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In this article, we define the new generalized Hahn sequence space K}, where d = (d);2, is monotonically increasing sequence
with d #0 for all k€N, and 1 < p < co. Then, we prove some topological properties and calculate the « —, -, and y — duals
of . Furthermore, we characterize the new matrix classes (hy, A), where A= {bv, bv,, by, bs, cs,}, and (u, hy), where p={bv,

by, bs, csy, cs}. In the last section, we prove the necessary and sufficient conditions of the matrix transformations from / into
A= {8 ¢ Co» £, g, by, bs, cs}, and from p = {8, bvy, bs, csy} into K.

1. Introduction and Basic Notations

The set of all complex valued sequences is denoted by w and
each vector subspace of w is called a sequence space. The sets
€., ¢ and ¢, are bounded, convergent and null sequence
spaces, respectively. Moreover, £,, £, cs, csy, bs and by are the
spaces of all absolutely p — summable, absolutely summable,
convergent series, null series, bounded series and sequeences
of bounded variation, respectively, where 1 < p < co.

The alpha-dual 1% beta-dual A’ and gamma-dual A” of a
sequence space A are defined by

forall y=(y,) €A},
forall y=(y,) €A},

AN={x=(x;) ew:xy=(xy,) €bs forall y=(y,)el}.
(1)

A% = {x=(x) €w:xy=(xy;) €4
W= {x=(x) €@ xy = (x) € cs

Let A = (a,); e be an infinite matrix and A, p € w. We
write

Vi =(Ax), = Zankxk (2)
*

and then we say that A defines a matrix transformation from
Aldnto pas A: A — p if Ax={(Ax),} € p for every x € A.
We denote the set of all infinite matrices that map the
sequence space A into the sequence space y by (A, y). Thus,
A€ (A, y) if and only if the right side of (2) converges for
every n €N, that is, A, € AP for all n € N and we have Ax
cuforall xe ). The set A, ={x € w : Ax € w} is called the
domain of the matrix H in X. It is known that the matrix
domain A, is also a sequence space. The readers may refer
to these nice papers [1-3] and the textbooks [4-8] concern-
ing domain of special matrices in classical sequence spaces
and the theory of summability.

If a normed sequence space A contains a sequence (b,)
with the following property that for every x € A there is a
unique sequence of scalars («,,) such that

lim ||x - (ayby + & by +---+a,b,)|| =0 (3)

n—~aoo
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then (b,,) is called a Schauder basis for A. The series Y a;b;
which has the sum x is then called the expansion of x with
respect to (b,) and written as x = ) ;. by.

If A is an FK-space, ¢ C A and (e¥) is a basis for A then A
is said to have AK property, where é* is a sequence whose
only term in k™ place is 1 the others are zero for each k €
N and ¢ = span{ek}. If ¢ is dense in A, then A is called AD
-space, thus AK implies AD.

The sequence space h defined by

h= {x= (%) €w : Zk|xk —xk+1|<oo} N ¢, (4)
k

is called Hahn sequence space, named after its introducer H.
Hahn [9]. The space h is a BK space with the norm

||x|| = Zk|xk — X1 | +sup|xi| forallx = (x) €h.  (5)
k k

Rao [10] proved that the space h is a BK space with AK
with respect to the norm

Ixl, = Zk|xk — Xy | forallx = (x;) € h. (6)
k

Later on Goes [11] introduced a generalised Hahn
sequence space h,d = (d,) € w with d, # 0 for all k, defined
by

KW= {xz(xk>ew:Zldk||xk—xk+l|<00}ﬂco. (7)
k

Quiet recently a scientific study of a more generalized
Hahn sequence space hy, is carried out by Malkowsky et al.
[12], defined as follows:

hy= {x: () €w: de|xk —xk+1|<00} Ne. (8)

k

The authors proved that the space h; is a BK space with
AK with respect to the norm

