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Abstract

Research suggests that a fast, capacity-limited working memory (WM) system and a slow,

incremental reinforcement learning (RL) system jointly contribute to instrumental learning.

Thus, situations that strain WM resources alter instrumental learning: under WM loads,

learning becomes slow and incremental, the reliance on computationally efficient learning

increases, and action selection becomes more random. It is also suggested that Pavlovian

learning influences people’s behavior during instrumental learning by providing hard-wired

instinctive responses including approach to reward predictors and avoidance of punishment

predictors. However, it remains unknown how constraints on WM resources affect instru-

mental learning under Pavlovian influence. Thus, we conducted a functional magnetic reso-

nance imaging (fMRI) study (N = 49) in which participants completed an instrumental

learning task with Pavlovian–instrumental conflict (the orthogonalized go/no-go task) both

with and without extra WM load. Behavioral and computational modeling analyses revealed

that WM load reduced the learning rate and increased random choice, without affecting Pav-

lovian bias. Model-based fMRI analysis revealed that WM load strengthened RPE signaling

in the striatum. Moreover, under WM load, the striatum showed weakened connectivity with

the ventromedial and dorsolateral prefrontal cortex when computing reward expectations.

These results suggest that the limitation of cognitive resources by WM load promotes slow

and incremental learning through the weakened cooperation between WM and RL; such lim-

itation also makes action selection more random, but it does not directly affect the balance

between instrumental and Pavlovian systems.

Author summary

Among multiple decision-making systems of humans and animals, the Pavlovian system

is known for promoting automatic and instinctive behaviors. Understanding the Pavlov-

ian influence on decision-making can offer valuable insights into the mechanism of

impulsive and addictive behaviors. Previous studies suggested that prefrontal executive

control can be important in regulating the Pavlovian influence. We tested if reducing
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cognitive resources available for executive control modulates the Pavlovian influence, by

adding WM load to an instrumental learning task where Pavlovian influence is beneficial

in some conditions but detrimental in others. Contrary to our expectation, constraining

cognitive resources with WM load failed to significantly change the contribution of Pav-

lovian system. Nonetheless, with behavioral analysis and computational modeling, we

revealed that WM load promotes slower learning and makes decisions noisier in an

instrumental learning task with Pavlovian components. FMRI analysis revealed that WM

load strengthens the RPE signaling in striatum upon observing the outcome and weakens

the functional connectivity between the prefrontal cortex and the striatum before making

a decision. The current study contributes to understanding how cognitive resource con-

straints alter learning and decision-making under Pavlovian influence as well as the neural

mechanisms of those effects.

Introduction

The process of learning about the environment from experience and making adaptive deci-

sions involves multiple neurocognitive systems, among which reinforcement learning (RL)

and working memory (WM) systems are known to significantly contribute to learning [1–3].

RL processes facilitate “incremental” learning from the discrepancy between actual and pre-

dicted rewards, known as reward prediction error (RPE); RL is regarded as a slow but steady

process [4]. Dopaminergic activity in the basal ganglia conveys RPEs [5–11], and human imag-

ing studies have found that blood-oxygen-level-dependent (BOLD) signals in the striatum are

correlated with RPEs [12–14].

In addition to RL, WM is a crucial component in learning. In particular, WM allows the

rapid learning of actions via retention of recent stimulus-action-outcome associations, while

RL constitutes a slow learning process [1,15–17]. WM can also offer various inputs to RL, such

as reward expectations [18] and models of the environment [19–22] as well as complex states

and actions [3,23]. In the brain, the WM system is presumably associated with sustained neural

activity throughout the dorsolateral prefrontal cortex (dlPFC) and prefrontal cortex (PFC)

[24–29].

Because RL and WM cooperate to promote successful learning, restricting either system

can alter learning and the balance between the two systems. In particular, increasing WM load

during learning and decision-making can lead to various consequences through the depletion

of WM resources. For example, first, instrumental learning becomes slow and incremental

under WM load [1,16,30,31]. Limited resources in the WM system cause WM contribution to

decline while the RL contribution increases, causing learning to occur more slowly and

strengthening the RPE signal in the brain [15,18]. Second, among the multiple RL systems that

use varying degrees of WM resources, the demands of WM can be balanced against computa-

tionally costly strategies. Otto et al. demonstrated that under WM load, the reliance on compu-

tationally efficient model-free learning was increased, compared with model-based learning

[32]. Lastly, limited WM resources may cause action selection to become more random and

inconsistent. Different values must be compared to inform decision-making during the action

selection stage [33], but several studies have reported that WM load may interrupt these pro-

cesses without affecting valuation itself [34–36].

While reductions of WM resources substantially alter instrumental learning, another

important factor known to shape instrumental learning is the Pavlovian system. Through the

motivation of hard-wired responses, such as active responses to appetitive cues and inhibitory
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responses toward aversive cues [37–40], the Pavlovian system may facilitate certain instrumental

behaviors and impede others. This bias in instrumental learning is known as Pavlovian bias [41–

44]. In a widely-used paradigm, Pavlovian bias emerges when the cues used in a instrumental

learning task trigger Pavlovian conditioned responses (e.g., active responses to reward cues

regardless of action requirements), leading to an increase or decrease in task performance [45,46].

Many computational models of the phenomenon assume that decision-makers consider both

instrumentally trained responses and Pavlovian conditioned responses when deciding which

response to give in each trial. This decision-making procedure balances the instrumental and Pav-

lovian learning systems, where the instrumental system is more flexible but computationally more

expensive while the Pavlovian system is more rigid but computationally cheaper. This is because

the instrumental system learns stimulus-response-outcome associations, whereas the Pavlovian

system only learns stimulus-outcome associations and has hard-wired responses for the learned

associations. Pavlovian bias is generally presumed to be associated with maladaptive behaviors

such as substance use disorder and compulsivity-related disorders [47–51].

Although it is well known that increasing WM load alters instrumental learning in several

ways, it remains unclear how WM load changes instrumental learning when it is under Pavlov-

ian influence. To investigate this relationship, we conducted a functional magnetic resonance

imaging (fMRI) study in which participants completed an instrumental learning task that

involved Pavlovian–instrumental conflicts [45], with and without extra WM load.

We tested the following three hypotheses. First, if the role of WM in learning is unaffected

by Pavlovian influence, WM load will lead to slower learning and increased striatal RPE sig-

nals, consistent with previous findings [1,15,16,18]. Second, if WM load leads to a computa-

tional trade-off between Pavlovian and instrumental learning, like the one between model-free

and model-based learning [32], WM load will enhance Pavlovian bias because the Pavlovian

system is known to require fewer resources and to be computationally efficient as an evolu-

tionarily embedded system that learns values as a function of cues, regardless of actions [42].

We also presumed that neural signaling associated with Pavlovian bias would increase under

WM load. We focused on regions of the basal ganglia, specifically the striatum and substantia

nigra/ventral tegmental area (SN/VTA), which are considered important in Pavlovian bias

[45,46,52–54]. Third, if the contribution of WM to consistent action selection remains consis-

tent, WM load will cause action selection to become more random, as in previous studies [34–

36]. We tested whether the value comparison signal in the brain would decrease under WM

load because consistent action selection may be associated with the extent to which value dif-

ference information is utilized during the decision-making process [33,55].

Our behavioral and computational modeling results revealed that Pavlovian bias did not

increase under WM load, while learning became slower and more incremental and action

selection became more random. We observed increased striatal RPE signaling which was in

line with our hypothesis that the contribution of RL will increase under WM load. Further

analyses revealed weakened connectivity between the striatal and prefrontal regions under

WM load, suggesting diminished cooperation between the WM and RL systems.

