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ABSTRACT 
 
Recent advancements in Machine Learning (ML) had proven highly effective in modeling time 
series data, consistently outperforming traditional time series models in forecasting accuracy 
according to empirical studies. However, the application of ML techniques in forecasting agricultural 
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commodity prices in India was remains scarce, despite their demonstrated success in other 
domains. The present study endeavours to investigate the efficiency of various machine learning 
(ML) algorithms, including Artificial Neural Network (ANN), Support Vector Regression (SVR) and 
Random Forest (RF) models, alongside traditional linear time series models such as SARIMA and 
GARCH models in forecasting of the monthly price series of redgram in Andhra Pradesh, India. The 
findings of this study indicated that the Random Forest (RF) model exhibited superior performance 
compared to other machine learning techniques and univariate time series models in forecasting 
redgram monthly prices in Andhra Pradesh. However, the forecasting accuracies of alternative 
techniques, including Support Vector Regression (SVR), Artificial Neural Network (ANN), GARCH, 
and SARIMA models, fell short of expectations. In this research, the superiority of various models 
was substantiated through accuracy metrics such as Mean Squared Error (MSE) and Root Mean 
Squared Error (RMSE). Additionally, the Diebold-Mariano test is conducted to assess significant 
differences in predictive accuracy among the models. The DM test also concluded that the RF 
model outperformed than the other models under consideration. 
 

 

Keywords: ANN; GARCH; machine learning; redgram; RF; SARIMA; SVR. 
 

1. INTRODUCTION 
 
Red gram, scientifically known as Cajanus cajan, 
is a legume crop widely cultivated in tropical and 
subtropical regions around the world. It's 
commonly known as pigeon pea or arhar dal in 
India. Red gram is valued for its high protein 
content and is a staple food in many parts of the 
world, particularly in South Asia, Africa, and the 
Caribbean. It's not only a dietary staple but also 
plays a crucial role in sustainable agriculture due 
to its ability to fix nitrogen in the soil, thus 
enriching it for subsequent crops. Red gram is 
versatile, used in various culinary dishes such as 
soups, stews, and curries, and also holds 
significance in traditional medicine for its 

potential health benefits. Globally, redgram is 
grown in an area of 63.57 lakh hectares with a 
production of 54.75 lakh tonnes and productivity 
of 861.25 kg/ha (FAO STAT, 2021),[1,2,3]. India 
ranks first in redgram production globally with 
43.4 lakh tonnes cultivated in 49.8 lakh hectares 
with productivity of 871 kg/hectare in 2021-22 
(agricoop.nic.in). According to Government 1st 
advance estimates, all India redgram            
production in 2022-23 is at 3.89 million tonnes. 
The production scenario of redgram in India                     
was shown in Fig. 1. India, Andhra Pradesh 
contributes an area of 2.42 lakh                
hectares, production 0.78 lakh tonnes and 
productivity of 323 kg/ha during 2022-23 
(des.ap.gov.in). 

 

 
 

Fig. 1. Production of Redgram in India (in lakh tonnes) 
Source: Directorate of Economics and Statistics (DES). *1st Advance estimates 
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In agricultural markets, access to accurate prices 
data significantly enhances the bargaining power 
of farmers while fostering healthy competition 
among traders. Armed with pricing information, 
farmers were empowered to strategically 
navigate between nearby markets, optimizing the 
sale of their produce and securing favourable 
prices. This data-driven approach allows farmers 
to make informed decisions regarding the timing 
of their product marketing, thereby mitigating the 
impact of erratic price fluctuations. By leveraging 
price information, farmers would able to 
capitalize on arbitrage opportunities across 
different times and locations, ultimately reducing 
the volatility of prices. One notable challenge in 
analysing price data was pronounced seasonality 
observed in agricultural markets. This seasonal 
pattern poses a formidable obstacle to the 
accurate forecasting of prices. Despite the many 
models available to capture the intricacies of 
price behaviour, consensus remains elusive 
among researchers regarding the most effective 
approach for forecasting prices. This complexity 
underscores the need for continued exploration 
and refinement of analytical models to capture 
the agricultural price dynamics.  
 
Various linear and nonlinear methodologies have 
been developed within the framework of time 
series analysis to model agricultural commodity 
prices. These include well-known approaches 
such as the Autoregressive Integrated Moving 
Average (ARIMA) model, Seasonal ARIMA 
(SARIMA), and the Generalized Autoregressive 
Conditional Heteroscedastic (GARCH) model. 
Past research endeavours have focused on 
leveraging these methodologies to forecast 
agricultural commodity prices, aiming to provide 
valuable insights into market trends and price 
dynamics. Recently, Machine Learning (ML) 
algorithms, developed within the data science 
paradigm, have risen to prominence in 
forecasting tasks. This trend extends to the 
prediction of financial and economic time series, 
where ML techniques have demonstrated 
notable efficacy. Empirical studies have 
consistently revealed the superior performance 
of ML approaches compared to traditional time 
series models across various financial assets. 
Notably, a comprehensive comparative analysis 
of statistical models and machine learning 
techniques can be found in the literature. Among 
the ML methodologies, popular choices include 
Artificial Neural Networks (ANN), Support Vector 
Regression (SVR) and Random Forest (RF). 
These techniques are characterized by their 
data-driven, nonparametric nature, enabling 

them to effectively capture the stochastic 
dependencies present within the data. The 
primary aim of this paper was to assess and 
compare the predictive performance of efficient 
Machine Learning (ML) algorithms-namely, ANN, 
SVR and RF for forecasting the monthly prices of 
Redgram in Andhra Pradesh, India. 
 

