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Abstract: North China (NC) is experiencing significant groundwater depletion. We used GRACE 
and GRACE-FO RL06 Level-2 data with Mascon data from April 2002 to July 2022. We fused these 
two types of data through the generalized three-cornered hat method and further combined them 
with hydrological models, precipitation, in situ groundwater-level, and groundwater extraction 
(GWE) data to determine and verify temporal and spatial variations in groundwater storage (GWS) 
in NC. We quantitatively assessed groundwater sustainability by constructing a groundwater index 
in NC. We further explored the dynamic cyclic process of groundwater change and quantified the 
impact of the South-to-North Water Transfer Project (SNWTP) on GWS change in NC. The overall 
GWS shows a decreasing trend. The GRACE/GRACE-FO-derived GWS change results are con-
sistent with those shown by the in situ groundwater-level data from the monitoring well. Ground-
water in NC is in various states of unsustainability throughout the period 2002 to 2022. The SNWTP 
affected the water use structure to some extent in NC. This study elucidates the latest spatial–tem-
poral variations in GWS, especially in the groundwater sustainability assessment and quantitative 
description of the effects of the SNWTP on changes in GWS in NC. The results may provide a ref-
erence for groundwater resource management. 

Keywords: GRACE/GRACE-FO; North China; groundwater storage; sustainability;  
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1. Introduction 
Water resources are closely associated with human survival; therefore, changes in 

groundwater storage (GWS) have a major impact on daily life [1,2]. China holds scarce 
water resources and has been facing a major scarcity of groundwater resources in recent 
years [3], particularly in North China (NC), owing to the effect of anthropogenic and cli-
mate factors on groundwater [2]. Recently, the overexploitation of groundwater has 
caused considerable changes in the GWS in NC, leading to severe ecological and environ-
mental problems and threats to the livelihoods of residents and jeopardizing the sustain-
able socioeconomic development of the region [4,5]. The depletion of shallow and deep 
groundwater is prominent in NC due to long-term and persistent overextraction [6]. 

GWS changes have traditionally been studied using ground monitoring stations [1]. 
However, the effective detection of large-scale hydrological changes using ground-based 
observations by ground monitoring stations is limited by high construction costs, high 
labor intensity, uneven station distribution, and insufficient monitoring network cover-
age. An alternative method for monitoring groundwater is through the use of satellites. 
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The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on 
(GRACE-FO) satellites can continuously, steadily, and regularly detect global and re-
gional changes in water storage [7–10]. Relevant geophysical information can be extracted 
from the high-precision time-varying gravitational field models provided by GRACE and 
GRACE-FO. The equivalent water height (EWH, which represents variation in GWS) can 
be determined with an accuracy of < 1 cm, which cannot be achieved with other methods. 

GRACE data were used to study hydrological changes in NC, primarily in the terres-
trial water storage (TWS) and GWS. GRACE data revealed variation in TWS at medium 
and long spatial scales from 2003 to 2007 [1], and the rates of decrease in TWS and GWS 
from 2002 to 2010 were estimated by removing seasonal changes based on GRACE data 
[11]. The dynamics of GWS from 2002 to 2009 were analyzed based on GRACE, Global 
Land Data Assimilation System (GLDAS), and field-measured precipitation data [12]. 
GRACE data were used to reveal groundwater depletion from 2003 to 2010 in NC [13], 
drought conditions from 2003 to 2015 [14], and differences in GWS in different regions 
from 2003 to 2011 [15,16]. TWS changes in NC calculated from GRACE data from different 
institutions were compared [17], and a joint analysis of GWS changes in NC using GRACE 
and other data or models was performed [18–20]. In NC, GRACE data were also used to 
quantify anthropogenic influences on groundwater depletion rates from January 2003 to 
December 2012 [21], water shortages during October 2009 [22], and changes in TWS from 
2003 to 2014 [23] and 2013 to 2015 [24]. The results of the above studies show that the 
overall trend of GWS in North China is decreasing. 

The continuing decline in GWS in NC is mainly due to long-term overexploitation of 
groundwater, which is not only detrimental to groundwater sustainable development but 
also causes serious damage to the environment. Previous studies evaluated groundwater 
sustainability from the perspective of groundwater pollutants and recommended 
strengthening water resource management to enhance sustainability [25,26]. On the other 
hand, changes in GWS in NC will be influenced by other factors, such as the South-to-
North Water Diversion Project (SNWTP). The effect of the middle route of the SNWTP on 
GWS in NC from 2003 to 2017 was discussed after the project commenced in December 
2014 [27]. Variation in GWS in NC before and after the SNWTP was estimated using the 
GRACE data [28]. Spatiotemporal changes in GWS following the SNWTP have been stud-
ied using GRACE, GRACE-FO, and Global Navigation Satellite System (GNSS) data from 
2015 to 2020 [29]. Temporal and spatial changes in GWS have also been estimated for NC 
from 2004 to 2020 [30]. 

Previous studies used different methods and periods of GRACE/GRACE-FO data to 
estimate the variability of TWS and GWS across different time scales and provided im-
portant references for understanding hydrological changes in NC. However, few scholars 
qualitatively evaluated groundwater sustainability in NC from the perspective of GWS 
changes and argued that groundwater in NC is in an unsustainable state [24]. The spatial 
and temporal quantitative evaluation of groundwater sustainability in NC is lacking. Ad-
ditionally, although the variation in GWS in NC before and after the SNWTP was as-
sessed, evidence showing that the changes in GWS are caused by the SNWTP is lacking 
[29], and there is currently no adequate quantitative description of the effects of the 
SNWTP on changes in GWS in NC. 

We hypothesize that the uncertainty of hydrological changes and long-term and cur-
rent temporal and spatial variation characteristics of TWS and GWS in NC can be eluci-
dated by combining long-term GRACE data, GRACE-FO data, hydrological models, 
measured precipitation, in situ groundwater-level, and GWE data. The dynamic cyclic 
process of groundwater change can also be explored based on annual GWE data, the im-
pact of the SNWTP on GWS change in NC, and the spatial and temporal evolutionary 
characteristics of groundwater sustainability in NC quantified. 

In this study, we analyzed the changes in TWS and GWS in NC over a long period 
(April 2002–July 2022) using GRACE and GRACE-FO RL06 Level-2 and Mascon data, hy-
drological models, precipitation, in situ groundwater-level, and GWE data. We also 
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estimated the hydrological changes and their uncertainties using the generalized three-
cornered hat (GTCH) method based on six different GRACE/GRACE-FO products and 
analyzed the time series of GWS by combining monthly rainfall data, annual average rain-
fall anomaly data, and in situ groundwater-level data. Furthermore, we determined the 
spatial interannual and monthly variations in GWS and the mean variation in GWS for 
different periods and constructed a groundwater sustainability index (SI) model to quan-
titatively assess the spatial and temporal evolution characteristics of groundwater sustain-
ability in NC. Finally, we conducted a quantitative study of the effect of the SNWTP on 
GWS changes in NC and compared our results with those from previous studies. Our 
results provide an important basis for the quantitative evaluation of current and long-
term TWS and GWS changes in NC and provide reference values for groundwater re-
source management. 

