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In this paper, by using properties of attractive points, we study an iteration scheme combining simplified Baillon type and Mann
type to find a common fixed point of commutative two nonlinear mappings in Hilbert spaces. Then, we apply the obtained results
to prove a new weak convergence theorem.

1. Introduction

In 1963, DeMarr [1] proved a common fixed point theorem
for a family of commuting nonexpansive mappings in a
Banach space. After DeMarr, many researchers studied this
subject (see [2–6] and others).

On the other hand, in 1975, Baillon [7] proved a mean
convergence theorem known as the first nonlinear ergodic
theorem in a Hilbert space. After Baillon, many researchers
have studied topics related to his mean convergence theo-
rem. In 1997, Shimizu and Takahashi [8] introduced the
iteration scheme that combines Baillon type and Halpern
type [9]. Then, they proved a strong convergence theorem
to a common fixed point of a finite family of commutative
nonexpansive mappings in Hilbert spaces. In 1998, Atsush-
iba and Takahashi [10] introduced the iteration scheme that
combines Baillon type and Mann type [11] and proved a
weak convergence theorem to a common fixed point of com-
mutative two nonexpansive mappings in uniformly convex
Banach spaces. In 2002, Suzuki [12] studied for common
fixed points of commutative two nonexpansive mappings
in general Banach spaces. Then, he proved a strong conver-

gence theorem using Atsushiba and Takahashi’s iteration
scheme. Stimulated by Suzuki [12], Takeuchi [13] intro-
duced a new iteration scheme combining simplified Baillon
type and Mann type and proved the following strong con-
vergence theorem in general Banach spaces.

Theorem 1 (see [13]). Let E be a Banach space and let C be a
compact convex subset of E. Let S and T be nonexpansive self-
mappings on C with ST = TS. Let fang be a sequence in ½0, 1�
satisfying 0 < liminf n⟶∞an ≤ limsupn⟶∞an < 1. Let x1 ∈ C
and define a sequence fxng in C by

xn+1 =
an
2n

〠
n

i=1
〠
i+1

j=i
SiT jxn + 1 − anð Þxn, ð1Þ

for each n ∈ℕ. Then, fxng converges strongly to some com-
mon fixed point z of S and T .

Also, some researchers studied topics related to common
fixed points of various nonlinear mappings or semigroups of
nonlinear mappings, and some convergence theorems were
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proved; for example, see [14–16] and others. In addition,
Baillon’s theorem [7] evolved as follows. In 2011, Takahashi
and Takeuchi [17] proposed the notion of an attractive point
of a mapping T . They denote by AðTÞ the set of all attractive
points of T and by PAðTÞ the metric projection from H onto
the closed convex set AðTÞ. An attractive point is an impor-
tant notion related to fixed points (see [18–21] and therein).
Then, Takahashi and Takeuchi [17] proved the following
Baillon type mean convergence theorem finding an attrac-
tive point for a wide class of nonlinear mappings called gen-
eralized hybrid [22].

Theorem 2 (see [17]). Let H be a Hilbert space and let C be a
nonempty subset of H. Let T be a generalized hybrid mapping
from C into itself. Let fvng and fbng be sequences defined by

v1 ∈ C,

vn+1 = Tvn,

bn =
1
n
〠
n

k=1
vk,

ð2Þ

for each n ∈ℕ. Suppose fvng is bounded. Then, the following
hold:

(1) AðTÞ is nonempty, closed, and convex

(2) fbng converges weakly to u ∈ AðTÞ such that u =
limn⟶∞PAðTÞvn

Motivated by the works as above, considering properties
of attractive points, we study the iteration scheme proposed
by Takeuchi [13]. Then, using the obtained results, we prove
a new weak convergence theorem for common fixed points
of commutative two nonlinear mappings in Hilbert spaces.

2. Preliminaries

We present some of fundamental concepts and some sym-
bols used throughout this paper. We denote by ℝ the set
of all real numbers, by ℕ the set of all positive integers,
and by ℕ0 the set of all nonnegative integers. Also, we
denote by ℕi the set fk ∈ℕ0 : i ≤ kg for each i ∈ℕ0 and
by ℕði, jÞ the set fk ∈ℕ0 : i ≤ k ≤ jg for each i, j ∈ℕ0 with
i ≤ j. Obviously, ℕ1 =ℕ.