2. MATERIALS AND METHODS 
 

2.1 Data and Source of Study  
 
To achieve the defined objectives, selected 
redgram monthly prices data was collected from 
Agricultural Market Intelligence Committee 
(AMIC), Lam, Guntur for the period from January 
1991 to December 2023. The collected data was 
divided into training and a testing datasets. There 
are 396 observations of redgram monthly prices 
series, of which 385 observations were utilized 
for training dataset for model development and 
last 12 observations, were used as testing 
dataset for model validation purpose.  
 

2.2 Descriptive Statistics 
 
The summary statistics viz., mean, median, 
standard deviation, skewness, kurtosis, minimum 
and maximum were used to study the behaviour 
of the monthly prices of redgram in Andhra 
Pradesh. 
 

2.3 ARIMA Model 
  
The Autoregressive Integrated Moving Average 
(ARIMA) methodology developed by Box-
Jenkins is the most widely used model for 
analysing time series data. The Box-Jenkins 
model-building process is used to fit a blended 
ARIMA model to provided data. The basic 
purpose of fitting the ARIMA model is to 
accurately characterise and forecast the time 
series stochastic process [4]. 
 
Initially, George Box and Gwilym Jenkins 
conducted substantial research on ARIMA 
models, and their names were frequently 
associated with the broad ARIMA method used 
in time series analysis, forecasting, and control. 
The two forms of stochastic processes are 
stationary and non-stationary. The ARIMA model 
can only be used with stationary data. 
 

2.4 Stationarity and Non-stationarity 
 
A process that generates data in equilibrium 
around a constant value and has a constant 
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variance around the mean throughout time is 
referred to as “stationary.” If the means shift over 
time and the variance is not roughly constant 
both mean and variance, the series is said to be 
non-stationary. To build the ARIMA model the 
series should be stationary in nature. If the 
original series is not stationary then it has to 
make stationary by differencing will be done to 
convert the non-stationary series into stationary 
series. 
 

2.5 Autoregressive Model of order p (AR 
(p)) 

 
An autoregressive model is one in which Yt 
depends only on its past values Yt-1, Yt-2, Yt-3, etc. 
is called autoregressive of order p and 
abbreviated as AR (p), where ∅ is autoregressive 
coefficient and 𝜀𝑡 is white noise. 
 

𝑦𝑡 = ∅1𝑦𝑡−1 +  ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡    (1) 

 
In general, a variable 𝑦𝑡  is said to be 
autoregressive of order p [AR (p)], if it is a 
function of its p past values and can be 
represented as:  
 

    𝑦𝑡 =  ∑ ∅𝑖𝑦𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖−1                  (2) 

 

2.6 Moving Average Model order q (MA 
(q)) 

 
Moving Average (MA) is the one where Yt 
depends on its lagged forecast errors. 

𝑦𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞             (3) 

 
The MA term is represented by the order q           
and abbreviated as MA(q) and 𝜃  is MA 
coefficient. 
 

2.7 Autoregressive Moving Average 
model (ARMA (p, q)) 

 
It is often advantageous to use both 
autoregressive and moving average processes in 
order to achieve greater flexibility in fitting of 
time-series data. This leads to mixed 
autoregressive-moving average model.  
 

𝑦𝑡 = ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 −

𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ −  𝜃𝑞𝜀𝑡−𝑞             (4) 

 
2.7.1 Autoregressive Integrated Moving 

Average Model (ARIMA (p, d, q)) 
 
The ARIMA model allows 𝑦𝑡  to be explained by 
its past, or lagged values and stochastic error 
terms. The models are often referred to as 
“mixed models.” ARIMA models use a 
combination of autoregressive (AR), integration 
(I) and moving average (MA). The term 
integration is referred when a nonstationary 
series is converted into stationary series by 
means of differencing. Box and Jenkins propose 
a practical four stage procedure for finding a 
good model. The four-stage univariate Box 
Jenkins procedure is summarized schematically 
in Fig. 2.  

 

 
 

Fig. 2. Flow chart of Box-Jenkins Methodology 
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The main stages in setting up a Box-Jenkins 
forecasting model are described below: 
 
Identification: The autocorrelation function 
(ACF) and partial autocorrelation function 
(PACF) are two graphical devices to measure the 
correlation between the observations within a 
single data series and they give an idea about 
the patterns and relationship in the available 
data. As the time series under study is a 
particular realization of the process, the 
theoretical ACF and PACF must resemble the 
estimated ACF and PACF of the data.  
 

Table 1. Pattern of ACF and PACF for 
identification of AR, MA and ARMA process 

 

Process ACF PACF 

AR Decays towards 
zero 

Cut off to zero 
(lag length of last 
spike is the order 
of the process) 

MA Cut off to zero 
(lag length of 
last spike is the 
order of the 
process) 

Decays towards 
zero 

ARMA Tails off towards 
zero 

Tails off towards 
zero 

 
Estimation of parameters: At the estimation 
stage, coefficients of the identified models are 
estimated using method of least squares or 
maximum likelihood estimation methods are 
used to estimate the parameters. Stationarity and 
invertibility are checked for the coefficient 
obtained and at the same time diagnostic 
checking is done in order to know whether the 
model fit the data satisfactorily or not. The 
importance of the estimation coefficients is 
measured in terms of the statistical significance.  
 
Diagnostic Checking: Different models can be 
obtained for various combinations of AR and MA 
individually and collectively. The best model is 
obtained with following diagnostics. 
 
(a) Low Akaike Information Criteria (AIC) / 

Bayesian Information Criteria (BIC) 
 
AIC is given by (-2 log L + 2m) where m = p + q + 
P + Q and L is the likelihood function. Since -2log 
L is approximately equal to {n (1+log 2𝜋) + n log 

𝜎2} where 𝜎2 is the model MSE. Thus, AIC can 

be written as AIC = {n (1+log 2𝜋) + n log 𝜎2 +
2m} and because first term in this equation is 
constant, it is usually omitted while comparing 

between models. The model having lowest 
AIC/BIC is considered as the best model. 
 