Results

The participants (N = 56) underwent fMRI imaging while performing an instrumental learn-

ing task under a control condition and a WM load condition (Fig 1). In the control condition,

they participated in the orthogonalized go/no-go (GNG) task [45], a learning task that con-

tained Pavlovian–instrumental conflicts. In the WM load condition, a 2-back task was added

to the GNG task; the modified task was named the working memory go/no-go (WMGNG)

task (see Materials and Methods for more detail).
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Fig 1. The GNG and WMGNG tasks. (A) In both tasks, four fractal cues indicated the combination of action (go/no-go) and

valence at the outcome (win/loss). (B) In each trial, a fractal cue was presented, followed by a variable delay. After the delay,

actions were required in response to a circle, and participants had to decide whether to press a button. After an additional brief

delay, the probabilistic outcome was presented, indicating monetary reward (green upward arrow on a₩1000 bill) or

monetary punishment (red downward arrow on a₩1000 bill). A yellow horizontal bar indicated no win or loss. In the
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Task performance: Decreased performance and learning speed under WM

load

Imposing extra WM load with a 2-back task led to a decrease in task accuracy. Participants

performed better in the GNG task (M = 0.80, SD = 0.12) than in the WMGNG task (M = 0.72,

SD = 0.16), as illustrated in Fig 2A (paired t-test, t(48) = 3.86, p<0.001, d = 0.55). Participants’

performance decreased both in the Pavlovian-congruent ("go to win” and “no-go to avoid los-

ing”) and Pavlovian-incongruent (“no-go to win” and “go to avoid losing”) conditions

(S1A Fig).

We also confirmed that participants exhibited go bias and Pavlovian bias in both tasks, thus

replicating the findings of earlier studies [45,52,56–62]. Two-way ANOVA on accuracy, with

the factors action (go/no-go) and valence (reward/punishment) as repeated measures for both

tasks, revealed a main effect of action (F(48) = 6.05, p = 0.018, η2 = 0.03 in GNG task, F(48) =

9.44, p = 0.003, η2 = 0.04 in WMGNG task) and action by valence interaction (F(48) = 22.43,

p<0.001, η2 = 0.12 in the GNG task, F(48) = 30.59, p<0.001, η2 = 0.10 in the WMGNG task); it

showed no effect of valence (F(48) = 0.00, p = 0.99, η2 = 0.00 in the GNG task, F(48) = 2.77,

p = 0.103, η2 = 0.01 in the WMGNG task). In both tasks (Fig 2B), participants exhibited supe-

rior performances in “go to win” and “no-go to avoid losing” conditions (i.e., Pavlovian-con-

gruent conditions; blue columns) than in “no-go to win” and “go to avoid losing” trials (i.e.,

Pavlovian-incongruent conditions; red columns). Specifically, in the GNG task, accuracy was

higher in the “go to win” (M = 0.92, SD = 0.12) than “no-go to win” condition (M= 0.69, SD =
0.35) (paired t-test, t(48) = 4.13, p<0.001, d = 0.59), and in the “no-go to avoid losing” (M=
0.85, SD = 0.13) than in the “go to avoid losing” condition (M = 0.76, SD = 0.18) (paired t-test,

t(48) = 3.29, p = 0.002, d = 0.47). Similarly, in the WMGNG task, accuracy was higher in the

“go to win” (M= 0.82, SD = 0.25) than in the “no-go to win” condition (M = 0.57, SD = 0.34)

(paired t-test, t(48) = 4.82, p<0.001, d = 0.69), and in the “no-go to avoid losing” (M = 0.79,

SD = 0.16) than in the “go to avoid losing” condition (M = 0.72, SD = 0.19) (paired t-test, t(48)

= 2.51, p = 0.015, d = 0.36).

Next, we tested the hypothesis that WM load would decrease learning speed (Fig 2C).

While the learning curves indicated that participants learned during both tasks, the learning

curve was shallower in the WMGNG task than in the GNG task (i.e., WM load reduced learn-

ing speed and overall accuracy).

To test the hypothesis that WM load would increase Pavlovian bias (Fig 2D), we quantified

Pavlovian bias by subtracting the accuracy in Pavlovian-incongruent conditions (“no-go to

win” and “go to avoid losing”) from the accuracy in Pavlovian-congruent conditions (“go to

win” and “no-go to avoid losing”). No significant difference in Pavlovian bias was observed

between the GNG (M = 0.32, SD = 0.47) and WMGNG (M = 0.32, SD = 0.40) tasks (paired t-

test, t(48) = -0.02, p = 0.986, d = 0.00). However, participants could have been slower in learn-

ing the Pavlovian cue-outcome associations under WM load, as the instrumental learning

became slower under WM load. Thus, it should be examined if participants expressed similar

levels of Pavlovian bias in the GNG and WMGNG tasks after they learned the cue-outcome

associations in both tasks. To this end, we plotted the temporal development of Pavlovian bias

across trials (S2 Fig). We observed a delayed peak in the WMGNG compared to the GNG

WMGNG task, the original GNG task was followed by a 2-back response and 2-back outcome phases. (C) The participants

were asked to indicate whether the cue in the current trial was identical to the cue in the two preceding trials. Here, because the

cue in trial 3 differed from the cue in trial 1, “DIFF” was the correct response. Similarly, because the cue in trial 4 was identical

to the cue in trial 3, “SAME” was the correct response. The lines mark two cues for comparison: the purple line indicates that

the cues differ, while the pink line indicates that the cues are identical.

https://doi.org/10.1371/journal.pcbi.1011692.g001
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task, which indicates that acquiring Pavlovian associations could have taken more time under

WM load. Nonetheless, we observed similar levels of Pavlovian bias in both tasks after the ini-

tial peak. Thus, we concluded that our data do not show noticeable changes in Pavlovian bias

under WM load.

Computational modeling: WM load influences learning rate and

irreducible noise

We used a computational modeling approach to test the three hypotheses. For this purpose,

we developed eight nested models that assumed different learning rate, Pavlovian bias, or

Fig 2. Task performance (N = 49). (A) Task accuracies (mean percentages of correct responses) in the GNG and WMGNG tasks show that participants

performed better in the GNG task than in the WMGNG task. (B) Accuracy in each of the four trial types between the two tasks demonstrated that participants

performed better in “go to win” and “no-go to avoid losing” trials (Pavlovian-congruent, blue) than in “no-go to win” and “go to avoid losing” trials (Pavlovian-

incongruent, red). (C) The learning curve (i.e., the increase in accuracy across trials) was shallower in the WMGNG task than in the GNG task. Note that

moving average smoothing was applied with filter size 5 to remove the fine variation between time steps. Lines indicate group means and ribbons indicate

means ± standard errors of the means. (D) Pavlovian bias was calculated by subtracting accuracy in Pavlovian-incongruent conditions (“no-go to win” + “go to

avoid losing”) from accuracy in Pavlovian-congruent conditions (“go to win” + “no-go to avoid losing”). No significant difference in Pavlovian bias was

observed between the GNG and WMGNG tasks. (A)-(B), (D) Black dots indicate group means and error bars indicate means ± standard errors of the means.

Gray dots indicate individual accuracies; lines connect a single participant’s performances. Asterisks indicate the results of pairwise t-tests. **** p< 0.0001, ***
p< 0.001, ** p< 0.01, * p< 0.05.

https://doi.org/10.1371/journal.pcbi.1011692.g002
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irreducible noise parameters under WM load. These models were fitted to the data using hier-

archical Bayesian analysis, then compared using the leave-one-out information criterion

(LOOIC), where a lower LOOIC value indicates better out-of-sample predictive accuracy (i.e.,

better fit) [63]. Importantly, the use of computational modeling allowed us to test our hypothe-

sis that WM load would increase random choices; this would have not been possible if we had

performed behavioral analysis alone.