H always denotes a real Hilbert space with inner product
h·, · i and induced norm k·k. Let fxng be a sequence in H.
Sometimes the strong convergence and weak convergence
of fxng to a point x ∈H are denoted by xn ⟶ x and xn
⇀ x, respectively. So, xn ⟶ x implies limn⟶∞kxn − xk =
0, and xn ⇀ x implies limn⟶∞hxn − x, yi = 0 for each y ∈
H. Then, we know the following basic facts:

(i) A nonempty closed convex subset C of H is weakly
closed

(ii) A bounded sequence of H has a weakly convergent
subsequence

(iii) xn ⇀ z ∈H if every weak cluster point of fxng and
z are the same

A Hilbert space H has the Opial property; that is, if a
sequence fung in H converges weakly to a point u ∈H, then

liminf
n⟶∞

un − uk k < liminf
n⟶∞

un − vk k, ð3Þ

for all v ∈H with u ≠ v.
Let C be a nonempty subset of H and let T be a mapping

from C into H. Sometimes, we denote by T0 the identity
mapping I on C. Then, we denote by FðTÞ the set of all fixed
points of T and by AðTÞ the set of all attractive points of T ,
that is,

F Tð Þ = x ∈ C : x = Txf g,
A Tð Þ = y ∈H : Tx − yk k ≤ x − yk k for all x ∈ Cf g:

ð4Þ

T is called nonexpansive if kTx − Tyk ≤ kx − yk for all
x, y ∈ C. We say that I − T is demiclosed at 0 if z ∈ FðTÞ
holds whenever fxng is a sequence in C such that xn ⇀ z
for some z ∈ C and xn − Txn ⟶ 0. Then, I − T is demi-
closed at 0 if T is nonexpansive. T is called quasi-
nonexpansive if∅≠ FðTÞ ⊂ AðTÞ. It is easy to see that a non-
expansive mapping T with FðTÞ ≠∅ is quasi-nonexpansive.
Aoyama et al. [23] proposed λ-hybrid mappings for λ ∈ℝ. T
is called λ–hybrid if

Tx − Tyk k2 ≤ x − yk k2 + 2 1 − λð Þ x − Tx, y − Tyh i, ð5Þ

for all x, y ∈ C. We can easily verify that a mapping of several
important classes of nonlinear mappings is λ-hybrid for
some λ ∈ℝ. For example, a nonspreading mapping [24] is
0-hybrid; a hybrid mapping [25] is 1/2-hybrid and a nonex-
pansive mapping is 1-hybrid. T satisfies FðTÞ ⊂ AðTÞ if T is
λ-hybrid. So a λ-hybrid mapping T is quasi-nonexpansive if
FðTÞ ≠∅. According to Falset et al. [26], T is said to satisfy
the condition (E) if there is s ∈ ½0,∞Þ such that

x − Tyk k ≤ x − yk k + s x − Txk k, ð6Þ

for all x, y ∈ C. If T satisfies the condition (E), then FðTÞ ⊂
AðTÞ. So T is quasi-nonexpansive if T satisfies the condition
(E) and FðTÞ ≠∅.

Let C be a subset of H and let T1 and T2 be self-
mappings on C. We denote by F the common fixed point
set FðT1Þ ∩ FðT2Þ and by A the common attractive point
set AðT1Þ ∩ AðT2Þ. We place importance on the condition
F ⊂ A. Therefore, we present some facts relevant to this con-
dition. It is easy to see the following:

(a) F ⊂ A implies neither FðT1Þ ⊂ AðT1Þ nor FðT2Þ ⊂ A
ðT2Þ

(b) F ≠∅ does not imply A ≠∅ without the assumption
F ⊂ A
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(c) In the case when C is closed and convex, A ≠∅
implies F ≠∅. However, A ≠∅ does not imply F ⊂
A

(d) If T1 and T2 are quasi-nonexpansive mappings, then
F ⊂ A

(e) Even if ∅≠ F ⊂ A, neither T1 nor T2 need be quasi-
nonexpansive

To clearly understand such situations, a specific example
from [20] is given below.

Example 1 (see [20]). Let D = fx = ðs, tÞ ∈ℝ2 : s ∈ ½0, 1�, t ∈ ½
s/2, 2s�g. Then, D is compact and convex. Let T1 and T2 be
self-mappings on D defined by

T1x = T1 s, tð Þ = 1
2

s, tð Þ + 1
2
t, t

� �� �
=

1
2
s +

1
4
t, t

� �
,

T2x = T2 s, tð Þ = 1
2

s, tð Þ + s,
1
2
s

� �� �
= s,

1
4
s +

1
2
t

� �
,

ð7Þ

for each x = ðs, tÞ ∈D.