(b) Plot of residual ACF  
 
Once the appropriate model has been fitted, the 
goodness of fit can be examined by plotting the 
ACF of residuals of the fitted model. If most of 
the sample autocorrelation coefficients of the 
residuals are within the limits ± 1.96 / N where N 
is the number of observations on which the 
model is based, then the residuals are white 
noises indicating that the model is good fit.  
 
(c) Box-Pierce or Ljung-Box texts 
 
Box-Pierce statistic is a test to measure the 
overall adequacy of the chosen model by 
examining a quantity Q, whose approximate 
distribution is Chi-square.  
 

Q = 𝑛 ∑ 𝑟(𝑗)
2𝑘

1                                (5) 

 
Where k as maximum lag considered, and is 
usually around 20, n = number of observations, 
r(j) is the estimated autocorrelation at lag j. Chi-
square with (k-m-1) degrees of freedom where 
m-1 is the number of parameters estimated in the 
model. 
 
A modified Q statistics is the Ljung-box which is 
given by  

q = n(n+2) ∑
𝑟(𝑗)

2

𝑛−𝑗
                          (6) 

 
The critical value of Q statistic is compared with 
Chi-square (n-1) degrees of freedom. Residuals 
should be uncorrelated and Q should be small if 
model is correctly specified. A significant value of 
test statistic indicates the chosen model is not a 
good fit. 
 
Forecasting: The model that satisfies all the 
diagnostic checks is considered for forecasting. If 
the model is based on differencing / de-trending 
transformations, then the model must be 
represented with relevant expressions of original 
series. Then only, the forecasts can be made. 
 
Seasonal ARIMA: In the time series analysis, 
seasonality is defined as the pattern of changes 
that repeats over S time periods, where S is the 
number of time periods between the repeats of 
the pattern. For quarterly data, S = 4 time 
periods per year and for monthly data S = 12 
time periods per year are considered. As the 
regular differencing was applied to the series 
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having non-stationary nature similarly                   
seasonal differencing will be applied to the 
seasonal non-stationary series. The                     
seasonal Autoregressive (SAR) and Seasonal 
Moving Average (SMA) are the parameters of 
seasonal ARIMA. In the seasonal ARIMA               
model, seasonal AR and MA terms predicts                 
the 𝑥𝑡  often with the lags that are multiples              
of S. 
 
Seasonal ARIMA model is denoted by ARIMA (p, 
d, q) (P, D, Q)S , where p  represents the number 
of autoregressive terms, q represents the 
number of moving average terms and d denotes 
order of differencing to induce stationarity, P 
represents the number of seasonal 
Autoregressive components, Q represents the 
number of seasonal moving average terms                  
and D represents the number of seasonal 
differences required to make the series 
stationarity. The seasonal ARIMA model 
expressed as follows; 
 

∅(𝐵)Φ(𝐵)∇𝑑∇𝑠
𝐷𝑟𝑡 = 𝜃(𝐵)Θ(𝐵)𝜀𝑡                  (7) 

 

 𝑤𝑡 =  ∇𝑑∇𝑠
𝐷𝑟𝑡                                              (8) 

 

∇𝑑= (1 − 𝐵)𝑑  denotes the number regular 

differences and ∇𝑠
𝐷=  (1 − 𝐵𝑠)𝐷  denotes number 

of seasonal differences. 
 
Where, ∅(𝐵)  is stationary Autoregressive 

operator, 𝜃(𝐵)  is a stationary moving average 
operator, 𝜀𝑡  is a white noise (Brockwell and 
Davis, 1996). 

 
2.8 Generalized Autoregressive 

Conditional Heteroskedasticity 
(GARCH) 

 
Bollerslev (1986) proposed Generalized ARCH 
(GARCH) model, in which the conditional 
variance is also a linear function of its own lags. 
The conditional variance has the property that 

the auto correlation function of 𝜀𝑡
2  can decay 

slowly. 
  

ℎ𝑡 = 𝑎0 + ∑ 𝑎𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1 + ∑ 𝑏𝑗ℎ𝑡−𝑗
𝑝
𝑗=1               (9) 

 
For the ARCH family, the decay rate is very 
rapid. The overwhelmingly most popular GARCH 
model in applications has been the GARCH (1, 
1) model. The GARCH (p, q) process is weakly 
stationary if and only if  
 

  ∑ 𝑎𝑖 + ∑ 𝑏𝑗  
𝑝
𝑗=1

𝑞
𝑖=1 < 1                    (10) 

The GARCH model can be regarded as an 
application of ARMA model to the squared series 

𝜀𝑡
2 where a and b are constants. 

 
Estimation: Maximum likelihood method of 
estimation is used to estimate the parameters of 
GARCH model.  
 

 𝐿𝑡(𝜃) = T-1 ∑ (log ℎ𝑡 + 𝜀𝑡
2ℎ𝑡

−1)𝑇
𝑡=1

                       (11)    

 

 ℎ𝑡 = 𝑎𝑜 + ∑ 𝑎𝑖𝑦𝑡−𝑖
2 + ∑ 𝑏𝑗ℎ𝑡−𝑗

𝑝
𝑗=1

𝑞
𝑖=1            (12) 

 
The log likelihood function of a sample of T 
observations, apart from constant, is  
 

𝐿𝑡(𝜃) = T-1 ∑ (log ℎ𝑡 + 𝜀𝑡
2ℎ𝑡

−1)𝑇
𝑡=𝑣                 (13) 

 
The Akaike Information Criterion (AIC) and 
Bayesian information criterion (BIC) values for 
GARCH model Gaussian distributed errors are 
computed by  
 

AIC =   -2ln(L) + 2k                    (14) 
 

BIC = -2ln(L) + ln (N)k                   (15) 
 

Where L is the value of likelihood function, 
Evidently, the likelihood equations are extremely 
complicated.  
 