%, = Y dilxe = x| forall x = (x) € by (9)
k

where d = (d}) is an unbounded and monotonic increasing
sequence of positive reals. Besides, the authors stated and
proved various significant results concerning characteriza-
tion of matrix transformations between the space h; and
classical BK spaces, and characterization of compact opera-
tors on the space h; using Hausdorff measure of non-
compactness. We refer to [2, 10, 13-23] and the survey
paper [22] for more studies and results related to Hahn
sequence space.
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2. The New Generalized Hahn Sequence
Space hfl

In this section, we introduce the new generalized Hahn
sequence space 1) as follow

W= {wa : Z |dkAxk|P<oo} Ne, (10)

k=1

where (d;);, is an unbounded monotone increasing
sequence of positive real numbers with d, #0 for all k€ N,
1 <p <00, and Ax; = x; — Xp, 1.

Remark 1. 1t is clear that if we consider p=1, then h‘;
becomes h,;.
If we consider y, = d;(x; — x4,1) = (Ex), where

d, k=n,
ex=1< —d, ,k=n+l (11)
0 , otherwise.

Moreover, if we write the terms of y = (y,) starting from
k to m as follow

% Xk = Xks1

di
Zkﬂ = X1 ~ X2

k+1

12

Zk+2 = X2~ Xk43 ( )
k+2

Im =Xm ™ Xl

dy,

and then when we get sum Y (y,/d;) = x; - x,,,,. Then we
have }'%y;/d; = x; whenever x,,,; — 0(m — 00). Equiv-
alently, the sequence x = (x; ) may also represented by x = Gy
where the matrix G = (g,,) is defined by

1
T yk>n,
k
Gnk 0 ,0<k<n (13)

Clearly G=E .

Theorem 2. The new Hahn sequence space h is a linear
complete normed space space with the norm defined as

o 1ip
Il = (Z |dkAka> . (14)
k=1
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Proof. The linearity is clear. Now, we observe that the
(K, ||x|\h§) is a Banach space.
(N1) if

- 1p
%[l =0= <Z|dkAxk|P> =0=dAx =0, (15)
k=1

since d; # 0 for each k € N, Ax; = 0, that is, x;, = x;,, for all k,
and x € ¢, implies x; = 0 for all k, that is, x=0.
(N2) For every x € h‘g and A € K,

00 1/p 0 1/p
e = (Z |dkA<Axk>|P> - (Z |dkAxk|f’) = l1xlle
k=1

: (16)

(N3) For every x, y € hf,

0 1/p 0 1/p
2+l = (Z |dkA(xi +)’k)|P> < (Z |dkAxk|p>
P

k=1

o 1ip
+ (Z |dkAyk|P> =1l + Yl

k=1

(17)

Now we should show that the space (K, ||x||h1d>) is com-

plete. Suppose that x = (x("))"", be a Cauchy sequence in
the space 1. Therefore, for every € > 0, there exists a natural
number N € N such that

Hx(”)_x(m)H < E,Vm,nzN. (18)
W2

Since the Cauchy sequence x = (x<">)z.;1 is in the space
K, we obtain

[e¢)

dkAx,((m < 00,and x,(:') — 0(k—00). (19)

‘P

k=1

Now we can write the following inequality for fixed € > k,
m, n >N by considering the inequality

\a+b|Ps2P(\a|P+|b|P) (20)

for 1 < p < co that

[4 p

3 (4 ™)+ (o))
=k

4
x;(n) _ x}((m) ‘

P
<

£

(n) (m) () (m)
deA<xk X ) + <xk+1 _xk+1>
%

¢
n m)\ |P n) |P
S2P<Z‘dkA<x§()—x,(( ))‘ +’x,((+)1
=

(m)
+ ’xkﬂ

p>.
(21)

Then we have the following result since x"), x") € ¢, for
all m,nelN

) = <2l x| e+ e <€ 2)

P
hd

Therefore, x = (x") )Zil is a Cauchy sequence of Complex
numbers for each keNN. Since C is complete, then x=

(x)?, converges to an arbitrary sequence x = (x;) € C as
n=1 k
n — 00, that is, for every e > 0 there exists N, € N such that