In this example, we easily see

F T1ð Þ = x1, x2ð Þ ∈D : x2 = 2x1f g,
F T2ð Þ = x1, x2ð Þ ∈D : x2 =

x1
2

n o
,

A T1ð Þ = x1, x2ð Þ ∈ℝ2 : x1 ≤ 0
� �

,

A T2ð Þ = x1, x2ð Þ ∈ℝ2 : x2 ≤ 0
� �

,

F = 0, 0ð Þf g,
A = x1, x2ð Þ ∈ℝ2 : x1 ≤ 0, x2 ≤ 0

� �
:

ð8Þ

From this, we can easily confirm the following:

(i) FðT1Þ ∩ FðT2Þ ⊂ AðT1Þ ∩ AðT2Þ holds
(ii) Neither FðT1Þ ⊂ AðT1Þ nor FðT2Þ ⊂ AðT2Þ holds
(iii) Neither T1 nor T2 is quasi-nonexpansive

Refer to [17–21] for more details of attractive points.

3. Lemmas

We begin this section with preparing the required symbols
for the iteration scheme we are dealing with and then pres-
ent some lemmas which are needed to prove our main result.

Let C be a nonempty subset of a Hilbert space H. Let
T1 and T2 be self-mappings on C. For each n ∈ℕ, define
mappings MeðnÞ, MoðnÞ, and MðnÞ from C into H, respec-
tively, by

Me nð Þx = 1
n
〠
n−1

i=0
Ti
1T

i
2x,

Mo nð Þx = 1
n
〠
n−1

i=0
Ti
1T

i+1
2 x,

M nð Þx = 1
2n

〠
n−1

i=0
〠
i+1

j=i
Ti
1T

j
2x =

1
2
Me nð Þx + 1

2
Mo nð Þx,

ð9Þ

for each x ∈ C. Then, for each n ∈ℕ, v ∈ FðMeðnÞÞ ∩
FðMoðnÞÞ ∩ FðMðnÞÞ holds if v ∈ F, and u ∈ AðMeðnÞÞ ∩ A
ðMoðnÞÞ ∩ AðMðnÞÞ holds if u ∈ A. In the case of T1T2 = T2
T1, the following holds:

Ti
1T

i
2x = T1T2ð Þix,

Ti
1T

i+1
2 x = T1T2ð Þi T2xð Þ = T2 T1T2ð Þix� �

,
ð10Þ

for all i ∈ℕ0, x ∈ C.
Here are some lemmas which are needed to get our main

result. First, since a Hilbert space has the Opial property, the
following lemma is easily obtained; for example, see Atsush-
iba et al. [18].

Lemma 3. Let H be a Hilbert space and let C be a nonempty
subset of H. Let fung be a sequence in H such that fkun −
wkg converges for each w ∈ C. Suppose funig and funj

g are

subsequences of fung which converge weakly to u, v ∈ C,
respectively. Then, u = v.

The following lemma is due to Ibaraki and Takeuchi [20].

Lemma 4 (see [20]). Let H be a Hilbert space and let C be a
nonempty subset of H. Let T be a mapping from C into H. Let
a ∈ ½0, 1�, x ∈ C, and w = ax + ð1 − aÞTx. Suppose v ∈ AðTÞ.
Then, the following holds:

a 1 − að Þ Tx − xk k2 ≤ x − vk k2 − w − vk k2: ð11Þ

Suppose further that C is bounded. Let r > supx∈Ckx − vk.
Then,

a 1 − að Þ
2r

Tx − xk k2 ≤ x − vk k − w − vk k: ð12Þ

We need the following trivial lemma to prove Lemma 6.

Lemma 5. Let fangn∈ℕ0
be a sequence in ½0,∞Þ. Then, for

each n ∈ℕ2, there exists in ∈ℕð0, n − 2Þ satisfying
mini∈ℕð0,n−2Þðai + ai+1Þ = ain + ain+1, and therefore, the follow-
ing holds:

〠
n−1

i=0
ai ≥

n − 1
2

ain + ain+1
� �

: ð13Þ
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Proof. Fix any n ∈ℕ2. It is trivial that there exists in ∈ℕð0,
n − 2Þ such that

min
i∈ℕ 0,n−2ð Þ

ai + ai+1ð Þ = ain + ain+1: ð14Þ

In the case when n is odd, n ∈ℕ3 and in satisfies

〠
n−1

i=0
ai ≥ 〠

n−2

i=0
ai = 〠

n−3ð Þ/2

k=0
a2k + a2k+1ð Þ

≥ 〠
n−3ð Þ/2

k=0
ain + ain+1
� �

=
n − 1
2

ain + ain+1
� �

:

ð15Þ

In the case when n is even, in satisfies

〠
n−1

i=0
ai = 〠

n−2ð Þ/2

k=0
a2k + a2k+1ð Þ ≥ 〠

n−2ð Þ/2

k=0
ain + ain+1
� �

=
n
2

ain + ain+1
� �

:

ð16Þ

Thus, we see that in satisfies (13).