Steps in fitting a GARCH model 
 

Step-1: Determine whether the time series is 
stationary 
 

1. Perform stationarity test- ADF test 
2. If required differencing is done 

 

Step-2: Identify the mean model  
 

1. Autocorrelation Function (ACF) 
2. Partial Autocorrelation Function (PACF) 

 

Step-3: Estimate the model parameters and 
diagnostic checking 

 

The parameters are estimated through maximum 
likelihood function such that overall measure of 
errors is minimized or likelihood function is 
maximized. Portmanteau test is used to check if 
the model assumptions about the errors are 
satisfied. 
 

Step-4: Select the most suitable ARIMA 
model 

 

The most suitable ARIMA model is selected 
using the smallest Akaike Information Criteria 
(AIC) or Schwarz-Bayesian Criteria (SBC).  
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Step-5: Determination of residuals and 
heteroscedasticity test 

 
ACF and PACF values of the ‘r-square’ are 
determined and the lags in which the values are 
found to be significant are identified. The test for 
heteroscedasticity is done at identified significant 
lags. The test employed is the ARCH-LM test.   
 
Step-6: Residuals and Diagnostic Checking 
 
The residuals obtained from the mean model 
used for fitting the different GARCH models were 
squared and stored in a new variable called ‘e-
square.’ The diagnostic tests are employed to 
check whether the residuals are white noise or 
not. 
 
ARCH (LM) Test: A time series exhibiting 
conditional heteroscedasticity or autocorrelation 
in the squared series is said to 
have autoregressive conditional heteroscedastic 
(ARCH) effects. ARCH(LM) test is used 
to test for ARCH effects by regressing the 
squared errors on its lags. The null hypothesis is 
that the lagged regression coefficients are zero 
there are no ARCH effects.  
 

 var
yt

Ht−1
= var (

εt

Ht−1
) = E (

ε2t

Ht−1
) = σt

2        (16) 

 
Where, 𝑦𝑡  is the time series, 𝜀𝑡  is an innovation 

process with mean zero, 𝐻𝑡 is the history of the 

process available at time t. 𝜎𝑡
2 is the conditional 

variance.  
 
Artificial Neural Networks: The artificial neural 
network is a machine learning algorithm which 
resembles the biological neuron and works 

based on the learning experience and pattern 
present in the data sets. The Artificial Neural 
Network for time series modelling and analysis is 
termed as Time Delay Neural Network (TDNN) 
because the network contains time lags or delays 
in input layer. Generally, ANN has three-layer 
data structure i.e., input layer, output layer, 
hidden layer as depicted in Fig.3. 
 
Output of the neuron can be obtained as  
 

f (𝑥𝑗) = f (𝛼𝑗+∑ 𝑤𝑖𝑗𝑘
𝑖=1 𝑦𝑖)               (17) 

 
The objective of the neural network is to 
transform the inputs into meaningful outputs.  
 

 Y = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 )               (18) 

 
where Y is output, f is activation function, 𝑤𝑖  is 
weights of the connections and  𝑥𝑖 is Input to the 
neurons 
 
Feed Forward neural Network: In feed forward 
neural network, the information flow is 
unidirectional as unit sends information to other 
unit from which it does not receive any 
information. There are no feedback loops 
available in this architecture and they also             
have fixed input and output neurons. They are 
used in pattern generation/recognition 
/classification.  
 
Total number of trainable parameters in a feed-
forward neural network with n hidden layers can 
be obtained as; 
 

  𝑖 × ℎ1 + ∑ (ℎ𝑘 × ℎ𝑘+1)𝑛−1
𝑘=1 + ℎ𝑛 × 𝑜 +

∑ ℎ𝑘 + 𝑜𝑛
𝑘=1             (19) 

 

 
 

Fig. 3. ANN architecture 
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The neural network predicts the weights and 
biases to calculate feed the inputs forward 
through the network, the total net input will be for 
first weight (w1) and input (i1). 
 

   𝑛𝑒𝑡ℎ1 = 𝑤1 × 𝑖1 + 𝑤2 × 𝑖2 + 𝑏1 × 1        (20) 
 
Logistic activation function is used to get the 
output (o1) of the network is as follows; 
 

 𝑜𝑢𝑡ℎ1 =
1

1+𝑒ℎ1
−𝑛𝑒𝑡                                        (21) 

 
It Calculates the error for each output neuron 
using the squared error function and adds them 
to get the total error: 
 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2                (22) 

 
The total error for the neural network is the sum 
of the errors  
 

 𝐸𝑡𝑜𝑡𝑎𝑙    = 𝐸𝑜1 + 𝐸𝑜2 + 𝐸𝑜3 + ⋯ , +𝐸𝑜𝑛       (23) 
 

2.9 The Back Propagation Algorithm  
 
Multiple Layer Perceptron (MLP) network is 
trained using one of the supervised learning 
algorithms i.e., back propagation algorithm 
(BPA). The BPA uses data to adjust the network 
weights and thresholds to minimize the error in 
its predictions on training set. 
 

𝑋𝑗 = ∑ 𝑦𝑖 𝑊𝑖𝑗                     (24)    

 
Where, 𝑦𝑖  is the activity level of the jth                            

unit in the previous layer and 𝑊𝑖𝑗  is the          

weight of the connection between the ith and the 
jth unit. 
 
The unit calculates the activity 𝑦𝑗  using some 

function of the total weighted input. Generally, 
the sigmoid function used as activation function 
and which is given as follows 
 

𝑦𝑖 = [1 + 𝑒−𝑥𝑗]−1               (25)                                                 
 

After calculating all the output units network 
computes the error E, and which is expressed by 
the following equation: 
 

𝐸 =
1

2
∑ (𝑦𝑖 − 𝑑𝑗)

2
𝑗                   (26)     

 

Where, 𝑦𝑖 is the activity level of the jth unit in the 

top layer and 𝑑𝑗  is the desired output of the jth 

unit. 