2. Data and Methods 
2.1. Study Area 

Located between 34°N and 40°N latitude and from 110°E to 120°E longitude, NC co-
vers an area of approximately 370,000 km2 and includes the cities of Beijing and Tianjin 
and the provinces of Hebei and Shanxi, in the first-level regional division of land meteor-
ology and geography in China (Figure 1). NC is the political and cultural center of China, 
as well as the country’s main grain production base, and typically has a temperate semi-
humid continental monsoon climate [31]. Climate changes in NC are relatively similar and 
can be studied as a whole. The summer is hot and rainy, with increased solar altitude 
angles, long days, and short nights. The summer monsoon comes from the Pacific Ocean 
and brings abundant rainfall. Conversely, the winter is cold and dry, with mean temper-
atures below 0 °C in the coldest month and short days and long nights. Winter winds are 
cold and have high pressure from Siberia and Mongolia, blowing north or northwest [32]. 
The annual rainfall is approximately 400–800 mm. By comparing and analyzing the dif-
ferent responses of different geological conditions and population carrying capacity to 
water withdrawal in the study area, the overall water cycle process in NC can be further 
elucidated. 

 
Figure 1. (a) Location of North China within China and (b) distribution of its groundwater moni-
toring wells. 
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NC mainly includes the Taihang Mountains, Yanshan Mountains, the NC Plain, the 
Loess Plateau, basins, hills, and several rivers, including the Yellow River, Haihe River, 
Luanhe River, and Fenhe River. In the NC Plain, from the Piedmont Plain to the coastal 
plain, the lithology of the aquifer changes from pebble to silt sand, and loose rock pore 
groundwater is widely distributed [33]. The Yanshan Mountains have a large amount of 
loose rocks and vegetation, which is favorable for water circulation [34]. In the Taihang 
Mountains and Loess Plateau, the soil layer is thick and loose, and the soil particles are 
highly porous [35]. There are also more karst collapses, and the geological environment is 
complex. Groundwater sources in the Taihang Mountains and Loess Plateau include 
springs in mountainous areas, karst water in the hilly areas, and groundwater in plains 
[36]. NC is rich in hydrologic data, with thousands of groundwater wells monitoring 
changes in GWS (Figure 1). 

Based on burial conditions, circulation characteristics, and retention time, ground-
water in NC can be categorized as either shallow or deep [33]. Shallow groundwater is 
phreatic water, recharged by atmospheric precipitation, rivers, and lakes, whereas deep 
groundwater is confined water supplied by shallow groundwater and is less directly af-
fected by climate. 

In 2020, the population of NC reached 145 million (Bulletin of the Seventh National 
Population Census. h p://www.stats.gov.cn/, accessed on 20 July 2023). In addition, the 
region has a high demand for industrial and agricultural water. The long-term overextrac-
tion of water resources has led to surface subsidence and groundwater depletion in NC. 
Groundwater funnels formed in numerous groundwater overexploitation areas in NC, 
causing ground subsidence that damages buildings, roads, and other facilities [37]. Over-
exploitation of groundwater in the coastal areas of NC also disrupted the balance between 
freshwater rivers and seawater in coastal aquifers, leading to inland seawater intrusion, 
deterioration of water quality, and soil salinization. The SNWTP may serve as an addi-
tional water resource supplement to improve regional water use structure and reduce the 
amount of GWE in NC [38]. 

2.2. GRACE/GRACE-FO Data and Calculation of TWS Changes 
We used three SH files with GRACE and GRACE-FO RL06 Level-2 data from three 

institutions: the University of Texas Center for Space Research (CSR) 
(h ps://www2.csr.utexas.edu/grace/RL06.html, accessed on 10 October 2023); Jet Propul-
sion Laboratory (JPL) (h ps://grace.jpl.nasa.gov/data/get-data/, accessed on 12 October 
2023); Geo-Forschungs Zentrum (GFZ) (h p://icgem.gfz-potsdam.de/series, accessed on 
12 October 2023). We selected the gravitational field model for 211 months, from April 
2002 to July 2022, and truncated the SH coefficients at 60°. The mean of 2004.000 to 
2009.999 solutions was then deduced from each gravity field model. The C20 and C30 coef-
ficients showed unreasonable variations and were replaced [39,40]. Monthly geocentric 
estimates were used to recover the degree 1 coefficient of the gravitational field [41]. 

We corrected the effect of Glacial Isostatic Adjustment (GIA) using the ICE-6G_C 
(VM5a) model [42]. A two-step filtering process was then carried out. The first step re-
moves the correlated noise using a Swenson decorrelation filter, and the second step re-
duces high-frequency noise using a 200 km Gaussian filter. We used the scale factor 
method to restore the TWS signal of the NC [18]. We used the sum of soil moisture storage 
(SMS) and snow water equivalent storage (SWES) from the GLDAS Noah model to calcu-
late the scale factor. We calculated the water storage time series for the GLDAS model in 
the study area. The GLDAS model was then subjected to the same filtering process as the 
SH product of GRACE, and the water storage time series of the filtered GLDAS model in 
the study area was calculated. Finally, we determined a single scale factor between the 
two time series based on the least squares method [43]. Owing to the strong variability of 
the monthly hydrological signals in northern, southern, and northwestern NC, we consid-
ered leakage signals from outside the study area when calculating leakage [44]. There is 
some signal leakage from outside the study area into the study area [44]. 
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We used three Mascon files for GRACE and GRACE-FO RL06 from the CSR [45,46] 
(h ps://www2.csr.utexas.edu/grace/RL06.html, accessed on 10 October 2023), JPL [47] 
(h ps://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/, accessed on 12 October 
2023), and NASA Goddard Space Flight Center (GSFC) [48] 
(h ps://earth.gsfc.nasa.gov/geo/data/grace-mascons, accessed on 12 October 2023). 

The three-cornered hat method evaluates the deviation between any three sets of se-
quence data (e.g., three different types of satellite gravity data) [49]. The GTCH method is 
an extension of the three-cornered hat method that can calculate and evaluate deviations 
between multiple datasets. The GTCH method can be used to evaluate the uncertainty in 
GRACE/GRACE-FO data [50]. The variance in the different GRACE/GRACE-FO data was 
obtained using the GTCH method and weighted to obtain GTCH-GRACE [29]. 