}x,((n) - xk‘ <e (23)

for each k € N. Therefore, we have the following with an
arbitrary ¢ that

. 1p
(Blaatet =) ) sl w <
k=1 d

hence, by letting limit as m — co over (24) we obtain

. A\
(Z dkA(x,({@ —xk)‘ ) < Hx(”) - x
k=1

Moreover, we obtain by (23) forany n> Njand 1 < p < co

<e (25)

P
hd

n) |P
g

p
0< |xk|p < ZP(‘xk _x](:l>’

) — 0(k—s00)  (26)

which says that x = (x;) € ¢,. Furthermore,

I 1/p
[P <Z |dkAxk|P> = (
k=1

< (z di A (xk —x,@)

So, it shows that x € A}, O

gk

A\
‘dkA(xk - xﬁﬁ + x,@) ’ >

, 1p © » lp
) +<Z dkAxl((n)> < 00.

k=1

T
L

(27)

Corollary 3. The Hahn sequence space h'; is a BK space.



Theorem 4. The space h, does not have AK property.

Proof. If the sequence space 1, has AK property, then every
sequence x = (x;);2, € ¥ is the limit of its m — section xI"!
= kazlxke(k), ie.,

m
x= lim x" = hm Zxke

m—>00

z x e (28)

Let us consider d;, =k and x; = 1/k for all k € N. Then
obviously x = (x;) € ¢, and, since p > 1,

EICORS

that is, x € /). But, if we write x Y xe®) for every m
€ N as the m — section of the sequence x, then we obtain
for all meIN

0 0 1
};1 (dk|xk_xk+l|)P: Z (k‘k k+1

k=1

(29)

[m] —

=1, -

i (dk|xk—xk+1|)P2( - )P~

m|xm+1 |)P +
k=m+1 m+1

(30)
Hence, x"%x as m — co. It completes the proof. []

Theorem 5. The space I, is linearly isomorphic to the space
g,
Proof. Let us define the mapping T : b} — ¢, by y=Tx=

Ex. Linearity of T is obvious. Since the triangle E is the
matrix representation of T, therefore T is invertible too.
Now, let y € £, and consider the following equality:

o 1/p o p
Il = (Z |dkAxkf’> = (Z W) = [y, < oo
k=1

k=1
(31)

This implies that T is onto and preserves the norm.
Consequently T defines an isomorphism from H, to ¢,. This
completes the proof. O

Theorem 6. Let us define a sequence g (d) = {qﬁk)(d)}ndN
of elements of the space h, for every fixed k € N by

1 >
N > = n)
gl (d)={ (32)

0 ,I<k<n-1.

Then the sequence {q"(d)},. is a basis for the space h;
and any x € W has unique representation of the form
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x=) hq(d), (33)
k

where A = (Ex), for all ke N and 1< p < co.

3.a—, - And y - Duals of /,

In this section, we first calculate the y — dual of the space h,
and then we give some basic lemmas to prove the a —, 8 -
and y— duals of the space K. The following calculations
on the f3—dual of the space h; has been stated by Goes
([11], 4.1 Theorem, p. 485) and it has recently been proved
by Malkowsky et al. [12], Proposition 2.3., p.5) as

1 n
{hd}ﬁ:bsd: {aew sup - Zak
k=1

n n

<oo}. (34)

Moreover, Goes ([11], 4.2 Corolary (b)) showed the a —
dual of the space h,; as follows:

{hd}az{aew sup — Z|ak|<oo} (35)

noTn k=1
Now we can calculate the y — dual fo the space h,.

Lemma 7. {h;}' ={acw : sup(1/d,)|>}_,a;|<00}.

Proof. Suppose that a = (a;) € w and x = (x;) € h; be given.
Then we have the n'" — partial sum of the series Y ,a,x; as

S $(50) -5 (51w S,

k=1 k=1 =k =
(36)
where the infinite matrix B= (b,;) is defined as
1 &
a; kx=n,
bnk = dk] 1 (37)
0 sk<n.

It gives that ax € bs, that is, z € £, whenever x € h; if and
only if By € €., whenever y € ¢,. Therefore, a € {h,}" if and
only if B€(¢,¢€,). By Lemma 10(d) and since |[x[|;, =
I¥ll, = Syl < 00 we have that

1]&
sup — || < oo. (38)
¢ |5

=1
This completes the proof. O

Now we have the following useful Lemmas for the
further computations.