Further steps in the calculation of back 
propagation are explained as follows; 
 
Calculate the error changes, as the activity of an 
output unit is changed. The difference between 
the actual and the desired activity is the error 
derivative (EA) and is expressed as follows; 

          

𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
= 𝑦𝑖 − 𝑑𝑗                  (27)     

 
Following equations explains how fast the error 
changes weight on the connection into output 
unit is changed.                            
 

  𝐸𝑗
𝐼 =

𝜕𝐸

𝜕𝑥𝑖
=

𝜕𝐸

𝜕𝑦𝑖
×

𝜕𝐸

𝜕𝑥𝑖
= 𝐸𝐴𝑗𝑦𝑖(1 − 𝑦𝑗)        (28) 

 
The quantity (EW) is the answer from, equation 
(29) multiplied by the activity level of the unit 
from which the connection obtained. 
 

𝐸𝑊𝑖𝑗 =
𝜕𝐸

𝜕𝑊𝑖𝑗
=

𝜕𝐸

𝜕𝑋𝑖
×

𝜕𝑋𝑖

𝜕𝑊𝑖𝑗
= 𝐸𝑗

𝐼𝑦𝑖                (29)  

         
 In this case, if back propagation is applied to 
multilayer networks, then the activity of a unit in 
the previous layer changes, it affects the 
activities of all the output units to which it is 
connected and we can calculate how quickly the 
error changes as the activity of a unit in the 
previous layer is changed. Add each of these 
individual effects on output units to determine the 
overall influence on the error. For this, equation 
(30) is multiplied by the weight on the connection 
to that output unit. 
 

𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
∑

𝜕𝐸

𝜕𝑥𝑖
 ×

𝜕𝑥𝑖

𝜕𝑦𝑖
= ∑ 𝐸𝑗

𝐼
𝑗𝑗 𝑊𝑖𝑗       (30) 

 
By using these equations (3.28) and (3.31), can 
convert the EAs of one layer of units into EAs for 
the previous layer. This procedure shall be 
repeated to get the EAs based on the required 
previous layers. Once the EA of a unit is 
obtained, then by using (29) and (30) equations 
can compute the EWs on its incoming 
connections. 
 

2.10 Support Vector Regression (SVR) 
 
Support Vector Regression (SVR), the 
supervised learning algorithm is used to predict 
discrete values. SVR's main aim is to locate the 
line of best fit. The best-fit line in SVR is the 
hyperplane with the maximum number of points. 
The SVR, unlike other regression models, aims 
to fit the best line inside a threshold value, rather 
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than minimizing the error between the real and 
projected value. The distance between the 
hyperplane and the boundary line is the threshold 
value. The goal of Support vector regression is to 
develop a function that approximates mapping 
from an input domain to real numbers by using 
training sample data. The key goal here is to 
choose a decision boundary that is a distance 
from the original hyperplane and contains data 
points closest to the hyperplane or support 
vectors. 
 

Fitting of Support Vector regression ƒ(X) = 𝛽0 + 

𝛽1X1 + ⋯ + 𝛽𝑝X𝑝 can be expressed as 
 

Minimimize{Ʃ𝑖=1
𝑛 max[0,1-yif(xi)]+λƩ𝑗=1

𝑝
𝛽𝑗

2  (31)         

 

The principal idea involved in SVR is to transform 
the original input space into high-dimensional 
variable space and then build the regression or 
time series model in a transformed high-
dimensional feature space. A vector of data set 

says 𝑍 = {𝑥𝑖yi}𝑖=1
𝑁 , where 𝑥i ∈ 𝑅𝑛 is the input 

vector, 𝑦i is the scalar output, and N is the size 
of the data set. The general equation SVR can 
be written as follows: 
 

ƒ(𝑥) = W𝑇∅(𝑥) + 𝑏                                 (32) 
 

where, W is the weight vector, b is the bias term, 
and superscript T denotes the transpose. 
 

The coefficients W and b are estimated from data 
by minimizing the following regularized risk 
function: 
 

R(𝜃) = 1/2||w||2 +C [1/𝑁 Ʃ𝑖=1
𝑁 𝐿𝜀(yi, f  (xi)) ]     (33) 

 

This regularized risk function minimizes both the 
empirical error and regularized    term 
simultaneously, which helps in avoiding both 
under and overfitting of the model. The first term 
1/2|| w ||2 is called the ‘regularized term’,         
which measures the flatness of the function. 
Minimizing 1/2|| w ||2 will make a function as flat 
as possible. 
 

The second term 1/𝑁 Ʃ𝑖=1
𝑁 𝐿𝜀(yi, f  (xi)) is called 

the ‘empirical error’, which was estimated by 
Vapnik ε-insensitive loss function as follows: 
 

𝐿𝜀(𝑦𝑖 , 𝑓(𝑥𝑖)) = 𝑓(𝑥) =

{
|𝑦𝑖, 𝑓(𝑥𝑖) − 𝜀|;  |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ 𝜀,

0                              |𝑦𝑖 − 𝑓(𝑥𝑖)| < 𝜀,
 (34) 

 

where,𝑦I is actual value and ƒ(𝑥i) is an 
estimated value. The most commonly used 
kernel function is the radial basis function (RBF) 

which is given as follows: 
 

 k(𝑥i, 𝑥j) = exp{−𝛾||𝑥 − 𝑥i||2                      (35) 
 

The performance of the RBF kernel function 
requires optimization of two hyper- parameters: 
regularization parameter C, which balances the 
complexity and approximation accuracy of the 
model, and the Kernel bandwidth parameter, 
which represents the variance of the RBF kernel 
function γ.  
 

2.11 Hyper parameters in SVR 
 

Hyperplane: Hyperplanes are decision 
boundaries for predicting the continuous output. 
Support Vectors are the data points on either 
side of the hyperplane that are closest to the 
hyperplane. These are used to draw the required 
line that shows   the algorithm's predicted outcome. 
 