We calculated TWSGTCH, where TWSi is the TWS calculated with six types of 
GRACE/GRACE-FO data, and P is the weight [29]: 



 
1

n

GTCH i i
i

WS P TWST  (1)

The GRACE satellite mission ended in October 2017 with a gap of several months 
between the GRACE and GRACE-FO missions. Therefore, an 11-month gap is present in 
the products provided by CSR and other institutions and is filled by a dataset of recon-
structed terrestrial water storage in China based on precipitation [51] 
(h ps://data.tpdc.ac.cn/zh-hans/data/71cf70ec-0858-499d-b7f2-63319e1087fc/, accessed on 
5 October 2023). The dataset is driven by the day-by-day gridded real-time analysis data 
of precipitation and temperature data in China. By building a precipitation reconstruction 
model and considering the seasonal and trend terms of the Mascon product, we obtain a 
dataset of terrestrial storage changes based on the reconstruction of regional precipitation 
in China, which is consistent with the GRACE Mascon form [51,52]. The data for 
CSR_TWSA_REC and JPL_TWSA_REC are available in the reconstructed dataset. In the 
specific calculation, the mean of these two data points was calculated as the change in 
TWS during the data gap, denoted as TWSREC. 




2
_ _ _ _

REC
T RCSR WSA EC JPL WSA RECTW TS  (2)

2.3. Hydrological Data and Estimation of GWS Changes from GRACE/GRACE-FO 
The TWS for a given area consists of SMS, SWES, GWS, and reservoir water storage 

(RWS) [29,53]. TWS can be calculated from the GRACE/GRACE-FO satellite gravitational 
field models, and SMS, SWES, and RWS can be estimated from the hydrological models. 
To obtain the EWH of non-groundwater in NC, we superimposed the soil moisture and 
snow water equivalent from GLDAS Noah model (h ps://ldas.gsfc.nasa.gov/gldas, ac-
cessed on 1 February 2024) and the RWS from the Annual Report on Water Conditions of the 
Ministry of Water Resources of the People’s Republic of China [54] (h p://www.mwr.gov.cn/, 
accessed on 1 February 2024). GLDAS data were collected monthly from April 2002 to July 
2022 at a spatial resolution of 0.25° × 0.25°. The GWS can be calculated as follows: 

   GWS TWS SMS SWES RWS  (3)

ΔGWS is the difference between next month’s GWS and this month’s GWS, or next 
year’s GWS and this year’s GWS, and is the differential form of GWS. ΔSMS, ΔSWES, and 
ΔRWS below are also differential forms of SMS, SWES, and RWS. 

  1i i iGWS GWS GWS  (4)

Precipitation is an important indicator for studying GWS in NC and was derived 
from the data products of the Global Precipitation Measurement (GPM) mission [55]. We 
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used GPM IMERG final precipitation V06 data with a 0.1° × 0.1° spatial resolution and 
one-month temporal resolution, spanning from April 2002 to September 2021 
(h ps://disc.gsfc.nasa.gov/, accessed on 6 November 2023). We also used the GPM IMERG 
final precipitation V06 data with a 0.1° × 0.1° spatial resolution and one-day temporal res-
olution, spanning from October 2021 to October 2022 (h ps://disc.gsfc.nasa.gov/, accessed 
on 10 November 2023). Between October 2021 and 2022, only daily precipitation was re-
leased without monthly precipitation. Therefore, we accumulated the daily precipitation 
to obtain the monthly precipitation. 

2.4. The South-to-North Water Transfer Project and Groundwater Extraction Data 
The middle route of the SNWTP is a major strategic infrastructure and ecological 

restoration project aimed at alleviating the severe shortage of water resources in NC 
Plains, optimizing the allocation of water resources, and improving the regional water 
ecology and water environment. The SNWTP connects the NC Plain to the Han River Ba-
sin [56] by transferring water from the Danjiangkou Reservoir in the middle and upper 
reaches of the Han River and by excavating a trunk canal in Henan Province on the east 
bank of the Danjiangkou Reservoir, which terminates in Beijing. The SNWTP was offi-
cially opened on 12 December 2014, with a total area of 155,000 square kilometers within 
the scope of water supply and a total length of 1277 km of trunk canals. The SNWTP fo-
cuses on solving the problem of water resource shortages along the route, providing water 
for production and living as well as industrial and agricultural in a dozen large and me-
dium-sized cities along the route [38,57,58]. The SNWTP effectively promotes the restora-
tion and protection of the water environment in the strategic areas of national construc-
tion, such as the integration of Beijing, Tianjin, and Hebei, and has significant social, eco-
nomic, and ecological benefits. 

From the above analysis, the SNWTP will have an impact on the GWS in NC. In order 
to combine water demand and GWS changes, in addition to the above GRACE/GRACE-
FO estimation of TWS to calculate GWS, another type of dynamic water storage change is 
used to estimate ΔGWS, denoted as PESP-ΔGWS. The groundwater is replenished by pre-
cipitation (PRCP), consumed by evapotranspiration (ET), and subtracted from the amount 
of surface water change to arrive at the amount of groundwater recharge, which is then 
subtracted from the annual groundwater extraction (GWE) volume. We collected the Bei-
jing Water Resources Bulletin (h ps://swj.beijing.gov.cn/, accessed on 1 February 2024), 
Tianjin Water Resources Bulletin (h ps://swj.tj.gov.cn/, accessed on 1 February 2024), the 
Hebei Water Resources Bulletin (h p://slt.hebei.gov.cn/, accessed on 1 February 2024), and 
the Shanxi Water Resources Bulletin (h ps://slt.shanxi.gov.cn/, accessed on 1 February 
2024). The annual water use data and water use types can be found in the provincial water 
resources bulletins. The amount of groundwater change (PESP-ΔGWS) can be obtained 
by subtracting the annual groundwater withdrawals from the GWE volumes and SNWTP 
withdrawals in each province. Because the groundwater pumping reports used in this 
study are annual, they were normalized on an annual scale. The ET data are from GLDAS 
(h ps://ldas.gsfc.nasa.gov/gldas, accessed on 1 February 2024). PESP-ΔGWS calculations 
are as follows: 

      -PESP GWS PRCP ET SWS SWES RWS GWE  (5)

2.5. Groundwater Sustainability Index 
Sustainability is an important indicator of water security. Regional groundwater sus-

tainability can be analyzed using the proposed SI [59]. In NC, groundwater is overex-
ploited, and the sustainability of groundwater resources is poor [60]. The SI is calculated 
as follows: 

   1/3)[ ](1GWS GWS GWS GWSS EI REL R S VUL  (6)
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𝑆𝐼 ,  𝑅𝐸𝐿  , 𝑅𝐸𝑆  , and 𝑉𝑈𝐿  represent groundwater sustainability index, 
reliability, recovery, and vulnerability, respectively. 𝑅𝐸𝐿  is the number of times when 
month-to-month ΔGWS is greater than zero divided by the total number of times. 𝑅𝐸𝑆  
is the number of times month-to-month ΔGWS greater than zero changes to less than zero 
divided by the number of times month-to-month ΔGWS is less than zero. 𝑉𝑈𝐿  is the 
number of times in which month-to-month ΔGWS is less than zero divided by the total 
number of times. The indices represent the levels of sustainability as listed in Table 1. 

Table 1. Level of sustainability represented by the index. 