Lemma 8 (see [12], Theorem 11., p.8). We have
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(a) A€ (hy ) if and only if

Al e,y = SUP[Anllps, =3 <oco.  (39)
n

Z Ank

”’m Mk1

(b) A€ (hy,c) if and only if (39) holds, and the limits

o= lim a,;

n—aoo

exist for all k. (40)

Lemma 9 (see [12], Theorem 13., p.9). We have A € (hy, ;)
if and only if
) (41)

AN he, Sup< Z
mnl

Lemma 10 (see [4], Theorem 9.7.3, p.356). Let 1 <p <00, g
=p/(p—1). Then we have

€,,¢,) if and only if

NElNFmtte (,;)

¢, ¢) if and only if (40) holds and

z Ak

k=1

(a) Ae(

z Ak

neN

) < 00. (42)

(b) Ae(

supZ|ank|q < 00. (43)
n ok

(c) A€ (L, L) if and only if (43) holds
(d) Ae (8,8, if and only if
sup|a,,| < oco. (44)
nk
Theorem 11. Let 1 < p <00, g=p/(p—1). Then
2|

{hg}“:{a:(ak)ew: sup d—” <oo}. (45)

NeNfinite | |neN %k

Proof. Suppose that a=(a
following equation that

.) € w be given and consider the

anxn=akzzk Zdyk (Dy),»n€N, (46)
k=n"k

5
where the matrix D= (d,;) is defined as
a
- Lk=n,
d, = { dy (47)
0 Lk<n

for all k,n € N. It gives us that ax = (a,x,) € ¢; whenever x
€ i if and only if Dy € ¢, whenever y = (y,) € ¢,. Therefore,
= (a,) € {H, 1% whenever x € K if and only 1f De (e, ¢)).

Therefore, the condition in (42) of Lemma 10(a) holds with
d, instead of a,,, that is,

00 q
a
su ] <oo. 48
Ne]NFIi)nite <];) nEZN dk ) ( )
It gives the a — dual of the space H. O

Theorem 12. {hfjl}/3 ={a=(a) ew: Supn(1/|dn|q)2k

|Z;l:kaj\q<00}-

Proof. Suppose that a = (a;) € w and x = (x;) € i} are given.

Let us consider the following equality.

sn=§akxk=i <Z ) i(i;)yk— (By),»

1 \jok d =1
(49)

(b)) is defined as in (37) for all k,
neN. Then we can say that ax = (a,x;) € cs whenever x
= (x;) € b, if and only if Byec whenever y=(y,)€ e,
Therefore, a=(a;) € {hg}ﬁ if and only if Be€ (¢,,c). Then

the condition in Lemma 10(b) holds with b,; instead of
a,; that is

where the matrix B=

lim b, existforallk;

n—a~oo

50
supZ|bnk|q<oo. (50)
n ok

Thus, we can obtain that {h‘;}ﬁ= {a=(a;) ew:sup,
(1/]d,|) X Xikaj|'<o0} Nies. It is clearly seen that

}Ccs (51)

<oo} (52)

{a () €w: supld |qZZ

and then

A { (@) €w: sup g Za

as we desired. O



Theorem 13.

Y-kl <co}.

{Hp} ={a=(a) €w: sup,(1/|d,|) 3

Proof. Since we have similar pattern with Theorem 12, we

can conclude the proof with the following computation only.