Lemma 6. Let H be a Hilbert space and let C be a nonempty
subset of H. Let T1 and T2 be self-mappings on C satisfying
∅≠ A = AðT1Þ ∩ AðT2Þ. Let a, b ∈ ð0, 1Þ satisfy a ≤ b and
let fang be a sequence in ½a, b�. For each n ∈ℕ, let MðnÞ
be as in (9). Let fxng be a bounded sequence in C and
define fyng by

yn = anM nð Þxn + 1 − anð Þxn, ð17Þ

for each n ∈ℕ. Suppose limn⟶∞kxn − ynk = 0. Then,
there is a sequence fingn∈ℕ2

such that in ∈ℕð0, n − 2Þ ⊂
ℕ0 for each n ∈ℕ2 and

lim
n⟶∞

Tin
1 T

in
2 xn − xn

��� ��� = 0,

lim
n⟶∞

Tin
1 T

in+1
2 xn − xn

��� ��� = 0,

lim
n⟶∞

Tin+1
1 Tin+1

2 xn − xn
��� ��� = 0:

ð18Þ

Proof. For each n ∈ℕ, let MeðnÞ and MoðnÞ be as in (9).
Note that 0 < að1 − bÞ ≤ anð1 − anÞ for all n ∈ℕ. Fix any
u ∈ A. Since fxng is a bounded sequence in C, there is
an r ∈ ð0,∞Þ satisfying r > supn∈ℕkxn − uk. For each n ∈
ℕ, by (12) in Lemma 4, we see that

anMe nð Þxn + 1 − anð Þxn − uk k

=
an
n
〠
n−1

i=0
Ti
1T

i
2xn + 1 − anð Þxn − u

�����
�����

= an
1
n
〠
n−1

i=0
Ti
1T

i
2xn − u

 !
+ 1 − anð Þ xn − uð Þ

�����
�����

=
1
n
〠
n−1

i=0
an Ti

1T
i
2xn − u

� �
+ 1 − anð Þ xn − uð Þ� ������

�����
≤
1
n
〠
n−1

i=0
an Ti

1T
i
2xn − u

� �
+ 1 − anð Þ xn − uð Þ�� ��

≤
1
n
〠
n−1

i=0
xn − uk k − an 1 − anð Þ

2r
Ti
1T

i
2xn − xn

�� ��2� �

≤ xn − uk k − a 1 − bð Þ
2r

1
n
〠
n−1

i=0
Ti
1T

i
2xn − xn

�� ��2:

ð19Þ

Then, we have

a 1 − bð Þ
2r

1
n
〠
n−1

i=0
Ti
1T

i
2xn − xn

�� ��2
≤ xn − uk k − anMe nð Þxn + 1 − anð Þxn − uk k:

ð20Þ

In the same way, we also have

a 1 − bð Þ
2r

1
n
〠
n−1

i=0
Ti
1T

i+1
2 xn − xn

�� ��2
≤ xn − uk k − anMo nð Þxn + 1 − anð Þxn − uk k:

ð21Þ

By (20) and (21), the following holds:

a 1 − bð Þ
4r

1
n
〠
n−1

i=0
Ti
1T

i
2xn − xn

�� ��2 + Ti
1T

i+1
2 xn − xn

�� ��2	 


≤
1
2

xn − uk k − anMe nð Þxn + 1 − anð Þxn − uk kð Þ

+
1
2

xn − uk k − anMo nð Þxn + 1 − anð Þxn − uk kð Þ

≤ xn − uk k − 1
2
anMe nð Þxn

����
+
1
2
anMo nð Þxn + 1 − anð Þxn − u

����
= xn − uk k − anM nð Þxn + 1 − anð Þxn − uk k
= xn − uk k − yn − uk k ≤ xn − ynk k:

