , ℓ∞Þ: This completes the proof.

Theorem 32. A ∈ ðhpd , cÞ if and only if (71) and (72) hold, and
for each k ∈ℕ, there exists αk ∈ℝ such that

lim
n⟶∞

1
dk

〠
k

j=1
anj = αk: ð77Þ

Proof. Let A ∈ ðhpd , cÞ: Then Ax exists and is contained in the
space c for all x ∈ hpd: Since c ⊂ ℓ∞,Ax ∈ ℓ∞: Thus the necessity
of conditions in (71) and (72) follows fromTheorem 31. Let us
consider x =GeðkÞ and define the matrix D = ðdnkÞ by

dnk =
1
dk

〠
k

j=1
anj ð78Þ

for all n, k = 1, 2, 3,⋯: Then by virtue of equality (73), we get
that

Ax = A Ge kð Þ
� �

=D E Ge kð Þ
� �� �

=De kð Þ = dnkð Þn∈ℕ: ð79Þ

Since Ax ∈ c, so ðdnkÞn∈ℕ ∈ c: This proves the necessity of
the condition in (77).

Conversely, assume that the conditions in (71), (72) and

(77) hold. Then ðankÞk∈ℕ ∈ fhpdg
β

for each n ∈ℕ which
implies that Ax exists for all x ∈ hpd: Therefore we again
obtained equality (73). Then, one can notice that the condi-
tions in (71) and (77) correspond to the conditions in (43)
and (40), respectively, with dnk instead of ank: This con-
cludes that Dy = Ax ∈ c: Hence A ∈ ðhpd , cÞ:

Replacing c by c0 in Theorem 32, we obtain the following
corollary:

Corollary 33. A ∈ ðhpd , c0Þ if and only if (71) and (72) hold,
and (77) also holds with αk = 0 for all k:

Theorem 34. A = ðankÞ ∈ ðhpd , ℓ1Þ if and only if (71) holds,
and

sup
N∈ℕFinite

〠
∞

k=1
〠
n∈N

1
dk

〠
k

j=1
anj

�����
�����
q

<∞,1 < p <∞: ð80Þ

Proof. This is similar to the proof of Theorem 31. Hence
details are omitted.

Theorem 35. A = ðankÞ ∈ ðhpd , hdÞ if and only if the condition
in (71) holds and

lim
n⟶∞

1
dk

〠
k

j=1
anj = 0, for all k ∈ℕ ð81Þ

sup
k∈ℕ

1
dkj j 〠

∞

n=1
dn 〠

k

j=1
anj − an+1,j
� ������

�����
q !1/q

<∞, 1 < p <∞ð Þ:

ð82Þ

Proof. Let 1 < p <∞ and suppose that A ∈ ðhpd , hdÞ such that
Ax exists and is in the space hd for each x ∈ hpd . Thus, we
clerly see that ðankÞ∞k=1 ∈ fhpdg

β
which proves the necessity

of condition in (71).
By using the relation yk = dkΔxk or equivalently xk =

∑∞
j=kyj/dj for each k ∈ℕ between the terms of the sequences

x = ðxkÞ and y = ðykÞ, we reach the equality in (73) which can
be written as in the following

〠
∞

k=1
ankxk = 〠

∞

k=1
ank 〠

∞

j=k

yj
dj

= 〠
∞

k=1
〠
k

j=1
anj

yk
dk

= 〠
∞

k=1
dnkyk ð83Þ

where the infinite matrix D = ðdnkÞ is defined as dnk = 1/dk
∑k

j=1anj for each n, k ∈ℕ. Since hpd and hd are BK spaces,
we revisit Lemma 30 that there exists a positive real number
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N such that

Axk khd ≤N xk khpd ð84Þ

for all x ∈ hpd . Therefore, by using Hölder’s inequality
together with (73) and Theorem 5, we get

Axk khd
xk khpd

= sup
k

∑∞
n=1 dnΔAnxj jqð Þ1/q

yk kℓp

≤ sup
k

1
dkj j 〠

∞

n=1
dn 〠

k

j=1
anj − an+1,j
� ������

�����
q !1/q

<∞

ð85Þ

for all x ∈ hpd . This shows the necessity of condition in (82).
Moreover, since Ax =Dy ∈ hd for every x ∈ hpd the necessity
of condition in (81) is also seen.

Conversely, suppose that the conditions in (71), (81),

and (82) hold. Let us take any x ∈ hpd . Then An ∈ fhpdg
β
which

implies that Ax exists. The rest of proof follows the similar
path to that of Theorem 31 with the following inequality

Axk khd = sup
k

〠
∞

n=1
dnΔ Anxð Þj j

≤ sup
k

1
dkj j 〠

∞

n=1
dn 〠

k

j=1
anj − an+1,j
� ������

�����
q !1/q

〠
k=1

ykj jp
 !1/p

<∞:

ð86Þ

Thus, A ∈ ðhpd , hdÞ. This completes the proof.

Since the proof of the following results can be done simi-
lary to that of Theorem 35, we give them without their
proofs.

Corollary 36. The followings hold.