Let us say that ax = (ax;) € bs whenever x = (x;) € i

if and only if By €¢,, whenever y=(y;) €¢,. Therefore,

=(a;) € {hg}ﬁ if and only if Be(g,;¢,). Then the

condition in Lemma 10(c) holds with b, instead of a,,
that is

supZ|bnk|”’ < 00. (53)
n ok

Thus, we can obtain that {h}}' ={a=(a;)€w: sup,
(1/]d,| ) il Yika;| <00} as we desired. O

4. Some Matrix Transformations from and into
the Space I,

In this section, we characterize the classes (hy, A), where A
={bv,bv,, bv.,, bs, cs,}, and (u, h;), where p={bv, bv,, bs,
CSg» €S}

Remark 14. If d, =k for every k € N, then characterization
of Theorem 17-Corollary 23 yields the characterisation of
(h, 1), where A= {bv, bv,, bv,, bs, cs,}

Definition 15 (see [8], Definition 7.4.2). Let X be a BK space.
A subset E of the set ¢ called a determining set for X if
D(X) =By N¢ is the absolutely convex hull of E.

Proposition 16 (see [12], Proposition 3.2, p.8). Let

s(d, k) = dik . e[k}for eachk € N, and E = {s(d, k): k € N}.

(54)

Then E is a determining set for h,.

Theorem 17. The infinite matrix A = (a,;) €
only if

(hy, bv) if and

1
sup d_z < 00. (55)

me]N

m
Z nlk

Proof. Suppose that E={(1/d,,)e!™ : m € N} is a determin-
ing set for the sequence space h;. The sequence space bv is
BK space with |[|.|,,. Let ¥ = (1/d,,)el" € E. Then

00 . 1 &
Ay = Zankyl(c >—d_z auforalln=1,2,--- (56)
k=1

k=1
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Hence,
1 & 1 &
m = (m) _ (m| =¥ | -
‘ Any oy ; Any An—ly ‘ ; dm ; Ak dm ; an—l,k
1 m
TZ Z ay— 1k <00

n k=1

(57)

which gives the condition in (55). O

Proposition 18 (see [1], Lemma 5.3). Let X, Y be any two
sequence spaces, A be an infinite matrix and U a triangle
matrix. Then A € (X,Yy) if and only if UA € (X,Y).

Corollary 19. The infinite matrix A = (a,;) €
(¢,) ) if and only if

ment |, |PZZ 1)

Corollary 20. The infinite matrix A = (a,;) €
(to),) if and only if

sup ‘d |Z

m,neN

(hd’ bvp) = (hd’

P
<0o,(I<p<oo). (58)

(hyg brvy,) = (hy,

m

Z nlk

Theorem 21. The infinite matrix A = (a,;) €

if

< 00. (59)

(hy, bs) if and only

| < o0. (60)

Proof. The proof is similar to that of Theorem 17 with the norm
II.|l,s replaced by the norm ||.||,,. Therefore, we have only the
following norm

- n 1 m
S meN |1 meN =1 [%ml j=1 (61)
= Su
e 1] |d &2
O

If we take supremum # € N from both sides of above
equality, then we can easily see the condition in (60).

Theorem 22. The infinite matrix A = (a,;,) €
only if the condition in (60) holds and

(hy, cs) if and

lim E a,; = oy exists for each k € N. (62)
n—00
=

Proof. Suppose that A = (a,;) € (hy, cs). Then Ax exists and
is in cs for each x = (x;) € h,. Thus, the partial sum of the
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series Ax converges, that is the condition in (62) is immedi-
ate. The rest of the proof is similar to that of Theorem 17 by
replacing the norm ||.||,, with the norm ||.||,, = ||.|| .- Hence,
we obtain the necessity of the condition in (4.4). O

Corollary 23. The infinite matrix A = (a,;) € (hy, csy) if and
only if the conditions in (60) and (62) hold with o =0 for
every k € N.

Theorem 24. The infinite matrix A = (a,;.) € (bvy, hy) if and

only if
>
lim Auk = 0 (63)
n—0o0 1
50 3 6|3 (0~ 1) <0 (64)
keN y=1 =1

Proof. Suppose that E = {el”! : m € N} be a determining set
of bv, and y" ="l ¢ E for each meN. Then the k™

column of Ay(™ where
(e8] m
A =N auy" = Y agofor n=1,2- (65
k=1 k=1
Then,
HAky(m) = Z|d | Z a,,x)|s forallkeN.
n=1 k=1
(66)
O

<m)},tzl is bounded in h,; if and
m) I p, <00 which shows the necessity of the

Hence, the sequence {A¥y
only if sup, || A%y(
condition in (64). Moreover, Aky(”’> € ¢, for all k € N, then
the condition in (63) is also immediate.