ð22Þ

For each i ∈ℕ0, we regard kTi
1T

i
2xn − xnk2 +

kTi
1T

i+1
2 xn − xnk2 as ai in Lemma 5. From Lemma 5, for

each n ∈ℕ2, there exists in ∈ℕð0, n − 2Þ ⊂ℕ0 satisfying
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(13). So, we have the sequence fingn∈ℕ2
which consists of

such in. Then, for each n ∈ℕ2, it follows from (13) that

n − 1
2

Tin
1 T

in
2 xn − xn

��� ���2 + Tin
1 T

in+1
2 xn − xn

��� ���2�

+ Tin+1
1 Tin+1

2 xn − xn
��� ���2 + Tin+1

1 Tin+2
2 xn − xn

��� ���2�

≤ 〠
n−1

i=0
Ti
1T

i
2xn − xn

�� ��2 + Ti
1T

i+1
2 xn − xn

�� ��2	 

:

ð23Þ

From this, by (22), we see

a 1 − bð Þ
8r

n − 1
n

Tin
1 T

in
2 xn − xn

��� ���2
≤
a 1 − bð Þ

4r
1
n
n − 1
2

Tin
1 T

in
2 xn − xn

��� ���2 + Tin
1 T

in+1
2 xn − xn

��� ���2�

+ Tin+1
1 Tin+1

2 xn − xn
��� ���2 + Tin+1

1 Tin+2
2 xn − xn

��� ���2�

≤
a 1 − bð Þ

4r
1
n
〠
n−1

i=0
Ti
1T

i
2xn − xn

�� ��2 + Ti
1T

i+1
2 xn − xn

�� ��2	 

≤ xn − ynk k:

ð24Þ

Then, by limn⟶∞kxn − ynk = 0, we immediately see

limsup
n⟶∞

a 1 − bð Þ
8r

n − 1
n

Tin
1 T

in
2 xn − xn

��� ���2
≤ lim

n⟶∞
xn − ynk k = 0:

ð25Þ

Thus, by ððað1 − bÞÞ/8rÞ > 0 and limn⟶∞ððn − 1Þ/nÞ
= 1, we obtain

lim
n⟶∞

Tin
1 T

in
2 xn − xn

��� ���2 = 0: ð26Þ

In the same way, we also have the following:

lim
n⟶∞

Tin
1 T

in+1
2 xn − xn

��� ���2 = 0,

lim
n⟶∞

Tin+1
1 Tin+1

2 xn − xn
��� ���2 = 0:

ð27Þ

The following lemmas for a λ-hybrid mapping and a
mapping satisfying the condition (E) were known; for exam-
ple, see Ibaraki and Takeuchi [20]. Of course, these are
extensions of the demiclosed principle in the Hilbert space
setting.

Lemma 7. Let H be a Hilbert space and let C be a subset of H.
Let T be a λ-hybrid mapping from C into H. Suppose fxng is
a sequence in C which converges weakly to some u ∈ C and
satisfies limn⟶∞kTxn − xnk = 0. Then, u ∈ FðTÞ.

Lemma 8. Let H be a Hilbert space and let C be a subset of H.
Let T be a mapping from C into H which satisfies the condi-
tion ðEÞ. Suppose fxng is a sequence in C which converges
weakly to some u ∈ C and satisfies limn⟶∞kTxn − xnk = 0.
Then, u ∈ FðTÞ.

4. Main Result and Applications

We present a weak convergence theorem which is our main
result.

Theorem 9. Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let T1 and T2 be self-mappings on
C satisfying T1T2 = T2T1. Let a, b ∈ ð0, 1Þ satisfy a ≤ b and let
fang be a sequence in ½a, b�. For each n ∈ℕ, letMðnÞ be as in
(9). Let x1 ∈ C and define a sequence fxng in C by

xn+1 =
an
2n

〠
n−1

i=0
〠
i+1

j=i
Ti
1T

j
2xn + 1 − anð Þxn

= anM nð Þxn + 1 − anð Þxn,
ð28Þ

for each n ∈ℕ. Set A = AðT1Þ ∩ AðT2Þ and F = FðT1Þ ∩ Fð
T2Þ. Suppose A ≠∅ and I − T j is demiclosed at 0 for each j
∈ f1, 2g. Then, the following hold:

(1) A weakly convergent subsequence of fxng exists, and
every weakly convergent subsequence of fxng con-
verges weakly to a point of F

(2) In the case of F ⊂ A, fxng converges weakly to some
z ∈ F

Proof. Fix any v ∈ A. It is trivial that A ⊂ AðMðnÞÞ for all n
∈ℕ. Then, by (11) in Lemma 4, we see