Based on earlier studies [45,64], we constructed a baseline model (model 1) that used a

Rescorla-Wagner updating rule and contained learning rate (ε), Pavlovian bias, irreducible

noise, go bias, and separate parameters for sensitivity to rewards and punishments (Materials

and Methods). In the model, state-action values are updated with the prediction error; learning

rate (ε) modulates the impact of the prediction error. Reward/punishment sensitivity (ρ) scales

the effective size of outcome values. Go bias (b) and cue values weighted by Pavlovian bias (π)

are added to the value of go choices. Here, as the Pavlovian bias parameter increases, the go

tendency increases under the reward condition whereas the go tendency is reduced under the

punishment condition; this results in an increased no-go tendency. Computed action weights

are used to estimate action probabilities, and irreducible noise (ξ) determines the extent to

which information about action weights is utilized to make decisions. As irreducible noise

increases, action probabilities will be less reflective of action weights, indicating that action

selection will become more random.

In models 2, 3, and 4, we assumed that WM load affects only one parameter. For example,

in model 2, a separate Pavlovian bias parameter (πwm) was assumed for the WM load condi-

tion. Models 3 and 4 assumed different learning rates (εwm) and irreducible noise (ξwm)

parameters in their respective WM load conditions. In models 5, 6, and 7, we assumed that

WM load would affect two parameters: model 5 had different Pavlovian bias (πwm) and learn-

ing rate (εwm); model 6 had different Pavlovian bias (πwm) and irreducible noise (ξwm); and

model 7 had different learning rate (εwm) and irreducible noise (ξwm). Finally, model 8 was the

full model, in which all three parameters were assumed to be affected by WM load.

The full model (model 8) was the best model (Fig 3A and S2 Table). In other words, partic-

ipant behavior could be best explained when separate parameters were included for Pavlovian

bias, learning rate, and irreducible noise parameters. Next, we analyzed the parameter esti-

mates of the best-fitting model; we focused on comparing the posterior distributions of the

parameters that were separately fitted in the two tasks (Fig 3B). The parameters were consid-

ered credibly different from each other if the 95% highest density intervals (HDI) of the two

distributions showed no overlap [65]. Fig 3B illustrates that Pavlovian bias was not credibly

different between the two tasks, consistent with our behavioral results that failed to show a

change in Pavlovian bias under WM load. Conversely, the learning rate was credibly lower,

while irreducible noise was credibly greater in the WMGNG than in the GNG task. These

results support our hypotheses that WM load would reduce learning rate and that it would

increase random choices. While the best model was the full model that assumed separate Pav-

lovian bias in the two tasks, no credible group difference was observed between these parame-

ters. This is presumably because the full model was able to capture individual variations

among participants (S5 Fig), despite the lack of credible difference in the group-level estimates

between the two tasks. As expected, the 95% HDIs of go bias, reward sensitivity, and punish-

ment sensitivity did not include zero, indicating that the participants exhibited go bias and

reward/punishment sensitivity (see Supporting Information for the posterior distributions of

individual parameters; S4–S7 Figs).

To further compare choice randomness between the two tasks, we examined the extent to

which choices were dependent on value discrepancies between the two options. We first plot-

ted the percentage of go choices for the GNG and WMGNG tasks by varying the quantiles of
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differences in action weight between the “go” and “no-go” actions (Wgo—Wnogo) (Fig 4A).

The trial-by-trial action weights were extracted from the best-fitting model. Higher quantiles

corresponded to a greater “go” action weight than “no-go” action weight. Overall, the go ratio

increased from the first to the tenth quantile, indicating that the value differences between the

Fig 3. Model comparison results and posterior distribution of the group-level parameters of the best-fitting model (N = 49). (A) Relative LOOIC

difference indicates the difference in LOOIC between the best-fitting model and each of the other models. The best-fitting model was the full model, which

assumed separate Pavlovian bias, learning rate, and irreducible noise in GNG and WMGNG tasks. Lower LOOIC indicates better model fit. (B) Posterior

distributions of group-level parameters from the best-fitting model. Learning rate and irreducible noise estimates were credibly different in the GNG and

WMGNG tasks, while Pavlovian bias estimates were not. Dots indicate medians and bars indicate 95% HDIs. Asterisks indicate that the 95% HDIs of the

two parameters’ posterior distributions do not overlap (i.e., differences are credible).

https://doi.org/10.1371/journal.pcbi.1011692.g003
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“go” and “no-go” actions affected participants’ choices. This result further illustrates the differ-

ence between the two tasks: the increase in the go ratio was steeper in the GNG task than in

the WMGNG task. In particular, the go ratio significantly differed between the two tasks for

the first (t(48) = -3.59, p = 0.001, d = 0.51), second (t(48) = -3.23, p = 0.002, d = 0.46), third (t
(48) = -2.55, p = 0.014, d = 0.36), eighth (t(48) = 2.95, p = 0.005, d = 0.42), and tenth (t(48) =

2.76, p = 0.008, d = 0.39) quantiles. Thus, under WM load, participants were less sensitive to

the significant value difference between “go” and “no-go”.

To compare these patterns in a different way and further explore the extent to which perfor-

mance was dependent on choice difficulty, we plotted accuracies for the two tasks and for dif-

ferent quantiles of the absolute value differences (|Wgo—Wnogo|; Fig 4B). We assumed that

the choices would become easier when the absolute value difference was increased because a

small value difference makes it difficult to choose between options. Overall, the accuracy

increased from the first to the tenth quantile, indicating that participants performed better as

the choices became easier. This result further illustrates the difference between the two tasks:

the increase in accuracy was steeper in the GNG task than in the WMGNG task. Specifically,

the accuracy significantly differed between the two tasks for the fifth (t(48) = 4.12, p<0.001,

d = 0.59), sixth (t(48) = 2.95, p = 0.005, d = 0.42), seventh (t(48) = 2.44, p = 0.018, d = 0.35),

eighth (t(48) = 3.13, p = 0.003, d = 0.45), ninth (t(48) = 2.87, p = 0.006, d = 0.41), and tenth (t
(48) = 2.55, p = 0.014, d = 0.36) quantiles. Thus, participants performed worse in the WM load

condition than in the control condition when choices were easier. Overall, Fig 4 demonstrates

that WM load reduced the effect of the value difference on participants, indicating increased

choice randomness.

Next, we examined if our model predicts the observed decrease in task performance under

WM load both in the Pavlovian-congruent and Pavlovian-incongruent conditions. S1B Fig

shows that our model indeed predicts the lower task performance in both types of conditions.

This result is in line with our result that choice randomness increased under WM load. We

can expect that an increase in randomness would result in a lower accuracy unless the accuracy

was below the chance level in the first place. While the accuracy decrease could also be associ-

ated with the lower learning rate under WM load, we need to be cautious in this interpretation

Fig 4. Choice randomness (N = 49). (A) Mean percentage of go choices for different quantiles of action weight differences (Wgo—Wnogo) between “go” and

“no-go” choices, where higher quantiles indicate higher decision values for “go” choices. Under WM load, the increase in go ratio according to quantile was less

steep. (B) Mean accuracies for different quantiles of absolute value differences (|Wgo—Wnogo|), where higher quantiles indicate larger value differences

between two options or easier choices. Under WM load, the increase in accuracy according to quantile was less steep. (A)-(B) Dots are group means, and error

bars are means ± standard errors of the means. Asterisks show the results of pairwise t-tests. **** p< 0.0001, *** p< 0.001, ** p< 0.01, * p< 0.05.

https://doi.org/10.1371/journal.pcbi.1011692.g004
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because lower learning rates might instead increase the accuracy by making learning more

robust against noise.

Larger RPE signals in the striatum and weakened connectivity with

prefrontal regions under WM load

Behavioral analysis revealed that WM load caused learning to occur more slowly but did not

affect Pavlovian bias. The computational approach confirmed that the learning rate decreased;

Pavlovian bias did not change under the load; and WM load led to increased choice random-

ness. Here, we sought to investigate the underlying neural correlates of these effects of WM load

on learning rate, Pavlovian bias, and random action selection. First, we hypothesized that RPE

signaling in the striatum would increase under WM load [15,18]. We conducted a model-based

fMRI analysis using RPE as a regressor derived from the best-fitting model (see Materials and

Methods for the full general linear models (GLMs) and regressor specifications). The RPE signal

in the a priori striatum region of interest (ROI) was significantly greater in the WMGNG task

than in the GNG task (contrast: RPE in WMGNG> RPE in GNG, MNI space coordinates

x = 13, y = 14, z = -3, Z = 3.96, p< 0.05 small-volume corrected (SVC), Fig 5A and S4 Table).