Corollary 25. The infinite matrix A = (a,;) € (bv, hy) if and
only if the conditions in (63) and (64) hold, and

Aeeh, (67)
Theorem 26. The infinite matrix A= (a,;) € (bs, hy) if and
only if
sup Z Y (b= by (68)
KeNfinite j=1|neK
o0
Jim, o] =0 (69)

where the matrix B= (b,) is defined as b, = a,; —a, . ;.

Proof. Suppose that A = (a,;) € (bs, h;) and Ax exists and is
in h, for every x € bs. Thus, A, € bsP = bv, Cc,. Let x be a
sequence such that v, = Zf;lxi. Ifvel, and x,=v, - v,
then x € bs. By ([8], Lemma 8.5.3(i)), we can say that Ax =
Bv. It says that B€ (€., hy). So the necessity of the condi-
tions in (68) and (69) are immediate. O
Theorem 27. The infinite matrix A = (a,;) €
only if the condition in (68) holds and

(csy, hy) if and

lim b, =0 (70)

n—-=00

where the matrix B=(b,;) is defined as b, =a, —a, ;.

Proof. The proof is similar to that of Theorem 26 with A,

€ csg =csP=bvcc and by ([8], Lemma 8.5.3(i)), we can

say that B € (¢, hy). So the necessity of the conditions in
(68) and (70) are immediate. O

Corollary 28. The infinite matrix A= (a,;) €
only if the conditions in (67), (68), (70) hold.

(cs, hy) if and

Remark 29. If we consider d, =k for every k € N, then the
characterization of Theorem 17, Corollary 19-Corollary 23
yields the characterisation of (h,A), where A={bv,bv,, b
Voo» bs, cs,}, and the characterization of Theorem 24-Corol-
lary 28 yields the characterisation of(y, h), where y = {bv, b
vy, bs, ¢sy, cs} (see [18], p.13-16).

5. Matrix Transformations on the Hahn
Sequence Space hZ

In this section, we characterize matrix (hf;1) and (u;h)
where A = {€.,, ¢, ¢y, &, hy, by, bs, cs} and p = {2, bv,, bs, cs,
}, respectively. The following lemma is significant for our
investigation:

Lemma 30 (see [1]). Matrix transformation between BK
-spaces are continuous.

Theorem 31. A = (a,;) € (W), £.,) if and only if

[ee] m
sup a,;| <oo, (71)
Fean |
o) k 4
supz| ‘ Z (72)
" k=l dil* |5

Proof. Let 1<p<oo and A € (H, ¢
exists and is contained in the space £,

)~ This means that Ax
for each x €M),

Apparently (a,;)r; € {hg}ﬁ . This establishes the necessity
of condition in (71).



We recall that y, = d; Ax; or equivalently x; = Z}fkyj/dj
for each k € IN. This leads us to the following equality

0o j

Zankxk_ Zankz Zanszx = Zzﬂnkg (73)

k=1 ]k] k=1 j= J=lk=1

for each n € N. Since 1/, and ¢, are BK spaces, Lemma 30
ascertains that there exists a positive number M < co such
that

[[Ax[lg < Mllx]], (74)

for all x € i}. Therefore, by the aid of Holder’s inequality
together with (73) and Theorem 5, we get
9\ 19
><m

s i 3
(75)

for all x € h. This establishes the necessity of condition in
(72).