0 ≤ an 1 − anð Þ M nð Þxn − xnk k2 ≤ xn − vk k2 − xn+1 − vk k2,
ð29Þ

for each n ∈ℕ. From this, we see that kxn+1 − vk ≤ kxn
− vk for all n ∈ℕ; that is, fkxn − vkg converges. So, since
0 < að1 − bÞ ≤ anð1 − anÞ for all n ∈ℕ, we have

lim
n⟶∞

M nð Þxn − xnk k2 = 0: ð30Þ

Furthermore, we know that for each n ∈ℕ,

xn+1 − xnk k = anM nð Þxn + 1 − anð Þxn − xnk k
= an M nð Þxn − xnk k: ð31Þ

By (30) and (31), limn⟶∞kxn+1 − xnk = 0 holds. For
each n ∈ℕ, we may regard xn+1 as yn in Lemma 6. Thus,
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since fxng is bounded, by Lemma 6, there is a sequence
fingn∈ℕ2

such that in ∈ℕð0, n − 2Þ ⊂ℕ0 for each n ∈ℕ2 and

lim
n⟶∞

Tin
1 T

in
2 xn − xn

��� ��� = 0,

lim
n⟶∞

Tin
1 T

in+1
2 xn − xn

��� ��� = 0,

lim
n⟶∞

Tin+1
1 Tin+1

2 xn − xn
��� ��� = 0:

ð32Þ

We show that (1) holds. Since fxng is bounded, fxng has
a weakly convergent subsequence. Let fxnlg be a subse-
quence of fxng which converges weakly to some z ∈H. Since
C is weakly closed and fxnlg is a sequence in C, we see z ∈ C.

We show z ∈ FðT2Þ. By T1T2 = T2T1 and (32), we see

lim
l⟶∞

T
inl
1 T

inl
2 xnl − xnl

��� ��� = 0,

limsup
l⟶∞

T2 T
inl
1 T

inl
2 xnl

	 

− T

inl
1 T

inl
2 xnl

��� ���
≤ limsup

l⟶∞
T
inl
1 T

inl+1
2 xnl − xnl

��� ��� + limsup
l⟶∞

xnl − T
inl
1 T

inl
2 xnl

��� ���
= lim

l⟶∞
T
inl
1 T

inl+1
2 xnl − xnl

��� ��� + lim
l⟶∞

xnl − T
inl
1 T

inl
2 xnl

��� ��� = 0:

ð33Þ

From the latter, we see liml⟶∞kT2ðT
inl
1 T

inl
2 xnlÞ − T

inl
1

T
inl
2 xnlk = 0. Since fxnlg converges weakly to z ∈ C, by

liml⟶∞kTinl
1 T

inl
2 xnl − xnlk = 0, fTinl

1 T
inl
2 xnlg also converges

weakly to z. So, since I − T2 is demiclosed at 0, we see z ∈
FðT2Þ.

We show z ∈ FðT1Þ. Similarly to the discussion above,
we have the following:

lim
l⟶∞

T
inl
1 T

inl+1
2 xnl − xnl

��� ��� = 0,

lim
l⟶∞

T1 T
inl
1 T

inl+1
2 xnl

	 

− T

inl
1 T

inl+1
2 xnl

��� ��� = 0:
ð34Þ

So, fTinl
1 T

inl+1
2 xnlg converges weakly to z and

lim
l⟶∞

T1 T
inl
1 T

inl+1
2 xnl

	 

− T

inl
1 T

inl+1
2 xnl

��� ��� = 0: ð35Þ

Since I − T1 is demiclosed at 0, we see z ∈ FðT1Þ. Thus,
z ∈ F = FðT1Þ ∩ FðT2Þ.

By the argument so far, we see that a weakly convergent
subsequence of fxng exists and any weakly convergent sub-
sequence of fxng has to converge weakly to a point of F. So,
we confirmed that (1) holds.

We show that (2) holds. We already know that fkxn −
vkg converges for each v ∈ A. Suppose F ⊂ A. Then, by (1),
F ⊂ A, and Lemma 3, all weak cluster points of fxng coin-
cide. That is, fxng itself converges weakly to a point z ∈ F.

Next, we present some results derived from Theorem 9.

Theorem 10. Let H be a Hilbert space and let C be a non-
empty closed convex subset of H. Let T1 and T2 be quasi-
nonexpansive self-mappings on C satisfying T1T2 = T2T1.
Assume that F = FðT1Þ ∩ FðT2Þ ≠∅ and I − T j is demiclosed
at 0 for each j ∈ f1, 2g. Let a, b ∈ ð0, 1Þ satisfy a ≤ b and let
fang be a sequence in ½a, b�. For each n ∈ℕ, let MðnÞ be as
in (9). Let x1 ∈ C and define a sequence fxng in C by

xn+1 = anM nð Þxn + 1 − anð Þxn, ð36Þ

for each n ∈ℕ. Then, fxng converges weakly to some z ∈ F.