This supports our hypothesis that WM load would increase the contribution of the RL system

and decrease the contribution of the WM system. We also tested the hypothesis that WM load

would lead to a greater brain activation associated with Pavlovian bias, but we found no main

effect of Pavlovian bias between the GNG and WMGNG tasks (WMGNG > GNG [Pavlovian-

congruent> Pavlovian-incongruent]) within the striatum or SN/VTA (p< 0.05 SVC, a priori

ROIs). Note that previous studies showed no significant result for the same contrast (Pavlovian-

congruent> Pavlovian-incongruent) within the same regions [45]. As a test of our hypothesis

that WM load would increase choice randomness, we examined whether the WM load led to

less brain activation associated with value comparison (which would indicate a decreased con-

tribution of the value comparison signal and thus relatively more contribution of randomness).

We observed no main effect of WM load on random choice (WMGNG> GNG [Wchosen—

Wunchosen]) within the ventromedial prefrontal cortex (vmPFC; p< 0.05 SVC, a priori ROI).

See Supporting Information for further details regarding these findings (S5 Table).

Increased RPE signals under WM load may indicate reduced WM contribution and

increased RL contribution to learning because of the load, suggesting diminished cooperation

between the two systems for learning. Therefore, we conducted a psychophysiological interac-

tion (PPI) analysis [66] using the gPPI toolbox [67] to test whether functional connectivity

between areas associated with RL and WM systems would weaken under WM load. Specifi-

cally, we explored differences between the two tasks in terms of functional coupling between

the striatum, which showed increased RPE signaling under WM load during the feedback

phase, and other regions when computing reward expectations. The striatum showed signifi-

cantly decreased connectivity with the vmPFC (MNI space coordinates x = 13, y = 56, z = 0, Z
= −4.90, p< 0.05 whole-brain cluster-level familywise error rate (FWE)) and dlPFC (MNI

space coordinates x = -22, y = 63, z = 23, Z = −4.24, p< 0.05 whole-brain cluster-level FWE,

Fig 5B andS6 Table) in the WMGNG task, compared with the GNG task.

Discussion

In this study, our main objective was to elucidate the neurocognitive effects of WM load on

instrumental learning that involves Pavlovian–instrumental conflicts. We hypothesized that

under WM load, 1) learning rate would decrease and RPE signals would become stronger, 2)

Pavlovian bias would increase, and 3) action selection would become more random. First, we

found that the limitation of WM resources with WM load led to a decrease in the learning rate
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and increases in striatal RPE signals. The striatum, which subsequently showed stronger RPE

signals under WM load, demonstrated weakened functional connectivity with prefrontal

regions including the dlPFC and vmPFC, during reward prediction. WM load also increased

random action selection. However, Pavlovian bias did not increase under WM load, suggesting

that WM load did not affect the balance between Pavlovian and instrumental systems.

Decreased contribution of the WM system and increased contribution of

the RL system under WM load

The effect of WM load on instrumental learning remained consistent despite Pavlovian bias.

In particular, our behavioral analysis revealed a shallower learning curve under WM load

Fig 5. fMRI results (N = 44). (A) In the predefined ROI-based analysis, RPE signaling in the striatum was stronger in the WMGNG task than in the GNG task.

The left figure shows significant regions at p< 0.05 (SVC) in yellow. The right figure shows an increased mean beta estimate in the striatum under WM load.

(B) The left figure shows that functional connectivity between the striatum (seed region, top) and prefrontal regions, including vmPFC (bottom left) and dlPFC

(bottom right), was weaker in the WMGNG task than in the GNG task when computing reward expectation (p< 0.05, whole-brain cluster-level FWE). The

right figures show decreased mean beta estimates in vmPFC and dlPFC under WM load. In all figures, error bars are means ± standard errors of the means.

Overlays are shown with a threshold of p< 0.001 (uncorrected). Color scale indicates t-values.

https://doi.org/10.1371/journal.pcbi.1011692.g005
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(Fig 2C); modeling analysis confirmed that WM load reduced learning rate (Fig 3). We also

found that RPE signaling in the striatum was strengthened under WM load (Fig 5A), consis-

tent with previous findings [15,18].

These findings support theoretical explanations that WM load reduces the contribution of

the WM system and increases the contribution of the RL system. In one such explanation, the

rapid and immediate WM system learns in parallel with the slow and incremental RL system

by directly storing the observed associations between states and actions [1,15–17,68]. WM and

RL systems compete with each other based on their reliability in a given situation. Under WM

load, the fast and capacity-limited WM system becomes less reliable; thus, the slow and incre-

mental RL system supersedes the WM system, causing learning to occur more slowly and

incrementally [1,16,30]. Such a shift toward slow, incremental learning can be adaptive

because it is more reliable under resource-limited conditions and robust against noise in sta-

tionary environments [69]. Another explanation posits that RL computations are intertwined

with WM; WM feeds reward expectations to the RL system [70–73] to improve reward predic-

tion precision, thereby reducing RPEs and improving learning efficiency [15,18]. WM load

constrains the WM system, which leads to a lower precision in reward prediction and thus

greater RPEs.

These ideas are further supported by our finding that the striatum showed weakened func-

tional connectivity with the dlPFC during reward prediction under WM load (Fig 5A). This

result is in line with theoretical predictions (1) that the WM system would become unreliable

and thus its contribution to instrumental learning would decrease and (2) that that the reward

prediction information delivered from the WM to the RL system would become less precise

and the RL system would rely less on it. However, further research is necessary to demonstrate

the directionality of functional connectivity between the two systems during reward predic-

tion; frontostriatal connectivity is reportedly bidirectional, such that the striatum may also

provide prefrontal regions with inputs that relate to reward information [74,75].

Notably, we observed weakened connectivity between the vmPFC and the striatum. The

vmPFC has been identified as a critical neural correlate of value-based decision-making; it

integrates reward predictions [71], represents value signals or decision value [76–79], and

affects reward anticipation/processing in the striatum [80,81]. Future research is needed to

clarify which function of vmPFC was influenced by our WM load manipulation.

No effect of WM load on Pavlovian bias

Contrary to our hypothesis, WM load did not influence Pavlovian bias. Behavioral and model-

ing results showed that Pavlovian bias did not significantly differ between the GNG and

WMGNG tasks (Figs 2D, 3 andS2), while fMRI analysis revealed that neural signaling associ-

ated with Pavlovian bias did not significantly differ between the two tasks (S6 Table). These

findings indicate that the brain did not exhibit greater reliance on the computationally efficient

system under WM load, in contrast to the results of previous studies [32]. We identified two

possible explanations for this discrepancy. First, instrumental and Pavlovian learning in our

task require similar amounts of WM resources; second, the WM system may not be related to

modulating the balance between Pavlovian and instrumental systems.

In the first potential explanation, the amounts of WM resources necessary might have been

similar for Pavlovian and instrumental learning in our task. Otto et al. showed that WM

resource constraints promote the use of model-free compared to model-based system [32]. In

their task, the model-based system required WM resources to retain the internal model of the

task, which was its transition structure [20,82–85], whereas the model-free system did not

maintain any model of the task [82,83,86]. Thus, WM resource requirement were quite
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different between the two systems. In our paradigm, on the other hand, the WM resource

requirements might not have been similar between the Pavlovian and the instrumental system.