Range of Indices Level of Sustainability 
0≤ SI ≤0.2 Extremely unsustainable 
0.2< SI ≤0.4 Severely unsustainable 

0.4< SI ≤0.5 Slightly unsustainable 
0.5< SI ≤0.75 Moderately sustainable 
0.75< SI ≤1 Highly sustainable 

2.6. In Situ Groundwater-Level Data 
The in situ groundwater-level data from the monitoring well can effectively reveal 

changes in GWS [61,62]; therefore, we used in situ groundwater-level observations to cal-
culate changes in GWS using a specific yield [29]. The monthly in situ groundwater-level 
changes in thousands of monitoring wells across NC were collected from 2005 to 2021 and 
recorded in the China Geological Environmental Monitoring Groundwater Level Yearbook 
(h ps://www.ngac.cn/, accessed on 10 December 2023). The specific yield of the in situ 
groundwater-level data was calibrated according to the specific yield distribution map of 
NC [63], geological maps of Shanxi, Hebei, Beijing, and Tianjin [64] 
(h p://www.ngac.org.cn/Map/List, accessed on 10 October 2023), and the geological con-
ditions of NC [65,66]. We used specific yields and storage coefficients ranging from 0.02 
to 0.29 and 0.0004 to 0.0045 to estimate changes in water storage caused by changes in 
shallow- and deep-groundwater levels [29,67,68]. We calculated the GWS changes in NC 
from 2005 to 2021 using in situ groundwater-level data. The GWS derived by in situ 
groundwater-level data were used to compare and validate the GWS derived from 
GRACE/GRACE-FO and GLDAS. 

The detailed calculation process is shown in Figure 2. 
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Figure 2. Schematic of inversing GWS using the GRACE/GRACE-FO gravity satellites, GLDAS hy-
drological model, in situ groundwater-level, and GWE data. 

3. Results 
3.1. Time Series Characteristics of TWS and GWS in NC 

The TWS inverted by the different GRACE/GRACE-FO products exhibited similar 
phases and variation trends. The TWS in NC showed cyclical changes (Figure 3a), reach-
ing a maximum in September and a minimum around June each year. The differences 
between the six TWS were mainly in their amplitudes. The amplitudes of the TWS time 
series data derived from the Mascon data were lower than those derived from the SH data 
(Figure 3a). This lower amplitude may be because the SH products were corrected for 
leakage errors using the scale factor method. However, compared with the TWS time se-
ries derived from the GRACE-FO products, the differences between the time series of TWS 
derived from the six GRACE products were relatively small (Figure 3a). The uncertainty 
in the six GRACE/GRACE-FO products was determined using the GTCH algorithm. We 
used this uncertainty to weigh each of the GRACE/GRACE-FO products and obtained 
TWSGTCH by the weighted sum of the six products (Table 2). Time series data for various 
water storage systems are shown in Figure 3b–d. Different types of water storage systems 
exhibit periodic changes throughout the year. Using the 13-point window smoothing 
method allows for a relatively accurate determination of interannual variability trends. 
Changes in TWS calculated using the GTCH method (TWSGTCH) and changes in water stor-
age calculated using GLDAS data showed the same trends, that is, increasing in 2003, 
2016, and 2021 and decreasing or showing no change in the other years (Figure 3). The 
rate of decrease in TWS from April 2002 to July 2022 reached approximately −1.40 ± 0.14 
cm/a. The increase in RWS was a ributed to an increase in the number of reservoirs and 
precipitation, as well as the supply of water from the SNWTP. (Figure 3c). The variation 
in GWS was then estimated and is shown in Figure 3d. After subtracting the water storage 
signals calculated by GLDAS and RWS from TWSGTCH, the trend in GWS was similar to 
that revealed by TWSGTCH but with a relatively small amplitude. The estimated GWS 
showed a long-term decrease, indicating that NC experienced a prolonged period of water 
scarcity and that water consumption exceeds recharge. Since 2021, GWS increased, pri-
marily owing to unusually high rainfall in NC. 
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Figure 3. (a) Time series of TWS in NC from April 2002 to July 2022. (b) Variation in TWS, calculated 
using the GTCH method (TWSGTCH). (c) Changes in SM and SWES, estimated by hydrological mod-
els from GLDAS, RWS estimated from reservoir data. (d) GWS changes. The original time series is 
shown by thin lines, and the thirteen-point smoothed time series is represented by thick lines. 

Table 2. Uncertainty and relative weighting of the six GRACE/GRACE-FO products. 

GRACE/GRACE-FO Data Uncertainty (cm) Weight P 
CSR SH 1.378 0.247 
GFZ SH 1.797 0.145 
JPL SH 1.453 0.223 

CSR Mascon 2.006 0.117 
GSFC Mascon 1.557 0.194 

JPL Mascon 2.524 0.074 
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3.2. GWS Time Series Variation in NC 
Figure 4a shows the time series of changes in GWS across NC from April 2002 to July 

2022, expressed in EWH. We removed annual and semiannual cyclical effects using 13-
point smoothing and obtained the linear variation in GWS using least-squares fi ing to 
refine the time series trend (Figure 4a). We estimated and integrated the uncertainties of 
the six products, as shown in Figure 4a. The maximum difference between TWSGTCH and 
the six GRACE products is defined as uncertainty [29]. 

As shown in Figure 4a, GWS fluctuated considerably from April 2002 to July 2022 
and continued to decline after 2004. The rate of decrease in GWS from April 2002 to July 
2022 reached approximately −1.81 ± 0.09 cm/a, which is equivalent to 67.35 ± 3.36 km3/a 
throughout the study area. According to the GWS change rate, the groundwater loss in 
NC over 21 years was approximately 141.33 billion tons. The mean annual precipitation is 
the mean of all annual precipitations over the study period, and the mean annual precip-
itation anomaly is the annual precipitation minus the mean annual precipitation, which 
demonstrates the relative change in precipitation from year to year. By comparing the 
monthly precipitation data and monthly GWS (Figure 4b), the annual mean precipitation 
anomaly, and annual ΔGWS (Figure 4c) in NC, we found that concentrated rainfall during 
the year could effectively supplement the GWS values of the corresponding month [27]. 
Every year, annual ΔGWS values significantly increased in months with high rainfall. 

The monthly ΔGWS is the difference between next month’s GWS and this month’s 
GWS; we performed Pearson correlation analyses of monthly ΔGWS and rainfall for the 
entire study period, pre-SNWTP (2002–2013) and post-SNWTP (2014–2022) (Table 3). The 
monthly ΔGWS was moderately correlated with rainfall (r between 0.3 and 0.5). Im-
portantly, the significance (p-value) of monthly ΔGWS versus rainfall was <0.01 through-
out the study period and before the completion of the SNWTP, indicating a highly signif-
icant correlation between monthly ΔGWS and rainfall. After the completion of the 
SNWTP, the significance of monthly ΔGWS versus rainfall was 0.07, and the decrease in 
significance suggests other factors affecting monthly ΔGWS. The correlation between 
monthly ΔGWS and rainfall is greater before SNWTP than after, possibly owing to the 
introduction of new impact factors on top of the original impact factors, which are sup-
plemented by SNWTP [28,30]. 
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Figure 4. (a) Time series of GWS in NC from April 2002 to July 2022. Gray polyline represents the 
EWH of GWS, black curve represents smoothing results, and light green shading represents uncer-
tainty in GWS. (b) Monthly GWS (black line) from April 2002 to July 2022 and precipitation data 
(green bars) from April 2002 to October 2022 in NC. (c) Annual ΔGWS (black line) from April 2002 
to July 2022 and annual precipitation anomalies (green bars) from April 2002 to October 2022 in NC. 