Proof. Since T1 and T2 are quasi-nonexpansive, we know
that ∅≠ F = FðT1Þ ∩ FðT2Þ ⊂ AðT1Þ ∩ AðT2Þ = A holds.
Thus, by Theorem 9, we have the result.

Theorem 11. Let H be a Hilbert space and let C be a non-
empty closed convex subset of H. Let T1 and T2 be nonexpan-
sive self-mappings on C satisfying T1T2 = T2T1. Assume
F = FðT1Þ ∩ FðT2Þ ≠∅. Let a, b ∈ ð0, 1Þ satisfy a ≤ b and let
fang be a sequence in ½a, b�. For each n ∈ℕ, let MðnÞ be as
in (9). Let x1 ∈ C and define a sequence fxng in C by

xn+1 = anM nð Þxn + 1 − anð Þxn, ð37Þ

for each n ∈ℕ. Then, fxng converges weakly to some z ∈ F.

Proof. If a mapping T is nonexpansive and FðTÞ ≠∅, then T
is quasi-nonexpansive. We also know that I − T is demi-
closed at 0 if T is nonexpansive. Thus, by Theorem 10, we
have the result.

By considering Lemmas 7 and 8, we have the following
theorems.

Theorem 12. Let H be a Hilbert space and let C be a non-
empty closed convex subset of H. Let T1 and T2 be self-
mappings on C satisfying T1T2 = T2T1. Assume that T1 is λ
-hybrid, T2 is μ-hybrid, and F = FðT1Þ ∩ FðT2Þ ≠∅. Let a,
b ∈ ð0, 1Þ satisfy a ≤ b and let fang be a sequence in ½a, b�.
For each n ∈ℕ, let MðnÞ be as in (9). Let x1 ∈ C and define
a sequence fxng in C by

xn+1 = anM nð Þxn + 1 − anð Þxn, ð38Þ

for each n ∈ℕ. Then, fxng converges weakly to some z ∈ F.

Proof. Since T1 is λ-hybrid and T2 is μ-hybrid, by F =
FðT1Þ ∩ FðT2Þ ≠∅, we know that T1 and T2 are quasi-
nonexpansive. By Lemma 7, we also know that I − T1
and I − T2 are demiclosed at 0. Thus, by Theorem 10, we
have the result.

Theorem 13. Let H be a Hilbert space and let C be a non-
empty closed convex subset of H. Let T1 and T2 be self-
mappings on C satisfying T1T2 = T2T1. Assume that T1 and
T2 satisfy the condition ðEÞ and F = FðT1Þ ∩ FðT2Þ ≠∅.
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Let a, b ∈ ð0, 1Þ satisfy a ≤ b and let fang be a sequence in ½
a, b�. For each n ∈ℕ, let MðnÞ be as in (9). Let x1 ∈ C and
define a sequence fxng in C by

xn+1 = anM nð Þxn + 1 − anð Þxn, ð39Þ

for each n ∈ℕ. Then, fxng converges weakly to some z ∈ F.

Proof. Since T1 and T2 satisfy the condition (E), by F = Fð
T1Þ ∩ FðT2Þ ≠∅, we know that T1 and T2 are quasi-
nonexpansive. By Lemma 8, we also know that I − T1 and
I − T2 are demiclosed at 0. Thus, by Theorem 10, we have
the result.

5. Supplement

In this section, we present some examples that complement
the argument so far. In advance, recall that weak and strong
topologies on a Euclidean space coincide.

In the previous section, Theorem 9, neither T1 nor T2
need to be quasi-nonexpansive. However, in Theorems 10–
13, we deal only with quasi-nonexpansive mappings T1
and T2. We therefore give an example where all conditions
of Theorem 9 are satisfied and T1 is not quasi-nonexpansive.

Example 2. Let D = fx = ðs, tÞ ∈ℝ2 : s ∈ ½0, 1�, t ∈ ½−s, s�g. Let
T1 and T2 be continuous self-mappings on D defined,
respectively, by

T1x = T1 s, tð Þ = 1
2

s + tj jð Þ, t
� �

,

T2x = T2 s, tð Þ = s,−tð Þ,
ð40Þ

for each x = ðs, tÞ ∈D.