The Pavlovian system learned state-outcome associations, while the instrumental system

learned state-action-outcome associations [42,87]. The difference in WM resource require-

ment was only the extra one dimension for the instrumental system. Instead of relying more

on the Pavlovian system, which might only provide little boost in resource efficiency in our

task, the participants may simply have favored slow, incremental learning, which requires

small cognitive resources.

In the second potential explanation, WM resources may be unimportant with respect to

modulating the Pavlovian–instrumental interaction, despite earlier studies’ suggestions to the

contrary. Several studies have proposed that prefrontal WM control systems are crucial for

controlling Pavlovian bias. Electroencephalogram studies demonstrated that midfrontal theta

oscillations are important for controlling Pavlovian bias [64,88], suggesting top-down prefron-

tal control over Pavlovian bias [64]. Furthermore, recruitment of the inferior frontal gyrus

(IFG) is involved in appropriate response inhibition, helping to overcome Pavlovian bias [45].

Finally, there is indirect evidence that administration of levodopa, which increases dopamine

levels, reduced Pavlovian influences on instrumental learning; such a reduction was speculated

to result from increased dopamine levels in the PFC, which may have facilitated the operation

of prefrontal WM functions [59]. A related finding suggested that genetic determinants of pre-

frontal dopamine function may be important in overcoming Pavlovian bias [62].

While the results of the present study appear to contradict these findings, several complex

possibilities exist. In particular, although previous findings implied the involvement of pre-

frontal mechanisms (e.g., model-based prefrontal control [64] and WM [46,59] in controlling

the Pavlovian system, they did not directly suggest active recruitment of the prefrontal WM

system. First, while Cavanagh et al. speculated that midfrontal theta power could be indicative

of “model-based top-down prefrontal control” [64], a subsequent study by Swart et al. sug-

gested that midfrontal theta signals could only be involved in the detection of conflict by sig-

naling “the need for control” [88,89], rather than being a source of direct control. Next, the

IFG showed an increased BOLD response only in the “no-go” condition [45], implying that

the IFG is important for “inhibitory” motor control (i.e., as a brake [90]); it does not partici-

pate in active maintenance or representation of goal-directed behaviors including both “go”

and “no-go,” which would be more closely associated with WM [29,91,92]. Finally, elevated

dopamine levels should be cautiously interpreted as improvements in prefrontal WM function

[59]. While dopamine has been shown to enable successful cognitive control in the prefrontal

cortex, it may have three roles: gating behaviorally relevant sensory signals; maintaining and

manipulating information in WM to guide goal-directed behavior; and relaying motor infor-

mation to premotor areas for action preparation [93]. Moreover, distinct mechanisms have

been known to modulate the influence of dopamine on WM in the PFC through distinct types

of dopamine receptors [93]. Thus, there may be several ways to interpret the observation that

dopamine level [59] or function [62] was associated with the modulation of Pavlovian influ-

ences. Considerable research is needed to fully understand the mechanisms by which dopa-

mine levels affect Pavlovian bias. Alternatively, the role of prefrontal WM in controlling

Pavlovian bias may not require vast resources. It may only be responsible for signaling a need

for control [88], promoting response inhibition [45], or influencing subcortical areas (e.g., the

striatum and subthalamic nucleus [94,95]).

Our result help refine the understanding of elevated Pavlovian bias in individuals suffering

from certain mental disorders [48,49,96]. Researchers often assume the increased Pavlovian

bias in clinical populations is, at least in part, a consequence of their impaired executive con-

trol, which hinders their goal-directed behavior [47,51]. However, the causal relationship
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between executive control and the Pavlovian influence on behavior has not been actively inves-

tigated. In this study, we showed that constraining executive control with WM load did not

increase the Pavlovian bias. It suggests that executive control deficits observed in clinical popu-

lations may not directly contribute to their heightened Pavlovian bias. Instead, clinical popula-

tions might perceive reward or punishment (or both) as more motivationally salient than

healthy individuals, which leads to stronger urges for Pavlovian responses. Nonetheless, one

should be cautious in this interpretation because the executive control impairments in clinical

populations might be more severe than (or qualitatively different from) the ones elicited with

WM load in our study.

One limitation of our study design is that the acquisition of Pavlovian cue-outcome associa-

tions and the expression of Pavlovian bias are not clearly separated. A more sophisticated way

of comparing Pavlovian bias would first guarantee that participants acquired the cue-outcome

associations to similar degrees in both tasks. Although we conducted a similar analysis (S2

Fig), it is not a complete solution to the issue because we cannot separate the two components

with the data from our task. Future studies can address this issue by using a between-subject

design, where the extra WM load are applied to only one group of participants after all partici-

pants perform enough trials of the GNG task. Another way would be to use the Pavlovian-

instrumental transfer paradigm, which is similar to our paradigm but separates the Pavlovian

learning, instrumental learning, and Pavlovian-instrumental transfer phases. Experimenters

can manipulate the WM load during the transfer phase to examine the WM load effect on the

expression of Pavlovian bias.

Increased random choices under WM load

Another notable finding was that random choice increased under WM load. Our modeling

analysis revealed that irreducible noise parameter estimates were greater in the WMGNG task

than in the GNG task (Fig 3), suggesting increased random action selection under WM load.

Further analysis using the modeling outputs revealed that participants’ choices were less

affected by the relative value difference between the “go” and “no-go” actions under WM load

(Fig 4A). Moreover, analysis using the absolute difference between the two options (Fig 4B)

revealed that the increase in accuracy became smaller as the absolute difference increased (i.e.,

the choice became easier). Both findings suggest that WM involvement led to an increase in

random choices, regardless of value comparison and choice difficulty.

Our findings are broadly consistent with the results of previous studies concerning the role

of WM and prefrontal regions in action selection and execution [97–104]. In particular, several

studies have demonstrated that the interruption of WM function via WM load could increase

the frequency of random choices in value-based decision-making tasks [34–36]. Additionally,

transcranial direct current stimulation, a brain stimulation method, over the left PFC led to

increased random action selection during an RL task, suggesting that the prefrontal WM com-

ponent influenced action selection [105]. Furthermore, the importance of WM in action selec-

tion during learning tasks is supported by the indirect evidence that individual differences in

WM capacity were correlated with appropriate exploratory action selection in multi-armed

bandit tasks [106]. Overall, the reduced availability of WM resources because of WM load in

our study may have compromised the participants’ abilities to actively represent their current

goals and actions, leading to reduced WM control over consistent choice based on value

computation.

No significant neural correlates were identified with respect to the increased random

choices. We assumed that random action selection would be associated with the reduced sensi-

tivity to value difference or value comparison between the two options (“go” and “no-go”)
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[55]; thus, we hypothesized that value comparison signals would decrease under WM load.

Contrary to our hypothesis, no significant differences in value comparison signaling in ROIs

were observed between GNG and WMGNG tasks. There are several possible explanations for

this null finding. Our assumption of value sensitivity may not be the source of the random

choice observed here. Alternatively, subsequent attentional lapse [107,108] or value-indepen-

dent noise [109] may have led to inconsistent action selection despite the presence of value

comparison signals. Further research is necessary to distinguish these possibilities.

In summary, the present study has shown that WM load compromises overall learning by

reducing learning speed via weakened cooperation between RL and WM; it also increases ran-

dom action selection without affecting the balance between Pavlovian and instrumental sys-

tems. To our knowledge, this is the first study to investigate the neurocognitive effect of WM

load during interactions between Pavlovian and instrumental systems. By investigating how

learning and decision-making using different systems are altered in the presence of WM load

and by linking such behaviors to their underlying neural mechanisms, this study contributes

to our understanding of how distinct cognitive components interact with each other and syn-

ergistically contribute to learning. Because impairments in learning, balance among multiple

systems, and action selection have been reported in various neurological and psychiatric disor-

ders [2,110], our findings represent an important step toward improved understanding of vari-

ous symptoms.