Table 3. Pearson’s correlation coefficient between monthly ΔGWS and rainfall in different periods. 

Monthly ΔGWS and Rainfall r p-Value 
The entire study period 0.3183 <0.01 
Pre-SNWTP (2002–2013) 0.3841 <0.01 
Post-SNWTP (2014–2022) 0.2336 0.07 

Based on the variation characteristics of precipitation (Figure 4b) and GWS (Figure 
4a), the pa erns in GWS variation from 2002 to 2022 in NC can be divided into the 
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following four phases (Figure 4a): (1) 2004–2009; (2) 2010–2013; (3) 2014–2017; and (4) 
2018–2022, where we identified the following pa erns: 
(1) In 2004, the annual mean precipitation anomaly in NC reached 55.83 mm (Figure 4c) 

and correlated with an increase in GWS (Figure 4a). The annual average precipitation 
anomaly and annual ΔGWS were negative from 2004 to 2009 (Figure 4c), coinciding 
with a decrease in GWS (line segment A in Figure 4a). The depletion rate obtained by 
fi ing the GWS with a straight line was approximately −1.61 ± 0.37 cm/a from 2004 to 
2009. 

(2) From 2010 to 2013, the precipitation anomaly increased, changing from negative to 
positive (Figure 4c); in 2012, the annual ΔGWS was positive and correlating with a 
reduced decrease rate in GWS (line B in Figure 4a), namely, −0.71 ± 0.76 cm/a, sug-
gesting that rainfall can partially compensate for the loss of GWS due to groundwater 
overexploitation, especially in 2012. 

(3) During 2014–2017, GWS decreased sharply at a rate of −3.91 ± 0.69 cm/a, despite the 
precipitation anomaly reaching its maximum in 2016. The annual ΔGWS is negative 
(Figure 4c). This decrease in GWS may be a ributed to overexploitation, which led 
to an imbalance between rainfall recharge and groundwater depletion; therefore, 
groundwater could not be sufficiently replenished [20,23]. During this period, NC 
was in drought, with decreased rainfall and increased evaporation [68]. Owing to the 
overexploitation of groundwater, the water layer in the zone of aeration thickened, 
which prolonged the GWS recharge cycle and reduced recharge [23]. During 2014–
2017, the rate of GWS decline accelerated (line segment C in Figure 4a). However, 
GWS in Beijing and Tianjin recovered slightly because of the SNWTP in 2014. 

(4) During 2018–2022, the GWS decreased at a rate of −1.16 ± 0.81 cm/a. The change in 
GWS derived from GRACE-FO data (line segment D in Figure 4a) is similar to the 
changes estimated using GRACE data in 2014–2017. Although a small overall de-
crease was present in GWS from 2018 to 2022, the annual ΔGWS during this period 
showed an initial deficit followed by a surplus. This trend was due to a sharp increase 
in rainfall in 2020 and 2021, indicating that rainfall can effectively replenish GWS 
(Figure 4b,c). In addition, the SNWTP may replenish groundwater in NC [28,30]. 
Figure 5 shows a count chart of the monthly mean GWS from April 2002 to July 2022 

and rainfall from April 2002 to October 2022, which can be used to analyze the extraction 
and replenishment of GWS over a year. The monthly mean GWS decreased from January 
to June, increased from July to September, and decreased from September to December, 
consistent with the rainfall pa erns. The mean monthly rainfall initially increased and 
then decreased. From June to September, the monthly rainfall exceeded 50 mm. From Jan-
uary to June and October to December, precipitation was scarce, and the monthly mean 
GWS variation decreased, which is in agreement with lower precipitation. The response 
of GWS changes to precipitation changes lags by two to three months [27]. Precipitation 
is abundant from July to September and can replenish groundwater. 
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Figure 5. The monthly mean of GWS and GPM in NC from 2002 to 2022. 

3.3. Spatial Interannual Variation in GWS in NC 
Figure 6 shows that the interannual spatial variation of GWS in NC exhibits clear 

variation across different periods, consistent with the time series GWS variation (Figure 
4a). We averaged the 12-month GWS for each year to obtain the GWS for the correspond-
ing year. We used the bicubic interpolation method for the spatial resampling. From 2002 
to 2003, the change in GWS decreased (Figure 6a,b), which might have been due to insuf-
ficient precipitation (Figure 4c). From 2003 to 2004, the change in GWS increased (Figure 
6b,c), which might have been due to sufficient precipitation (Figure 4c). Because sufficient 
precipitation can supplement GWS to a certain extent, the groundwater level does not 
significantly decrease as a result of GWE or agricultural irrigation. From 2004 to 2009, the 
changes in GWS gradually decreased (Figure 6c,h), which might be because precipitation 
in 2004–2009 was much lower than precipitation in 2003 (Figure 4c). The lack of precipita-
tion, combined with factors such as heavy GWE and agricultural irrigation, led to a sig-
nificant decrease in GWS. During 2004–2009, minimal spatial variation was present in 
GWS across the study area. The overall change in GWS also exhibited a relatively stable 
pa ern from 2010 to 2013 (Figure 6i,l), which might have been due to the gradual increase 
in precipitation (Figure 4c) that mitigated the effect of groundwater withdrawal on GWS. 



Remote Sens. 2024, 16, 1176 14 of 28 
 

 

 
Figure 6. Spatial distribution of annual GWS variations in NC estimated from GRACE/GRACE-FO 
from 2002 to 2022. 

During 2014–2017, the GWS changes in NC showed a sharp decrease, mainly concen-
trated in Shanxi and southern Hebei (Figure 6m–p). The GWS deficit was more severe in 
2014–2017 than in 2004–2009 (Figure 6c–h). Owing to the successful implementation of the 
SNWTP, the Action Plan for Comprehensive Control of Groundwater Overexploitation in 
NC [37,69], and the increase in precipitation, GWS showed an overall increase from 2018 
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to 2022 (Figure 6q–u). However, GWS remains in severely short supply throughout NC 
owing to the long-term overexploitation of groundwater. The decline in GWS shifted from 
Shanxi and southern Hebei to other parts of NC. 

4. Discussion 
4.1. Comparison with In Situ Groundwater-Level Data from Monitoring Well 

The GWS estimated using in situ groundwater-level data is defined as in situ GWS. 
Remote sensing methods (GRACE/GRACE-FO data) can be used to invert GWS changes 
and compare the results with those of in situ groundwater-level inversions. 