Kernel: A kernel is a collection of mathematical 
functions that take data and change it into the 
desired form. These are most commonly used to 
find a hyperplane in higher-dimensional space. 
Linear, Non-Linear, Polynomial, Radial Basis 
Function (RBF), and Sigmoid are the most 
commonly used kernels. RBF is the kernel that is 
used by default. Depending on the dataset, each 
of these kernels is used. 
 

Boundary Lines: These are the two lines that are 
drawn at a distance of s (epsilon) from the 
hyperplane. It's used to separate the data points 
by a margin shown in the Fig. 4. 
 

2.12 Random Forest 
 

Random forest (RF) is a flexible, easy-to-use 
machine learning method that, in most cases, 
delivers good results even without hyper-
parameter tuning. Because of its simplicity and 
diversity, it is also one of the most often used 
algorithms. Random forest is a supervised 
machine learning algorithm. It builds a "forest" 
out of an ensemble of decision trees, which are 
generally trained using the "bagging" process. A 
Random Forest is made up of several trees that 
are built in a specific "random" manner. Each tree 
is made up of a distinct sample of rows, and each 
node is split up into a different set of features. 
Each tree has its prediction. After then, the 
average of these predictions is used to create a 
single result. The bagging method's general 
concept is that combining several learning 
models improves the outcome. The schematic 
representation of RF model was depicted in          
Fig. 5. 
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Fig. 4. The algorithm of SVR 
Source: https://doi.org/10.1371/journal.pone.0270553.g003 

 

 
 

Fig. 5. The Schematic representation of RF 
Source: https://doi.org/10.1371/journal.pone.0270553.g003 

 
Procedure: 
 

•  Randomly select k data points from the 
training dataset. 

•  Build a decision tree associated with these 
k points. 

• Choose the number N of trees, you want to 
build and repeat the above steps. 

•  Make each of your N-tree trees forecast 
the value of y for a new data point, and 

then assign the new data point to the 
average of all of the predicted y values. 
Form of the regression trees model 

 

  f(x) = Ʃ𝑚=1
𝑀 𝐶𝑚. 1(𝑥𝜖𝑅𝑚)                             (36) 

 

3. RESULTS AND DISCUSSIONS 
 
Secondary data on monthly price series of 
redgram in Andhra Pradesh were collected from 
Agricultural Market Intelligence Centre (AMIC) 

https://doi.org/10.1371/journal.pone.0270553.g003
https://doi.org/10.1371/journal.pone.0270553.g003
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Lam, Guntur from January 1991 to December 
2023.  There are 396 observations, first 384 
observations were used for training data set, used 
for development of model and last 12 
observations were used for validation (testing 
data set). The actual prices scenario of redgram 
in Andhra Pradesh was plotted and depicted in 
Fig. 6. 
 

3.1 Descriptive Statistics 
 
Descriptive Statistics were conducted to examine 
the behaviour of redgram monthly prices of 
Andhra Pradesh. The findings were depicted in 
Table 1 provided valuable insights in to the 
characteristics of the data. It was observed that 
the prices of redgram during the study period had 
varied from Rs. 606/q to Rs. 9618.18/q with an 
average of Rs. 3120.17/q. Standard Deviation 
was recorded as 1977.93, which indicates that 
the prices were dispersed highly over the 
months. It was also revealed that the data was 
positively skewed and platykurtic in nature. 
Further lists the summary statistical measures 
which were self-explanatory. The price series 
were also verified for the presence of outliers by 
Grubb’s test. It was confirmed that there were no 
outliers detected from the Grubb’s test during the 
study period. 
 
 

3.2 BDS (Brock - Dechert- Scheinkman) 
test for non-linearity 

 
To test the linearity characteristics of the price 
series BDS test was conducted and results of the 
test was presented in Table 3. Here, the 

embedding dimensions were set to 2 and 3. The 
probability value for both dimensions was 0.00 
(p<0.05) which indicates that the data under 
consideration was nonlinear in nature. 
 

Table 2. Summary statistics of Redgram 
prices of Andhra Pradesh 

 

Statistic Redgram 

No of observations 396 
Mean 3120.19 
Median 2258.93 
Standard Deviation 1977.93 
Minimum 606.00 
Maximum 9618.18 
Skewness 1.00 
Kurtosis 0.34 
Outliers detected (Grubbs test)  

 

No 

 

3.3 Autocorrelation (ACF) and Partial 
Autocorrelation (PACF) plots for 
Redgram prices of Andhra Pradesh 

 

The Autocorrelation (ACF) and Partial 
Autocorrelation Function (PACF) plots of 
redgram price series were depicted in the below 
Fig. 3. The figure shown that the prices were 
autocorrelated, which was supported by Box-
Jung test statistic as the probability value was 
less than 0.05. It indicates that data under 
consideration     was autocorrelated in nature. Once 
the price series were autocorrelated, the ARIMA 
model was built for the series. Further, the 
redgram prices contains seasonal component 
which was confirmed by observing ACF and 
PACF plots in Fig. 7. So, SARIMA   model was 
built for the price series. 