Materials and methods

Participants

Fifty-six adults participated in this study (34 women; 24.5±3.6 years old). All participants were

healthy, right-handed; they had normal or corrected-to-normal visual acuity. They were

screened prior to the experiment to exclude individuals with a history of neurological, or psy-

chiatric illness. All participants provided written informed consent, and the study protocol

was approved by the Institutional Review Board of Seoul National University.

The behavioral analysis included 49 participants (29 women; 24.3±3.3 y.o); the fMRI analy-

sis included 44 participants (27 women; 24.2±3.3 y.o). Four participants were excluded because

of technical issues; one participant was excluded because they slept during the task. Two par-

ticipants were excluded because of poor performance in the 2-back task since the results in the

dual-task paradigm could only be valid and interpretable when participants actually performed

both tasks. The accuracy cutoff was 0.575, a value that rejects the null hypothesis that partici-

pants would randomly choose one of two options. After assessment of preprocessed image

quality, five participants were excluded from the fMRI analysis because of head movements in

the scanner, which can systematically alter brain signals; four out of these five were excluded

because the mean framewise displacement exceeded 0.2 mm [111], while the remaining one

was excluded after visual assessment of carpet plots [112].

Experimental design and task

The experiment included two tasks: the original GNG task [45] and the GNG task paired with

the 2-back task as a secondary task. The order of task completion was counterbalanced among

participants; some participants performed the GNG task first while others began with the

WMGNG task. The GNG and WMGNG tasks consisted of two blocks (four blocks in total);

each block consisted of 60 trials. Therefore, each task contained 120 trials (240 trials in total).

Participants underwent fMRI while performing the tasks for approximately 50 min, with a

short (~60 s) break after each set of 60 trials. Before scanning, participants performed 10 prac-

tice trials for each of the GNG and WMGNG tasks to help them become accustomed to the
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task structure and response timing. Participants received additional compensation based on

their accuracy in the two tasks, along with the standard participation fee at the end of the

experiment. We used different sets of fractal stimuli for the practice, first, and second tasks.

Orthogonalized go/no-go (GNG) task. Four trial types were implemented depending on

the nature of the fractal cue (Fig 1A): press a button to gain a reward (go to win); press a but-

ton to avoid punishment (go to avoid losing); do not press a button to earn a reward (no-go to

win); and do not press a button to avoid punishment (no-go to avoid losing). The meanings of

fractal images were randomized among participants.

Each trial consisted of three phases: fractal cue presentation, response, and probabilistic

outcome. Fig 1B illustrates the trial timeline. In each trial, participants were presented with

one of four abstract fractal cues for 1000 ms. After a variable interval drawn from a uniform

probability distribution within the range of 250–2000 ms, a white circle was displayed on the

center of the screen for 1000 ms. When the circle appeared, participants were required to

respond by pressing a button or not pressing a button. Next, the outcome was presented for

1000 ms: a green arrow pointing upwards on a₩1000 bill indicated monetary reward, a red

arrow pointing downwards on a₩1000 bill indicated monetary punishment, and a yellow

horizontal bar indicated no reward or punishment.

The outcome was probabilistic; thus, 80% correct responses and 20% incorrect responses

resulted in the best outcome. Participants were instructed that the outcome would be probabi-

listic; for each fractal image, the correct response could be either “go” or “no-go,” and they

would have to learn the correct response for each cue through trial and error. The task

included 30 trials for each of the four trial types (120 trials in total). Trial types were randomly

shuffled throughout the duration of the task.

Orthogonalized go/no-go + 2-back (WMGNG) task. In the WM load condition, the

GNG task was accompanied by a 2-back task to induce WM load. The combined task was

named the WMGNG task; each trial had 2-back response and 2-back outcome phases after the

GNG task (fractal cue, response, and probabilistic outcome). Participants were required to

respond whether the cue in the current trial was identical to the cue presented in the two previ-

ous trials. For example, as shown in Fig 1C, the cue in the third trial differs from the cue in the

first trial (two trials prior); thus, participants should respond “different” by pressing button

after responding to the reinforcement learning task. In the fourth trial, they should respond

“same.” The positions of “SAME” and “DIFF” were randomized among participants.

Computational modeling

Baseline RL model with Pavlovian bias. We adopted a previously implemented version

of an RL model [45] that can model Pavlovian bias and choice randomness as well as learning

rate. In our baseline model, we assumed no difference in parameters between the control and

load conditions.

Expected values Q(at,st) were calculated for each action a, “go” or “no-go”, on each stimulus

s (i.e., four trial types of the task) on each trial t. Q(at,st) was determined by Rescorla-Wagner

or delta rule updating:

Qtðat; stÞ ¼ Qt� 1ðat; stÞ þ �ðrrt � Qt� 1ðat; stÞÞ

where ε is the learning rate. The learning rate (ε) is a step size of learning [4] that modulates

how much of the prediction error, a teaching signal, is incorporated into the value update.

Rewards, neutral outcomes, and punishments were entered in the model through rt 2 {−1,

0, 1}, where ρ reflects the weighting (and effect sizes) of rewards and punishments. In all mod-

els, ρ could be different for rewards and punishments (ρrew for gain, ρpun for loss).

PLOS COMPUTATIONAL BIOLOGY Working memory load and instrumental learning under Pavlovian influence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011692 December 8, 2023 16 / 28

https://doi.org/10.1371/journal.pcbi.1011692


Action weights W(at,st) were calculated from Q values, and the Pavlovian and go biases:

Wtðat; stÞ ¼
Qtðat; stÞ þ bþ pVtðstÞ if a ¼ go

Qtðat; stÞ; else

(

where b was added to the value of go, while the expected value on the current state Vt(st) was

weighted by π and added to the value of go choices. Vt(st) was computed as follows:

VtðstÞ ¼ Vt� 1ðstÞ þ �ðrrt � Vt� 1ðstÞÞ:

If the Pavlovian bias parameter (π) is positive, it increases the action weight of “go” in the

reward conditions because Vt(st) is positive. In the punishment conditions, positive π
decreases the action weight of “go” because Vt(st) is negative. A value of π close to 0 means that

the agent relies mostly on the instrumental system (and the go bias), while a larger value of π
means that the Pavlovian system also has a great impact on the agent’s action selection.

Action probabilities were dependent on these action weights W(at,st), which were passed

through a squashed softmax [4]:

P at; stð Þ ¼
exp½Wðat; stÞ�P
a0exp½Wða0; stÞ�

� �

1 � xð Þ þ
x

2

where ξ was the irreducible noise in the decision rule; it was free to vary between 0 and 1 for all

models. The irreducible noise parameter explains the extent to which information about action

weights is utilized in making a choice. As the irreducible noise increases, the influence of the

difference between the action weights is reduced, indicating that action selection becomes ran-

dom. We did not include the widely used inverse temperature parameter because ρrew and

ρpun serve the same role as inverse temperature, deciding the level of determinism when gener-

ating actions based on action weights [56]. On the other hand, ξ represents the constant ran-

domness regardless of action weights, and has been widely used by researchers using similar

models to ours [45,56,64,113,114].

Additional models. To test our hypotheses regarding the effects of WM load on parame-

ters, we constructed seven additional nested models assuming different Pavlovian biases (π),

learning rate (ε), and irreducible noise (ξ) under WM load (Table 1). Model 1 is the baseline

model. Model 2 assumed a separate Pavlovian bias parameter (π) for the WM load condition.

Similarly, models 3 and 4 assumed different learning rates (ε) and irreducible noises (ξ) in the

WMGNG block, respectively. To address the possibility that two of the three parameters

would be affected by the WM load, we constructed three additional models with eight free

parameters: model 5 with different Pavlovian bias (π) and learning rate (ε); model 6 with

Table 1. Free parameters of all models.