There are two types of groundwater wells: shallow and deep. The variations and 
trends of the shallow and deep groundwater levels in NC are shown in Figure 7a. A larger 
change was present in the deep groundwater level (−0.61 ± 0.04 m/a) compared with that 
in the shallow water level (−0.21 ± 0.02 m/a). Note that the unit for this in situ groundwater 
level is m/a. With sufficient precipitation, the pumped shallow groundwater is quickly 
replenished, whereas adequate replenishment of overexploited deep groundwater is dif-
ficult. 

Water supplies from different groundwater wells were calibrated to calculate GWS. 
Water storage can be obtained by multiplying different groundwater wells by a specific 
yield [28]. We used specific yields and storage coefficients ranging from 0.02 to 0.29 and 
0.0004 to 0.0045 to estimate changes in water storage caused by changes in shallow and 
deep groundwater levels [29,67,68]. Figure 7b shows a comparison of the GWS inverted 
from the GRACE/GRACE-FO data and the GWS inferred from the in situ groundwater-
level data. From April 2002 to July 2022, the GWS trend from the GRACE/GRACE-FO was 
−1.81 ± 0.09 cm/a. From 2005 to 2021, the GWS trend revealed by GRACE/GRACE-FO was 
−1.99 ± 0.10 cm/a. From 2005 to 2021, the GWS trend retrieved from the in situ groundwa-
ter-level data was −2.03 ± 0.12 cm/a. These two results are consistent with the long-term 
trends, and their correlation is very strong. 

To more clearly compare the differences between the GWS estimated from in situ 
groundwater-level and GRACE/GRACE-FO data, we constructed additional sca er plots 
and fi ed curves (Figure 8). We plo ed GWS estimated from the in situ groundwater-level 
data for each month as the horizontal axis and GWS estimated from GRACE/GRACE-FO 
for each month as the vertical axis. Comparing the in situ GWS and the GRACE/GRACE-
FO-derived GWS, we obtained a Pearson’s correlation coefficient, r, of 0.94, a p-value of < 
0.01, an RMSE of 4.15 cm, and a relative BIAS of 6.39%. 

These statistics indicate that the GWS estimated from the GRACE/GRACE-FO data 
and in situ groundwater-level data are consistent. The in situ–GRACE/GRACE-FO data’s 
fi ed line had a slope of 0.88 ± 0.02. The GWS estimated from the GRACE/GRACE-FO 
data was slightly lower compared with the GWS estimated from the in situ groundwater-
level data. 
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Figure 7. (a) Variation in shallow and deep groundwater levels in NC from 2005 to 2021. (b) Com-
parison of GWS changes inverted from GRACE/GRACE-FO with the results calculated from in situ 
groundwater-level data. 
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Figure 8. Sca er plots and a best-fit line showing the correlation between GWS estimated from in 
situ groundwater-level and GRACE/GRACE-FO data. 

We also calculated the GWS for each of the six GRACE product inversions and com-
pared them with the in situ GWS (Figure 9). Figure 9 shows the trends of all six GRACE 
inversions are similar to the in situ GWS, while the amplitudes of the three SH products 
are closer to those of the in situ GWS than to those of the Mascon products. The correla-
tions between the GWS estimated by the six GRACE/GRACE-FO products and the in situ 
GWS are shown in the Table 4. Comparison of Figure 8 and Table 4 shows that the 
weighted GRACE GWS has the best match up with the in situ GWS. Because the correla-
tion coefficient between the weighted GRACE GWS and the in-sit GWS is the highest, 
reaching 0.94, and the fi ing slopes are closer to 1. 
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Figure 9. Comparison of GWS estimated by the six GRACE/GRACE-FO products and in situ GWS. 
(a) CSR SH GWS; (b) GFZ SH GWS; (c) JPL SH GWS; (d) CSR Mascon GWS; (e) GSFC Mascon GWS; 
and (f) JPL Mascon GWS. 

Table 4. Comparison of trends and correlations between GWS estimated by the six GRACE/GRACE-
FO products and in situ GWS. 

Type r p-Value Slopes 
In situ GWS    
CSR SH GWS 0.94 <0.01 0.87 ± 0.02 
GFZ SH GWS 0.94 <0.01 0.84 ± 0.02 
JPL SH GWS 0.93 <0.01 0.87 ± 0.02 
CSR Mascon GWS 0.90 <0.01 0.83 ± 0.03 
GSFC Mascon GWS 0.92 <0.01 0.83 ± 0.03 
JPL Mascon GWS 0.91 <0.01 0.94 ± 0.03 

4.2. Spatial and Temporal Variability of Groundwater Sustainability in NC 
Long-term water use exceeds water replenishment in NC, causing an unsustainable 

groundwater state [60]. Groundwater sustainability in NC in different periods was 
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calculated (Figure 10). During 2004–2009, groundwater in NC continued to decline (Figure 
4), with a SI of 0.48, which is a mildly unsustainable state. 

During 2010–2013, GWS in NC declined (Figure 4), with an overall SI of 0.39, which 
is highly unsustainable, and poorer in some areas of Shanxi and Hebei Provinces. During 
2014–2017, GWS decreased significantly (Figure 4) owing to reduced rainfall and drought 
events [59,70]. The groundwater SI is only 0.31, seriously unsustainable. In Figure 10c, the 
mean value of groundwater SI is below 0.4, approaching extreme unsustainability in parts 
of central, southern, and northeastern NC. Groundwater sustainability indicators are rel-
atively high in areas receiving SNWTP water supply in Beijing, Tianjin, and south–central 
Hebei but remain in a severely unsustainable state with severe water shortages. During 
2018–2022, owing to the continuous water transfers from the SNWTP, the rainfall in-
creased, the proportion of groundwater pumping decreased, and the groundwater SI in 
NC was 0.49. Although it is still in a mildly unsustainable state, the groundwater sustain-
ability in 2018–2022 significantly improved compared with that in 2014–2017. During 
these four stages, the groundwater SI in NC decreased and then increased, mainly due to 
changes in rainfall (Figure 4), drought events [71,72], and adjustments in the regional wa-
ter use structure after the opening of the SNWTP, which reduces groundwater pumping 
[38,56]. 
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Figure 10. Spatial distribution of groundwater sustainability in NC for (a) 2004–2009; (b) 2010–2013; 
(c) 2014–2017; and (d) 2018–July 2022. 

4.3. SNWTP’s Impact on GWS and Estimation of the Overall Hydrological Cycle in NC 
To alleviate the severe water shortage in NC, the SNWTP was implemented in 2014 

[56]. By the end of 2021, 44.7 billion cubic meters of water had been transferred from the 
SNWTP, strongly guaranteeing water security along the route [38]. 