 

 
 

Fig.6. Redgram Actual Prices scenario in Andhra Pradesh during 1991-2023 
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Table 3. BDS test for non-linearity in Redgram prices of Andhra Pradesh 
 

 
Sample 

 
Dimension 

Redgram 

Statistics Probability  

eps (1) m=2 79.16 p<0.0001 
m=3 124.83 p<0.0001 

eps (2) m=2 75.36 p<0.0001 
m=3 93.15 p<0.0001 

eps (3) m=2 45.31 p<0.0001 
m=3 47.34 p<0.0001 

eps (4) m=2 36.18 p<0.0001 
m=3 35.06 p<0.0001 

 

 
 

Fig. 7. ACF and PACF plots for Redgram prices of Andhra Pradesh 
 

3.4 Fitting of SARIMA model  
 
To develop SARIMA mode, first step was testing 
the stationarity of the data set. Augmented 
Dickey-Fuller test (ADF) was used to check the 
stationarity of the data and the results were 
presented in Table 4.  The redgram price series 
shown the probability value 0.16 (p>0.05), 
confirmed that the data under consideration was 
non- stationary and became stationary at first 
difference as probability value was 0.01 (p<0.05). 
Before model estimation to ensure that the data 
for model consideration was autocorrelated by 
applying Box- Pierce non-correlation test and it 
was found significant as the probability value was 
0.00 (<0.05) that the data was autocorrelated in 
nature. All possible SARIMA models were 
developed and out of the developed models, best 
performed SARIMA models were presented in 
Table 5. Among the best performed models, the 
final SARIMA model order i.e., SARIMA 

(2,1,2)(2,0,2)12 model  was selected based on 
least RMSE, MAE, MAPE and AIC values. The 
results of selected SARIMA (2,1,2)(2,0,2)12 
model parameter specification viz., AR, MA, SAR 
and SMA were presented in Table 6. After 
determining the SARIMA model order, the model 
parameters were estimated using maximum 
likelihood method. After fitting of the model, the 
diagnostic checking of the residuals by Box- 
Pierce non-correlation test and it was showed 
that the residuals were non-autocorrelated in 
nature as probability value was 0.83 (p>0.05). 
The residuals plot of the best performed SARIMA 
model was depicted in Fig. 8. The modelling and 
forecasting performance of the training and 
testing data set were given in Table 13 and Table 
14. The research findings of Sanjeev [5], Biswal 
and Sahoo [6], Sabu and Kumar (2020), Mithiya 
et al. [1] and Venkataviswateja [7] were also 
confirmed that SARIMA models were used for 
forecasting of agricultural commodity prices. 

 
Table 4. ADF test for stationarity of Redgram prices of Andhra Pradesh 

 

 
Redgram  

Data type ADF Statistic P-value 
 

Decision 

ADF at level -2.99 0.16 
 

Non-Stationary 
ADF at 1st Difference  -6.93 0.01 

 
Stationary 
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Table 5. SARIMA models and Error values for Redgram prices of Andhra Pradesh 
 

SARIMA model RMSE MAE MAPE AIC 

SARIMA(1,1,2)(1,0,1)12 339.43 194.97 6.75 5563.76 

SARIMA(1,1,2)(1,0,2)12 343.28 192.06 6.65 5574.32 

SARIMA(1,1,2)(1,0,3)12 339.45 194.98 6.95 5570.25 

SARIMA(2,1,2)(1,0,2)12 339.78 195.02 6.91 5569.98 

SARIMA(2,1,2)(2,0,2)12 339.36 194.68 6.90 5569.65 

SARIMA(2,1,2)(3,0,1)12 339.93 195.63 6.85 5575.26 

SARIMA(2,1,2)(3,0,2)12 339.98 194.92 6.98 5574.96 

SARIMA(2,1,2)(2,0,3)12 339.85 195.85 6.89 5571.52 

SARIMA(3,1,2)(1,0,3)12 340.23 195.28 6.54 5574.26 

SARIMA(3,1,2)(1,0,2)12 339.63 194.78 6.94 5576.36 

SARIMA(3,1,3)(2,0,3)12 339.74 194.91 6.92 5570.78 

SARIMA(3,1,3)(2,1,3)12 339.54 194.85 6.91 5569.89 

 
Table 6. Parameter estimation of SARIMA model for Redgram prices of Andhra Pradesh 

 

Model Parameters Estimation S.E. Z value Probability Model fitting 

 

 

SARIMA 
(2,1,2)(2,0,2)12 

AR1 -0.44 0.11 -4.21 p<0.0001 Log 
likelih
ood 

 

 

-2775.82 

AR2 -0.6 0.13 -4.53 p<0.0001 

MA1 0.49 0.15 3.33 p<0.0001 

MA2 0.69 0.12 5.79 p<0.0001 

SAR1 -0.44 0.11 -4.21 p<0.0001  

 

AIC 

 

 

5569.65 

SAR2 -0.6 0.13 -4.53 p<0.0001 

SMA1 0.49 0.15 3.33 p<0.0001 

SMA2 0.69 0.12 5.79 p<0.0001 

Box-Pierce test for non-correlations ~ Original: χ² =375.27, p<0.0001 

Residual: χ² = 0.047, p=  0.83 (>0.05) 

 

 
 

Fig. 8. Residual plot of SARIMA model for Redgram prices of Andhra Pradesh 
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3.5 Fitting of GARCH model  
 
To develop GARCH model the first step was 
selecting suitable SARIMA model. The suitable 
SARIMA model was selected based on lowest 
AIC value. Significant lags were identified from 
ACF and PACF values. ARCH-LM test was used 
test the heteroscedasticity of the identified 
significant lags and found that the data was 
heteroscedasticity nature as probability value 
was less than 0.05. The results of the ARCH-LM 
test for redgram price series were depicted in 
Table 7. The residuals obtained from the fitted 
SARIMA model was used to fit the GARCH 
model. After determining the GARCH model 
order, the model parameters were estimated 
using maximum likelihood estimation method. 
The ARMA(1,1),GARCH(1,1) model order was 

identified as appropriate model for the data under 
consideration. The results of parameter 
specification of the redgram price series were 
outlined in Table 8. After fitting of the model, the 
diagnostic checking of the residuals by Box- 
Pierce non-correlation test and it was  revealed 
that the residuals were non-autocorrelated in 
nature as probability value was 0.07 (p>0.05). 
The residuals plot of the best performed GARCH 
model was depicted in Fig. 9. The modelling and 
forecasting performance of the training and 
testing data set were given in Table 13 and Table 
14 respectively. Similar results were found by 
Agbo [8], Bisht and Kumar [9], Rojalin et al. [10] 
and Chi [11] in their studies GARCH (1,1) model 
was better performed in forecasting of 
agricultural commodity prices compared with 
ARIMA model. 