Conversely, assume that conditions in (71) and (72) hold
and take any x € /. Then (a,;)i, € {I/t‘;}/3 which implies
that Ax exists. Again applying Hoélder’s inequality and the
fact that y = (y;) € ¢,, we deduce that

q\ 1/q 1/p
)V (s0) <o
k=1

(i A"
(76)

k
[[Ax||, \ZEZIijlanj(yk/dk)\
= =sup
e, » 71,

k

7|2 %

o k
550,

x|, =sup
no|k=1j=1

Consequently, A € (K}, ¢,). This completes the proof. ]

Theorem 32. A € (hs, ¢) ifand only if (71) and (72) hold, and
for each k € N, there exists o € R such that

1 &
nh_r)nood— @,j = 0. (77)
kJ 1

Proof. Let A € (W, ¢). Then Ax exists and is contained in the
space ¢ for all x € ). Since ¢ € £,,Ax € €. Thus the necessity
of conditions in (71) and (72) follows from Theorem 31. Let us

consider x = Ge®) and define the matrix D = (d, ;) by
1 &
dy=—) a,; (78)
k dk = j

foralln,k=1,2,3,---
that

. Then by virtue of equality (73), we get

Ax :A(Ge<k)> = D(E(Ge<k>)) =De = (i) e (79)
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Since Ax € ¢, so (d,;.)
the condition in (77).
Conversely, assume that the conditions in (71), (72) and

(77) hold. Then ()i € {1 } for each neIN which
implies that Ax exists for all x € i}. Therefore we again
obtained equality (73). Then, one can notice that the condi-
tions in (71) and (77) correspond to the conditions in (43)
and (40), respectively, with d,; instead of a,;. This con-
cludes that Dy = Ax € c. Hence A € (K, ¢). O

4en € ¢- This proves the necessity of

Replacing ¢ by ¢, in Theorem 32, we obtain the following
corollary:

Corollary 33. A€ (K, c,) if and only if (71) and (72) hold,
and (77) also holds with oy, = 0 for all k.

Theorem 34. A=(a, )€
and

(K, ®,) if and only if (71) holds,

q
< 00,1 <p<o00. (80)

00 1 k

sup a,;
]
dk j=1

NeNFinite -

neN

Proof. This is similar to the proof of Theorem 31. Hence
details are omitted. O

Theorem 35. A= (a,,) €
in (71) holds and

(W, hy) if and only if the condition

n—=00

1 &
lim d—z;an]:O, forall keN (81)
=

d

M»

n At ]

q\ 1/q
) < 00,(1<p<o00).

(82)

[ee]
sup ——
kelN |dk| (nzl ]

Proof. Let 1 < p < co and suppose that A € (i), h,) such that
Ax exists and is in the space hd for each x € hf. Thus, we
clerly see that (a,; )i, € {1 } which proves the necessity
of condition in (71).

By using the relation y, =d,Ax, or equivalently x, =
2 ow;/d; for each k € N between the terms of the sequences

x = (x;) and y = (y,), we reach the equality in (73) which can
be written as in the following

k

Yay2E=Y duye  (83)

1j=1 ko k=1

M8

Z“nkxk Z“ ZZ— =

k=1 j=k

=~
Il

where the infinite matrix D= (d,;) is defined as d, = 1/d,
Z] 1a,; for each n,k € N. Since K and h, are BK spaces,

we revisit Lemma 30 that there exists a positive real number
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N such that

]y, < Nljxl (84)

for all xe€M). Therefore, by using Hélder’s inequality
together with (73) and Theorem 5, we get

1/
450, o (Eldy A, )
EF T

(85)

k
dn Z n+1]

=1

a\ 174
) <co

for all x € h‘;. This shows the necessity of condition in (82).

Moreover, since Ax = Dy € h, for every x € i, the necessity
of condition in (81) is also seen.

Conversely, suppose that the conditions in (71), (81),
and (82) hold. Let us take any x € #/,. Then A, € {hg}ﬁ which
implies that Ax exists. The rest of proof follows the similar
path to that of Theorem 31 with the following inequality

q\ 1/q 1/p
) (ZW) <co.
k=1

4], =sup 3, A4,

n=1

k

< d .
Slipldk\ (WZ; n; ~a)

(86)
Thus, A € (K}, h,;). This completes the proof. O

Since the proof of the following results can be done simi-
lary to that of Theorem 35, we give them without their
proofs.

Corollary 36. The followings hold.