According to the water resources bulletin of Beijing City, Tianjin City, Hebei Prov-
ince, and Shanxi Province, GWE is gradually decreasing while the overall water supply 
has remained almost unchanged, especially after 2014 (Figure 11). The largest decrease in 
GWE was observed in Hebei Province. Before the completion of the SNWTP, GWE ac-
counted for 60–70% of the total water supply, whereas after the SNWTP, groundwater 
pumping declined as the percentage of the total water supply, and by 2021, groundwater 
pumping accounted for only 36% of the total water supply. This indicates that the SNWTP 
affected water use to some extent, as well as changed the water use structure in NC [56,73]. 

 
Figure 11. Total water supply, GWE, and percentage of GWE in NC. 

In the detection of GWS in NC using the GRACE/GRACE-FO satellites, different 
trends of GWS in NC before and after 2014 were detected [27,28,30]. The seasonal contri-
bution of GWS increased after 2014, possibly a ributed to the changes in the water supply 
structure influenced by the SNWTP [27]. We believe that rainfall is partly responsible for 
the change in GWS. Indeed, the correlation between monthly ΔGWS and rainfall worsens 
after the SNWTP (Table 3), which suggests that the GWS is affected by other factors, such 
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as drought or the SNWTP changes the water use structure. The GWS recovered in some 
areas within NC (e.g., Beijing) after the SNWTP [28,74]. 

The variation of GWS is influenced by several factors, such as rainfall, evapotranspi-
ration, runoff, and human activities. The exchange relationship between surface water, 
shallow groundwater, and deep groundwater is also complex. A single variable has lim-
ited influence on changes in GWS; however, reducing groundwater pumping and con-
serving water can undoubtedly alleviate the shortage of groundwater in NC. 

To combine the water demand and GWS changes, dynamic water storage change is 
used to estimate year-to-year ΔGWS, denoted as PESP-ΔGWS. The PESP-ΔGWS is replen-
ished by precipitation (PRCP), consumed by evapotranspiration (ET), and subtracted from 
the amount of surface water change to arrive at the amount of groundwater recharge, 
which is then subtracted from the annual GWE volume. 

The PESP-ΔGWS is further calculated in Figure 12. Dynamic hydrologic cycle pro-
cesses were calculated in NC. The PESP-ΔGWS and annual ΔGWS inverted from 
GRACE/GRACE-FO data were below zero in most years because GWE was greater than 
replenishment in most years. Groundwater in NC is in an unsustainable state. For ease of 
quantification, we used the area of NC in calculating the EWH. Except for the peak pre-
cipitation in 2020 and 2021, the long-term mean EWH for PESP-ΔGWS from 2002 to 2019 
was −1.71 cm, equivalent to 63.63 km3, while the long-term mean EWH for annual ΔGWS 
was −1.81 cm, equivalent to 67.35 km3. From 2002 to 2019, the mean annual pumping EWH 
was 5.41 cm, equivalent to 201.31 km3, while the mean annual recharge EWH was 3.69 cm, 
equivalent to 137.30 km3. The implementation of the SNWTP reduced the GWS with-
drawal in NC to some extent. In 2020 and 2021, the precipitation surge effectively replen-
ishes the GWS in NC. As shown in Figure 12, without the SNWTP implementation (red 
do ed line), the trend of groundwater decline will be more pronounced. For example, 
from 2014 to 2021, without the SNWTP implementation, GWS in NC would have been 
cumulatively reduced by an additional 7.45 cm EWH, equivalent to approximately 27.75 
km3 of water. 

 
Figure 12. Time series of PESP-ΔGWS (Blue line) and the annual ΔGWS from GRACE (green line) 
The SNWTP was opened in 2014; hence, the calculated annual ΔGWS from GRACE includes the 
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impact of the SNWTP. It is assumed that without the SNWTP, the annual ΔGWS inverted from 
GRACE would be the red dashed line. 

4.4. Comparison with Previous Results 
GRACE data were used in several studies to calculate TWS and GWS changes in NC. 

The trends in TWS and GWS changes in NC obtained in the present study are similar to 
those of previous studies. However, some differences are also present in terms of the mag-
nitude and spatial distribution of the TWS and GWS changes (Table 5). By using 211 
GRACE and GRACE-FO monthly products from April 2002 to July 2022 combined with 
the GTCH method, the rates of GWS and TWS decline were obtained in NC as −1.81 ± 0.09 
cm/a and −1.40 ± 0.14 cm/a, respectively. 

Certain differences in the trends of TWS and GWS can be identified between these 
previous studies in NC. One reason for these differences might be that GRACE or GRACE-
FO data from different periods were used to calculate changes in TWS and GWS. Addi-
tionally, different datasets issued by different organizations or the same type of data is-
sued by different organizations were used to estimate the TWS and GWS variations. 

The spatial coverage across NC was also different for the different studies. For exam-
ple, the coverage of [18] included Hebei, Beijing, and Tianjin, excluding Shanxi. In sum-
mary, the differences in the TWS and GWS variations in NC between studies are likely 
a ributable to variations in the data time windows, data providers, release versions, and 
coverage areas. 

Groundwater sustainability has been studied as an important component of ground-
water safety. Environmental tracers have been used to assess groundwater sustainability, 
which is considered to be in an unsustainable state in NC [25]. Groundwater contamina-
tion has been used to assess groundwater sustainability, which requires improvement in 
NC [26]. The SI is a useful indicator of regional water sustainability. We constructed a 
groundwater SI for NC using GWS changes, quantitatively assessed groundwater sustain-
ability in NC, and calculated groundwater SI for different periods to demonstrate spatial 
variation in groundwater sustainability. Groundwater sustainability in NC ranges from 
mildly unsustainable in 2004–2009, severely unsustainable in 2010–2013, and 2014–2017 
to mildly unsustainable in 2018–2022. 

In this study, variations in TWS and GWS across NC were calculated based on RL06 
Level-2 of the GRACE and GRACE-FO SH and Mascon data issued by the CSR from April 
2002 to July 2022. Compared with Release 05 (RL05) Level-2, RL06 Level-2 data show im-
provements in the background gravitational field, third-body perturbations, solid Earth 
polar tidal models, and atmospheric and non-tidal models. 

Although the GRACE and GRACE-FO can accurately detect trends in TWS and 
changes in GWS in NC and the scale factor method used in this study could correct for 
signal leakage errors, the method correction remained incomplete, and the recovery of 
regional water storage could also have been influenced by quality differences within and 
outside the study region. It should be noted that the GLDAS hydrologic model itself also 
contains errors, and removing SMS and SWES when calculating GWS may also absorb 
their errors. However, most in situ wells in NC indicate that the groundwater levels in this 
area are greater than 2 m, and the estimated range of soil water storage by GLDAS is from 
0 m to 2 m below the surface; then, we approximate and consider that this range is still 
soil water. The amount of water generated by irrigation is reduced mainly through evap-
otranspiration, leaving less water in the soil and having less impact on NC. Therefore, we 
did not consider the impact of irrigation in this study. However, as considered more 
finely, irrigation is indeed an integral part of the water cycle, and we will consider the role 
of irrigation in future studies. In future research, GRACE-FO data and other monitoring 
sensors (e.g., additional continuous GNSS, Interferometric Synthetic Aperture Radar (In-
SAR), mobile gravity monitoring, and leveling) should be used to monitor changes in TWS 
and GWS in NC and improve resolution and accuracy. Finally, considering the severe 
groundwater depletion in NC detected using the GRACE and GRACE-FO data, further 
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efforts should be made to reduce groundwater overexploitation in NC. Such measures 
could include managing aquifer recharge, improving water use efficiency, reducing water 
consumption, inter-basin water diversion, drip or sprinkler irrigation, and reintroducing 
fallow periods [67,75,76]. 