(i) The infinite matrix A = ðankÞ ∈ ðhpd , bvÞ if and only if
the condition in (71) holds and

sup
m∈ℕ

1
dmj jq 〠n

〠
m

k=1
ank − an−1,kð Þ

�����
�����
q

<∞ ð87Þ

(ii) The infinite matrix A = ðankÞ ∈ ðhpd , bsÞ if and only if
the condition in (71) holds and

sup
m,n∈ℕ

1
dmj jq 〠

n

k=1
〠
m

j=1
akj

�����
�����
q

<∞: ð88Þ

(iii) The infinite matrix A = ðankÞ ∈ ðhpd , csÞ if and only if
the conditions in (71) and (88) hold, and

lim
n⟶∞

〠
m

k=1

1
dk

〠
k

j=1
anj = αk exists for each k ∈ℕ: ð89Þ

Theorem 37. A = ðankÞ ∈ ðℓ1, hpdÞ if and only if

lim
n⟶∞

ank = 0, for all k ∈ℕ, ð90Þ

sup
n

〠
∞

n=1
dn ank − an+1,kð Þ�� ��p !1/p

<∞, 1 < p<∞ð Þ: ð91Þ

Proof. Since hpd is a BK space by Corollary 3, we apply ([8],
Example 8.4.1) to obtain that A ∈ ðℓ1, hpdÞ if and only if the
columns of A form a bounded set in hpd .

We have

Ak
��� ���

hpd

= 〠
∞

n=1
dn ank − an+1,kð Þ�� ��p !1/p

 for all k: ð92Þ

Hence the set fAk : k ∈ℕg is bounded in hpd if and only
if supkkAkkhpd <∞, which gives the condition in (91). More-

over Ak ∈ c0 for all k, which gives the condition in (87). This
completes the proof.

Now we give the following corollaries without their
proofs since the proofs are followed similarly to that of
Theorem 37.

Corollary 38. The followings hold.

(i) The infinite matrix A = ðankÞ ∈ ðbv0, hpdÞ if and only if
the condition in (63) holds, and

sup
k∈ℕ

〠
∞

n=1
dn 〠

m

k=1
ank − an+1,kð Þ

�����
�����
p

<∞: ð93Þ

(ii) The infinite matrix A = ðankÞ ∈ ðbs, hpdÞ if and only if

sup
K∈ℕf inite

〠
∞

k=1
〠
n∈K

dn bnk − bn+1,kð Þ
�����

�����
p

, ð94Þ

lim
n⟶∞

〠
∞

k=1
bnkj j = 0 ð95Þ

where the matrix B = ðbnkÞ is defined as bnk = ank − an,k+1.

(iii) The infinite matrix A = ðankÞ ∈ ðcs0, hpdÞ if and only if
the condition in (94) holds and
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lim
n⟶∞

bnk = 0 ð96Þ

where the matrix B = ðbnkÞ is defined as bnk = ank − an,k+1.

6. Conclusion

Most recently, Malkowsky at al [12] defined the generalized
Hahn sequence space hd , where d is an unbounded mono-
tone increasing sequence of positive real numbers, and char-
acterized several classes of bounded linear operators or
matrix transformations from hd into λ = fℓ∞, c, c0, ℓ1, hdg,
and also from λ = fℓ∞, c, c0, ℓ1g into hd . Moreover, the
norms of the corresponding bounded linear operators and
the Hausdorff measure of non-compactness for the opera-
tors in the above classes, and one application given by a tri-
diagonal matrix to present a Fredholm operator from hd into
itself were studied in [12].

Malkowsky [14] established the characterisations of the
classes of bounded linear operators from the generalised
Hahn sequence space hd into the spaces ½c0�, ½c� and ½c∞�.
Moreover, he proved estimates for the Hausdorff measure
of noncompactness of bounded linear operators from hd
into ½c�, and identities for the Hausdorff measure of non-
compactness of bounded linear operators from hd to ½c0�,
and then he used these results to characterise the classes of
compact operators from hd to ½c� and ½c0�.

Dolic′anin-Dekic′ and Gilic′ [20] established the char-
acterisations of the classes of bounded linear operators from
the generalised Hahn sequence space hd into the spaces w0,
w and w∞. Then they proved estimates for the Hausdorff
measure of noncompactness of bounded linear operators
from hd into w, and identities for the Hausdorff measure
of noncompactness of bounded linear operators from hd
into w0, and then they used these results to characterise
the classes of compact operators from hd to w0 and w.

In this article, we defined new generalized Hahn sequence
space hpd, where d = ðdkÞ∞k=1 is an unbounded monotone
increasing sequence of positive real numbers with dk ≠ 0 for
all k ∈ℕ, and 1 < p <∞. Then, we proved some topological
properties and showed some inclusion relations. Moreover,
we calculate the α − , β − , and γ − duals of hpd. Furthermore,
we characterize the new matrix classes ðhd , λÞ, where λ = fbv
, bvp, bv∞, bs, cs,g, and ðμ, hdÞ, where μ = fbv, bv0, bs, cs0, csg
. In the last section, we prove the necessary and sufficient con-
ditions of the matrix transformations from hpd into λ = fℓ∞,
c, c0, ℓ1, hd , bv, bs, csg, and from μ = fℓ1, bv0, bs, cs0g into hpd.
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