(i) The infinite matrix A= (a,;) € (W, bv
the condition in (71) holds and

) if and only if

sup ——

<00 87
me]N|d | ( )

m
Z nlk

k=1

)

(i) The infinite matrix A = (a,;) € (W), bs) if and only if
the condition in (71) holds and

su
m,neplN |d |

(iii) The infinite matrix A = (a,;) € (W), cs) if and only if
the conditions in (71) and (88) hold, and

m k

1
nlinoozd_z“m‘

k=1 kj:1

exists foreach keIN.  (89)

Theorem 37. A = (a,;) € (¢, 1) if and only if

lim a,, =0,

n—a~oo

forall keNN, (90)

sup <Z |d,(a

1p
Apir)| ) < 00,(1 < p<00). (91)

Proof. Since I, is a BK space by Corollary 3, we apply ([8],
Example 8.4.1) to obtain that A € (€, k%) if and only if the

columns of A form a bounded set in hf;.
We have

4.,

- (B tes

1p
nﬂk‘p) forall k. (92)

Hence the set {AF : k € N} is bounded in K/, if and only
if supkHAth;; < 00, which gives the condition in (91). More-

over A¥ € ¢, for all k, which gives the condition in (87). This
completes the proof. O

Now we give the following corollaries without their
proofs since the proofs are followed similarly to that of
Theorem 37.

Corollary 38. The followings hold.

(i) The infinite matrix A = (a,;) € (bv,, h) if and only if
the condition in (63) holds, and

[ m P
sup z dn Z(ank n+1 k) < 0. (93)
keN y=1 k=1

(ii) The infinite matrix A = (a,;) € (bs, Hy) if and only if

P
sup Z Zd ak ~ buei)| > (94)
KeNfinite g=1 |nek
0
Jim b =0 (95)

where the matrix B= (b,;) is defined as b, =a, —a, ;..

(iii) The infinite matrix A = (a,;) € (csy,
the condition in (94) holds and

W) if and only if
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lim b, =0 (96)

n—~o
where the matrix B=(b,;) is defined as b, =a, —a, .,

6. Conclusion

Most recently, Malkowsky at al [12] defined the generalized
Hahn sequence space h,;, where d is an unbounded mono-
tone increasing sequence of positive real numbers, and char-
acterized several classes of bounded linear operators or
matrix transformations from h, into A ={€.,c ¢, ¢, h,},
and also from A={€.,c ¢y ¢} into h,;. Moreover, the
norms of the corresponding bounded linear operators and
the Hausdorff measure of non-compactness for the opera-
tors in the above classes, and one application given by a tri-
diagonal matrix to present a Fredholm operator from h, into
itself were studied in [12].

Malkowsky [14] established the characterisations of the
classes of bounded linear operators from the generalised
Hahn sequence space h; into the spaces [c,], [c] and [c..]-
Moreover, he proved estimates for the Hausdorff measure
of noncompactness of bounded linear operators from h,
into [c], and identities for the Hausdorff measure of non-
compactness of bounded linear operators from h,; to [c),
and then he used these results to characterise the classes of
compact operators from h; to [c] and [c,].

Dolic'anin-Dekic’ and Gilic' [20] established the char-
acterisations of the classes of bounded linear operators from
the generalised Hahn sequence space h; into the spaces w,,
w and w,,. Then they proved estimates for the Hausdorff
measure of noncompactness of bounded linear operators
from h, into w, and identities for the Hausdorff measure
of noncompactness of bounded linear operators from h,
into wy, and then they used these results to characterise
the classes of compact operators from h; to w, and w.

In this article, we defined new generalized Hahn sequence
space hi, where d=(d,);°, is an unbounded monotone
increasing sequence of positive real numbers with d, # 0 for
all ke N, and 1 < p < co. Then, we proved some topological
properties and showed some inclusion relations. Moreover,
we calculate the a —, 8 —, and y — duals of . Furthermore,
we characterize the new matrix classes (h,, A), where A = {bv
»bv,, by, bs, cs,}, and (y, hy), where p = {bv, bvy, bs, csy, cs}
. In the last section, we prove the necessary and sufficient con-
ditions of the matrix transformations from 1, into A = {€,
¢, Co» &1> hyg, by, bs, cs}, and from p = {€,, by, bs, cs, } into K.
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