In this example, noting F = FðT1Þ ∩ FðT2Þ and A = Að
T1Þ ∩ AðT2Þ, we see

F T1ð Þ = x1, x2ð Þ ∈D : x1 = x2j jf g,
F T2ð Þ = x1, x2ð Þ ∈D : x2 = 0f g,
A T1ð Þ = x1, x2ð Þ ∈ℝ2 : x1 ≤ 0

� �
,

A T2ð Þ = x1, x2ð Þ ∈ℝ2 : x2 = 0
� �

,

F = 0, 0ð Þf g,
A = x1, x2ð Þ ∈ℝ2 : x1 ≤ 0, x2 = 0

� �
:

ð41Þ

From these, we can easily verify the following:

(i) D is a nonempty compact convex subset of ℝ2

(ii) FðT1Þ⊄AðT1Þ, that is, T1 is not quasi-nonexpansive

(iii) T2 is nonexpansive and FðT2Þ ≠∅; that is, T2 is
quasi-nonexpansive

(iv) I − T1 and I − T2 are demiclosed at 0, since T1 and
T2 are continuous

(v) T1T2 = T2T1 and ∅≠ F ⊂ A

So, all conditions of Theorem 9 are satisfied and T1 is
not quasi-nonexpansive. This implies that the sequence fyn
g generated by the procedure in Theorem 9 converges
strongly to ð0, 0Þ ∈ F ⊂ A.

Recall that the condition F ⊂ A is unnecessary to prove
(1) of Theorem 9. That is, without the condition F ⊂ A, we
proved that the sequence fxng in Theorem 9 has a subse-
quence which converges weakly to a point z ∈ F. So, to gain
a better understanding the contents of this paper, we are
interested in what happens when the condition F ⊂ A is
missing from Theorem 9. Then, from this point of view,
we give the following example.

Example 3. Let D = ½0, 1�. Let T1 and T2 be continuous self-
mappings on D defined, respectively, by

T1s = 2s2 when s ∈ 0,
1
2

� �
,

T1s = 2 s −
1
2

� �2
+
1
2
when s ∈

1
2
, 1

� �
,

T2s = 4s3 when s ∈ 0,
1
2

� �
,

T2s = 4 s −
1
2

� �3
+
1
2
when s ∈

1
2
, 1

� �
:

ð42Þ

For this example, we easily see

F T1ð Þ = F T2ð Þ = 0,
1
2
, 1


 �
,

A T1ð Þ = A T2ð Þ = −∞,0ð �,

F = F T1ð Þ ∩ F T2ð Þ = 0,
1
2
, 1


 �
,

A = A T1ð Þ ∩ A T2ð Þ = −∞,0ð �,
T1T2ð Þs = 2 4s3

� �2 = 32s6 = 4 2s2
� �3

= T2T1ð Þswhen s ∈ 0,
1
2

� �
,

T1T2ð Þs = 2 4 s −
1
2

� �3
+
1
2
−
1
2

 !2

+
1
2

= 32 s −
1
2

� �6
+
1
2
,

T2T1ð Þs = 4 2 s −
1
2

� �2
+
1
2
−
1
2

 !3

+
1
2

= 32 s −
1
2

� �6
+
1
2
when s ∈

1
2
, 1

� �
:

ð43Þ

From these, we see the following:
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(i) D is a nonempty compact convex subset of ℝ

(ii) Neither T1 nor T2 is quasi–nonexpansive

(iii) I − T1 and I − T2 are demiclosed at 0, since T1 and
T2 are continuous

(iv) T1T2 = T2T1 and A ≠∅

So, without F ⊂ A, all conditions of Theorem 9 are
satisfied.

In this example, for ease of verification, we have chosen
T1 and T2 which are special in the following sense:

(i) We can regard T1 and T2 as self-mappings on ½0,
1/2�

(ii) We can regard T1 and T2 as self-mappings on ½1/2, 1�
Accordingly, the following should be noted:

(i) F = f0, 1/2g and A = ð−∞,0� if T1 and T2 are consid-
ered like the former

(ii) F = f1/2, 1g and A = ð−∞,1/2� if T1 and T2 are con-
sidered like the latter

We know that the sequence fxng generated by the proce-
dure in Theorem 9 has a subsequence which converges
strongly to a point z of F. Especially, in this example, we
can confirm that the sequence fxng itself converges strongly
to z. That is, by the argument so far, we can easily verify the
following:

(i) fxng converges strongly to 0 ∈ F ∩ A if x1 ∈ ½0, 1/2Þ
(ii) fxng converges strongly to 1/2 ∈ F if x1 ∈ ½1/2, 1Þ
(iii) fxng converges strongly to 1 ∈ F if x1 = 1

From this, we simultaneously see the following: Example
3 is illustrative example such that z ∈ A may not hold when
the condition F ⊂ A is missing.
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