Table 5. Characteristics of GWS/TWS changes in NC revealed by previous studies. 

Study Datasets Study Period 
Hydrological 
Components 

Trend (cm/a) 

[1] CSR SH RL04 September 2003–March 2007 TWS −2.4 
[11] CSR SH RL04 August 2002–August 2010 TWS −1.1 
[12] CSR SH RL04 April 2002–December 2009 TWS −1.68 
[13] CSR SH RL05 January 2003–December 2010 GWS −2.2 ± 0.3 

[16] CSR, GFZ, JPL 
SH RL05 

2003–2011 GWS −1.4–−0.84 

[15] CSR SH RL05 January 2003–July 2013 
Shallow GWS −4.65 ± 0.68 

Deep GWS −1.69 ± 0.19 

[17] 
CSR SH RL05 

January 2004–October 2014 TWS 
−1.13  

JPL SH RL05 −1.44  
GFZ SH RL05 −1.70  

[18] CSR SH RL05 April 2002–November 2014 GWS −5.6 ± 0.6 

[20] 
CSR, JPL, GSFC 

Mascon RL05 
2004–mid 2016 

GWS 
−1.7 ± 0.1 

Mid 2013–mid 2016 −3.8 ± 0.1 
[21] CSR SH RL05 2003–2012 GWS −0.85 ± 0.10 
[23] CSR SH RL05 January 2003–June 2014 GWS −0.48 ± 0.07 

[24] 
CSR, GFZ, JPL 

SH RL05 
2003–2015 TWS −0.94 ± 0.14 

[27] 
CSR, JPL, GSFC 

Mascon RL06 
June 2003–June 2017 GWS −2.00 ± 0.34 

[28] 
CSR, JPL, GSFC 

Mascon RL06 
2003–2014 

GWS 
−1.91 ± 0.51 

2015–2018 0.18 ± 0.07 

[29] 
CSR, GFZ, JPL 

SH RL06 and CSR, JPL, GSFC 
Mascon RL06 

2003–2014 
GWS 

−1.66 ± 0.17 

2015–2020 −2.76 ± 0.55 

[30] 

CSR, GFZ, JPL 
SH RL06 

2004–2014 

GWS 

−1.71 ± 0.18 
2015–2020 −1.91 ± 0.88 

CSR, JPL, GSFC 
Mascon RL06 

2004–2014 −1.79 ± 0.17 
2015–2020 −1.97 ± 0.91 

This study 
CSR, GFZ, JPL 

SH RL06 and CSR, JPL, GSFC 
Mascon RL06 

August 2002–July 2022 

GWS 

−1.81 ± 0.09 
2004–2009 −1.61 ± 0.37 
2010–2013 −0.71 ± 0.76 
2014–2017 −3.87 ± 0.69 

2018–July 2022 −1.16 ± 0.81 

5. Conclusions 
In this study, we used long-term GRACE and GRACE-FO data (from April 2002 to 

July 2022) in conjunction with hydrological models, measured precipitation, in situ 
groundwater-level, and GWE data to study the long-term and current temporal and spa-
tial variation characteristics of hydrological changes in NC. 
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(1) The results of GRACE and GRACE-FO showed that NC is an important region in 
China with continuous reductions in both TWS and GWS. The GTCH method can 
effectively integrate the six GRACE/GRACE-FO products. The time series TWS data 
showed a large variation in amplitude across the period 2002–2022, and the rate of 
decrease in TWS was approximately −1.40 ± 0.14 cm/a. GWS decreased from 2002 to 
2022, with an average decrease rate of approximately −1.81 ± 0.09 cm/a. 

(2) We found significant differences in the variation in GWS for different periods in NC. 
GWS decreased from −1.61 ± 0.37 cm/a in 2004–2009, −0.71 ± 0.76 cm/a in 2010–2013, 
−3.91 ± 0.69 cm/a in 2014–2017, and −1.16 ± 0.81 cm/a in 2018–2022. A slight increase 
in GWS was present in 2021 and 2022, as a result mainly of a remarkable increase in 
precipitation. Groundwater sustainability in NC ranged from mildly unsustainable 
in 2004–2009 and severely unsustainable in 2010–2013 and 2014–2017 to mildly un-
sustainable in 2018–2022. 

(3) We showed good agreement between the GWS inverted by the GRACE/GRACE-FO 
data (−1.99 ± 0.10 cm/a) and the GWS changes revealed using the in situ groundwater 
level (−2.03 ± 0.12 cm/a) for 2005–2021. A larger change was present in the deep 
groundwater level (−0.61 ± 0.04 m/a) compared with that in the shallow groundwater 
level (−0.21 ± 0.02 m/a), indicating that deep groundwater extraction is serious in NC. 

(4) Following SNWTP implementation, the correlation between rainfall and GWS be-
came weaker, probably because drought or the SNWTP changed the water supply 
structure. More important, we found that the mean annual groundwater recharges 
was 137.30 km3, while the annual pumping was 201.31 km3 from 2002 to 2019. 
Groundwater replenishment is less than pumping, which explains the decline in 
GWS. By 2021, the SNWTP replenished a cumulative approximately 27.75 km3 of 
groundwater. 
This study showed that the GRACE and GRACE-FO satellites effectively detect var-

iations in hydrological signals in NC. Although uncertainties persist, the inversion results 
can effectively reveal the temporal and spatial changes in both TWS and GWS on a large 
scale, the spatiotemporal evolution characteristics of groundwater sustainability, as well 
as the quantitative effects of the SNWTP, which are significant for managing groundwater 
resources in NC. 
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port on Water Conditions of the Ministry of Water Resources of the People’s Republic of China is 
from h p://www.mwr.gov.cn/ (accessed on 1 February 2024). GPM IMERG final precipitation data 
are from h ps://disc.gsfc.nasa.gov/ (accessed on 10 November 2023). The monthly in situ ground-
water levels in thousands of groundwater wells accessed NC were collected from 2005 to 2021 and 
recorded in the China Geological Environmental Monitoring Groundwater Level Yearbook from 
h ps://www.ngac.cn (accessed on 10 December 2023). Geological maps of Shanxi, Hebei, Beijing, 
and Tianjin are from h p://www.ngac.org.cn/Map/List (accessed on 10 October 2023). 
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