Model No. Model # of parameters

1 �;rrew;rpun; b;p; x 6

2 �;rrew; rpun; b;p; x;pwm 7

3 �;rrew;rpun; b;p; x; �wm 7

4 �;rrew;rpun; b;p; x; xwm 7

5 �;rrew;rpun; b;p; x;pwm; �wm 8

6 �;rrew;rpun; b;p; x;pwm; xwm 8

7 �;rrew;rpun; b;p; x; �wm; xwm 8

8 �;rrew;rpun; b;p; x;pwm; �wm; xwm 9

https://doi.org/10.1371/journal.pcbi.1011692.t001
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different Pavlovian bias (π) and irreducible noise (ξ); and model 7 with different learning rate

(ε) and irreducible noise (ξ). Finally, we constructed the full model, which assumed that all of

these three parameters would be affected by WM load, leading to nine free parameters.

Procedures for model fitting and model selection

Model parameters were estimated using hierarchical Bayesian analysis (HBA). Group-level

distributions were assumed to be normally distributed, with mean and standard deviation

parameters set as two free hyperparameters. We employed weakly informative priors to mini-

mize the influences of those priors on the posterior distributions [65,115]. Additionally, for

parameter estimation, the Matt trick was used to minimize the dependence between group-

level mean and standard deviation parameters; it also facilitated the sampling process [116].

Moreover, bounded parameters such as learning rates and irreducible noise (2 [0, 1]) were

estimated within an unconstrained space; they were then probit-transformed to the con-

strained space, thus maximizing MCMC efficiency within the parameter space [115,117].

We ran four independent chains with 4000 samples each, including 2000 warm-up samples

(i.e., burn-in) to ensure that the parameters converged to the target distributions. Four chains

were run to ensure that the posterior distributions were not dependent on initial starting

points [118]. We visually checked convergence to target distributions by observing trace plots

(S3 Fig) and computing the R statistics—a measure of convergence across chains [119]. R sta-

tistics were< 1.1 for all models, indicating that the estimated parameter values converged to

their target posterior distributions (S1 Table).

Models were compared using the LOOIC, which is an information criterion calculated

from the leave-one-out cross-validation [63]. This method is used to estimate the out-of-sam-

ple predictive accuracy of a fitted Bayesian model for model comparison and selection. The

LOOIC is computed using the log-likelihood evaluated from posterior distributions or simula-

tions of the parameters. The R package loo [63], which provides an interface for the approxi-

mation of leave-one-out cross-validated log-likelihood, was used to estimate the LOOIC for

each model. Lower LOOIC values indicate better fit.

fMRI scans: Acquisition and protocol

fMRI was performed on the same scanner (Simens Tim Trio 3 Tesla) using a 32-channel head

coil across all participants. A high-resolution T1-weighted anatomical scan of the whole brain

resolution was also acquired for each participant (TR = 2300ms, TE = 2.36ms,

FOV = 256mm,1mm×1mm×1mm) to enable spatial localization and normalization. The par-

ticipant’s head was positioned with foam pads to limit head movement during acquisition.

Functional data was acquired using echo-planar imaging (EPI) in four scanning sessions con-

taining 64 slices (TR = 1500ms, TE = 30ms, FOV = 256mm, 2.3mm × 2.3mm × 2.3mm, multi-

band acceleration factor = 4). For the GNG task, functional imaging data were acquired in two

separate 277-volume runs, each lasting about 7.5 min. For the WMGNG task, data were

acquired in two separate 357-volume runs, each lasting about 9.5 min.

fMRI scans: General linear models

Preprocessing was performed using fMRIPrep 20.2.0 (RRID:SCR_016216) [120,121], which is

based on Nipype 1.5.1 (RRID:SCR_002502) [122,123]. Details of preprocessing with fMRIPrep

are provided in Supporting Information. Subsequently, images were smoothed using a 3D

Gaussian kernel (8mm FWHM) to adjust for anatomical differences among participants.

BOLD-signal image analysis was then performed using SPM12 [http://www.fil.ion.ucl.ac.uk/

spm/] running on MATLAB v9.5.0.1067069(R2018b).

PLOS COMPUTATIONAL BIOLOGY Working memory load and instrumental learning under Pavlovian influence

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011692 December 8, 2023 18 / 28

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://doi.org/10.1371/journal.pcbi.1011692


We built participant-specific GLMs, including all runs–two runs for the GNG block and

two runs for the WMGNG block–and calculated contrasts to compare the two blocks at the

individual level. The first-level model included six movement regressors to control the move-

ment-related artifacts as nuisance regressors. Linear contrasts at each voxel were used to obtain

participant-specific estimates for each effect. These estimates were entered into group-level

analyses, with participants regarded as random effects, using a one-sample t-test against a con-

trast value of 0 at each voxel. The group-level model included covariates for gender, age, and

the task order. For all GLM analyses, we conducted ROI analysis; the results were corrected for

multiple comparisons using small volume correction (SVC) within ROIs.

GLM1: GLM1 was used to test the hypothesis that WM load would increase the contribu-

tion of the slow, incremental RL system because the resources for the fast WM system are con-

strained. We expected an stronger RPE signaling in the striatum in the WMGNG than the

GNG task. GLM was implemented by the model-based fMRI approach and included the fol-

lowing regressors: (1) cue onset of “go to win” trials, (2) cue onset of “no-go to win” trials, (3)

cue onset of “go to avoid losing” trials, (4) cue onset of “no-go to avoid losing” trials, (5) target

onset of “go” trials, (6) target onset of “no-go” trials, (7) outcome onset, (8) outcome onset

parametrically modulated by the trial-by-trial RPEs, and (9) wait onset (i.e., inter-trial inter-

val). The regressor of interest was “RPE”; we compared the main effect of RPE between two

tasks (RPE(8)WMGNG—RPE(8)GNG). RPE regressors were calculated by subtracting the

expected values (Q) from the outcome for each trial. Here, the outcome was the product of

feedback multiplied by reward/punishment sensitivity. The a priori ROI was the striatum,

which is widely known to process RPE [12,14,124]. The striatum ROI was constructed

anatomically by combining the AAL3 definitions of bilateral caudate, putamen, olfactory cor-

tex, and nucleus accumbens.

GLM2: GLM2 was used to test the hypothesis that neural responses associated with Pavlov-

ian bias would increase under WM load. Specifically, the GLM examined whether the differ-

ence between the anticipatory response to fractal cues in Pavlovian-congruent trials and

Pavlovian-incongruent trials was greater in the WMGNG task than in the GNG task in regions

associated with Pavlovian bias. Therefore, GLM included the following regressors: (1) cue

onset of “go to win” trials, (2) cue onset of “no-go to win” trials, (3) cue onset of “go to avoid

losing” trials, (4) cue onset of “no-go to avoid losing” trials, (5) target onset of “go” trials, (6)

target onset of “no-go” trials, (7) outcome onset of win trials, (8) outcome onset of neutral tri-

als, (9) outcome onset of loss trials, (10) wait onset (i.e., inter-trial interval). We compared the

main effect of Pavlovian bias (Pavlovian-congruent trials—Pavlovian-incongruent trials)

between two tasks ([(1) + (4)—((2) + (3))]WMGNG—[(1) + (4) ((2) + (3))]GNG). The a priori

ROIs were the striatum and SN/VTA, which are considered important in Pavlovian bias

[45,46,52–54]. The striatum ROI was constructed anatomically by combining the AAL3 defini-

tions of bilateral caudate, putamen, olfactory cortex, and nucleus accumbens. Furthermore,

the SN/VTA was constructed by combining the AAL3 definitions of bilateral SN and VTA.

GLM3: GLM3 was used to the hypothesis that there would be less neural responses associ-

ated with value comparison signals under WM load. GLM3 was also implemented with a

model-based fMRI approach: (1) cue onset of all trials, (2) cue onset parametrically modulated

by the trial-by-trial decision values (Wchosen−Wunchosen), (3) target onset of “go” trials, (4)

target onset of “no-go” trials, (5) outcome onset, and (6) wait onset (i.e., inter-trial interval).

Decision value regressors were calculated by subtracting the action weights of the unchosen

option (Wunchosen) from the action weights of the chosen option (Wchosen). We then compared

the main effect of decision value between two blocks ((2)WMGNG-(2)GNG). The a priori ROI for

GLM3 was the vmPFC, which was suggested as a region that encodes the relative chosen value

(Wchosen−Wunchosen) [125,126]. Here, ROI masks were created by drawing a sphere with a
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diameter of 10 mm around the peak voxel reported in the previous studies ([–6,48,–8] for

vmPFC [125]).

PPI analysis: In addition to GLMs, we used PPI analysis to test whether WM load led to

reduced cooperation between WM and RL systems for learning [15,18] by using PPI analysis.

Here, to examine differences between the two blocks in terms of functional coupling between

the prefrontal areas and the area computing RPE after choices, we performed PPI analysis

using the gPPI toolbox [67]; the physiological variable was the time course of the striatum in

the anticipation phase, and the psychological variable was the effect of WM load during the

same phase. As a seed region (i.e., a physiological variable), the cluster striatum ROI (peak

MNI space coordinates x = 13, y = 14, z = -3) was derived from the results of GLM1, which

revealed stronger RPE signaling in the WMGNG task than in the GNG task during the feed-

back phase. The entire time series throughout the experiment was extracted from each partici-

pant in the striatum ROI. To create the PPI regressor, these normalized time series were

multiplied by task condition vectors for the anticipation phase, which consisted of the cue

representation and fixation phases as in GLM1. A GLM with PPI regressors of the seed region

was thus generated together with movement regressors. The effects of PPI for each participant

were estimated in the individual-level GLM; the parameter estimates represented the extent to

which activity in each voxel was correlated with activity in the striatum during the anticipation

phase. The contrast was constructed by subtracting activity during the anticipation phase in

the GNG task from activity in the WMGNG task (WMGNG vs. GNG in the anticipation

phase). Individual contrast images for functional connectivity were then computed and

entered into one-sample t-tests in a group-level GLM together with nuisance covariates (i.e.,

gender, age, and task order). Whole-brain cluster-level FWE correction was applied for PPI

analysis.

Corrections for multiple comparisons

For each GLM, we performed whole-brain FWE corrections at the cluster level (corrected

p< 0.05, with the height threshold of p< 0.001) for multiple comparisons [127,128] using

SPM12. For a priori ROIs, we used SVC using SPM12.

Supporting information

S1 Text. fMRIPrep details.

(DOCX)

S2 Text. fMRI results details.

(DOCX)

S1 Fig. Performance in the Pavlovian-congruent and Pavlovian-incongruent conditions

(N = 49). (A) Participants’ accuracy in the Pavlovian-congruent and Pavlovian-incongruent

conditions, separately for the GNG and WMGNG tasks. Participants showed lower accuracy

in the WMGNG compared to the GNG task both in the Pavlovian-congruent and Pavlovian-

incongruent conditions. (B) Prediction from the best model regarding the accuracy in the Pav-

lovian-congruent and Pavlovian-incongruent conditions. We used a one-step ahead prediction

for generating the model predictions. In line with our participants’ data, our model predictions

showed lower accuracy in the WMGNG than the GNG task in both types of conditions. In all

figures, error bars indicate means ± standard errors of the means.

(PNG)

S2 Fig. Temporal development of Pavlovian bias (N = 49). The behavioral measure of Pav-

lovian bias, which is the difference in accuracy between the Pavlovian-congruent and
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Pavlovian-incongruent conditions, plotted as a function of trial separately for the GNG and

WMGNG tasks. While the peak in the WMGNG task appeared later than the GNG task, Pav-

lovian bias was similar between the tasks after the peaks. Moving average smoothing was

applied with filter size 3. Lines indicate group means and ribbons indicate means ± standard

errors of the means. Squares indicate the peak values of Pavlovian bias during the two tasks.

(PNG)

S3 Fig. Trace plots of group parameters for the best-fitting model. The trace plots show that

MCMC samples were well mixed and converged. Note that the plots excluded burn-in sam-

ples.

(PNG)

S4 Fig. Posterior distributions of individual go bias, reward sensitivity, punishment sensi-

tivity parameters. Dots indicate medians and thick bars indicate 95% HDIs.

(PNG)

S5 Fig. Posterior distributions of individual Pavlovian bias and Pavlovian bias under WM

load parameters. Dots indicate medians and thick bars indicate 95% HDIs.

(PNG)

S6 Fig. Posterior distributions of individual learning rate and learning rate under WM

load parameters. Dots indicate medians and thick bars indicate 95% HDIs.

(PNG)

S7 Fig. Posterior distributions of individual irreducible noise and irreducible noise under

WM load parameters. Dots indicate medians and thick bars indicate 95% HDIs.

(PNG)

S8 Fig. Results of fMRI replication analyses. (A) The main effect of WM load during the

anticipation phase. As reported in previous meta-analysis studies [29,129], under WM load,

regions of the lateral prefrontal cortex (PFC), including bilateral superior gyrus (MNI space

coordinates x = -22, y = 0, z = 50, Z = 6.03, p< 0.05 whole-brain cluster-level family-wise

error (FWE)) and middle frontal gyrus (MNI space coordinates x = 29, y = 2, z = 57, Z = 5.44,

p< 0.05 whole-brain cluster-level FWE), and left precentral gyrus (MNI space coordinates x =

-45, y = 5, z = 30, Z = 5.79, p < 0.05 whole-brain cluster-level FWE) and left inferior parietal

cortex (MNI space coordinates x = -38, y = -51, z = 41, Z = 5.42, p< 0.05 whole-brain cluster-

level FWE) showed increased BOLD signal. These results indicate that participants indeed had

cognitive loads in the brain level. (B) The main effect of reward outcome. The reward was sig-

nificantly associated with the signal in the striatum (MNI space coordinates x = 18, y = 5, z =

-12, Z = 4.47, p< 0.05 whole-brain cluster-level FWE) and ventromedial PFC (MNI space

coordinates x = -3, y = 68, z = 4, Z = 4.92, p< 0.05 whole-brain cluster-level FWE). (C) The

main effect of loss outcome. Loss-related regions such as the insula (MNI space coordinates x

= -36, y = 19, z = -10, Z = 6.77, p< 0.05 whole-brain cluster-level FWE) showed increased

BOLD response. (B) and (C) are consistent with the previous findings suggesting reward- and

loss-related regions [130,131]. Overlays are shown with a threshold of p< 0.001 (uncorrected).

Color scale indicates t-values.

(PNG)

S1 Table. Statistics of posterior distributions of group parameters for the best-fitting mod-

el.R̂ values [119] for all parameters were close to 1.00 (< 1.1), which indicates that the esti-

mated parameter values converged to their target posterior distributions.

(XLSX)
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S2 Table. LOOIC for each model.

(XLSX)

S3 Table. Whole-brain results from replication analyses. Whole-brain cluster-level family-

wise error (FWE) for multiple comparison with a cluster-forming threshold of p< 0.001. *
The insula (peak in insula: x = -36, y = 19, z = -10, Z = 6.77) reported in the result (S6C Fig)

was included in this cluster of which the peak coordinate was located in orbital part of IFG.

(XLSX)

S4 Table. ROI and whole-brain results of the main effect of WM load on RPE. * p: small-

volume corrected FWE within an anatomical striatum ROI defined from aal3 atlas with a clus-

ter-forming threshold of p< 0.001. ** p: whole-brain cluster-level FWE for multiple compari-

son with a cluster-forming threshold of p< 0.001.

(XLSX)

S5 Table. Neural statistics of the effect of WM load on Pavlovian bias.

(XLSX)

S6 Table. Whole-brain results from PPI analysis. * The dlPFC (peak in dlPFC: x = -22

y = 63, z = 23, Z = -4.24) reported in the result (Fig 5B) was included in this cluster of which

peak coordinate was located in medial SFG.

(XLSX)
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