 

Table 7.  ARCH-LM Heteroscedasticity test for residuals of Redgram prices of Andhra Pradesh 
 

Order LM p-value 

4 487.00 p<0.0001 
8 226.90 p<0.0001 
12 147.00 p<0.0001 
16 58.90 p<0.0001 
20 38.10 p<0.0001 
24 30.90 0.12 

 

Table 8. Parameter estimation of GARCH for Redgram prices of Andhra Pradesh 
 

Model Parameters Estimation S.E. t- value Probabil
ity 

Model fitting 

 
 
 
 
 
ARMA(1,1) 
+GARCH(1,1) 

µ 69.47 12.0
0 

5.79 p<0.0001  
 
Log-
likeliho
od 

 
 
-2365.09 AR1 0.98 0.01 173.57 p<0.0001 

MA1 -0.06 0.01 -4.89 p<0.0001 

ω 3.55 0.66 5.41 p<0.0001  
     AIC 

 
16.53 α 0.06 0.01 6.53 p<0.0001 

β  0.92 0.01 92.81 p<0.0001 

Box-Pierce test for non-correlations ~ χ²= 3.55, p=0.07(>0.05) 
 

Table 9. ANN models and their Error values for Redgram prices of Andhra Pradesh 
 

Structure RMSE MAE MAPE 

NNAR(3-1-1) 337.92 188.96 6.66 
NNAR(3-2-1) 312.87 18393 6.56 
NNAR(3-3-1) 291.88 174.49 6.35 
NNAR(3-4-1) 286.57 172.96 6.35 
NNAR(3-5-1) 280.86 170.64 6.34 
NNAR(3-6-1) 271.96 165.36 6.11 
NNAR(3-7-1) 264.98 163.42 6.14 
NNAR(3-9-1) 264.61 161.12 6.02 
NNAR(3-10-1) 260.7 160.64 6.02 
NNAR(3-11-1) 257.9 158.72 5.97 
NNAR(3-12-1) 254.35 158.22 5.95 
NNAR(3-13-1) 255.25 158.34 5.95 
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Fig. 9. Residual plot of GARCH (1,1) model for Redgram prices of Andhra Pradesh 
 

Table 10. Parameter estimation of ANN model for Redgram prices of Andhra Pradesh 
 

Parameter Specification 

Input lag 3 
Output variable/dependent 1 
Hidden nodes 12 
Hidden layers 1 
Model 3:12S:1L 
Total number of parameters 61 
Network type Feed Forward 
Activation function (I:H) Sigmoidal 
Activation function(H:O) Identity 

Box-Pierce test for non-correlations ~  𝜒2 =0.64 , p = 0.42 

 

3.6 Fitting of ANNs model 
  
The feed forward network architecture utilized 
the sigmoidal activation function from input to 
hidden layers and a linear identity function from 
hidden layers to the output layer was used to fit 
redgram monthly prices data set. Prior to model 
estimation, diagnostic checking of the residuals 
through the Box-Pierce non-correlation test, it 
was revealed that the autocorrelations in the 
residuals as the probability value was 0.00 
(p<0.05). Various network topologies were 
trained by increasing the number of                       
hidden nodes from 1 to 25 with sigmoid function 
as the activation function in the hidden layer. The 
tested models were detailed in Table 9. 
Furthermore, the parameter estimation of the 
best performed ANN model was depicted in 
Table 10. 
 
The model selected was NNAR (3,12), employed 
three tapped time delays and 12 hidden nodes 
(3:12S:1L). This configuration comprised an 

average of three networks, each being a 3-12-1 
network with a total of 61 weights and the 
selection of the model was based on the lowest 
RMSE, MAE and MAPE values. After the model 
development, diagnostic checking of the 
residuals by employing Box-Pierce non-
correlation test indicated that the residuals 
exhibited non-correlated behaviour with the 
probability value of 0.42 (p >0.05). The residuals 
plot of the best performed model was depicted in 
Fig. 10. Table 13 and Table 14 provided an 
overview of the modeling and forecasting 
performance for both the training and testing 
datasets. The similar results were found by Sai 
[12] in his research NNAR (3-12-1) model 
performed better for forecasting the productivity 
of redgram in Karnataka State. Further, several 
earlier studies conducted by Suthar et al. [13], 
Paul and Garai [14] and Srikala (2020) were also 
consistently affirmed that the superior 
performance of ANN model for forecasting of 
agricultural commodity prices compared to 
univariate time series models. 
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Fig 10. Residual plot of ANN model for Redgram prices of Andhra Pradesh 
 

Table 11. Model estimation of SVR for Redgram prices of Andhra Pradesh 
 

Parameters Specification 

Kernel function RBF 
No. of Support Vectors 381 
Cost 20 
Gamma 1.5 
Epsilon 0.001 
Box-Pierce test for non-correlations~  χ²= 0.24, p=0.62(>0.05) 

 

 
 

Fig. 11. Residual plot of SVR model for Redgram prices of Andhra Pradesh 
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3.7 Fitting of SVR Model  
 
The nonlinear Support Vector Regression (SVR) 
model stands out as a potent machine learning 
algorithm employed for modelling and forecasting 
of redgram price series. Radial Bias kernel 
Function (RBF) was used in this study, as it is 
suitable for modelling non-linear problems and 
can handle complex data distributions. Before 
model estimation, it was imperative to verify the 
autocorrelation of the data using the Box-Pierce 
non-correlation test. The test yielded significant 
result that the probability value of the actual price 
series was 0.00 (p<0.05), indicated the data was 
indeed autocorrelated in nature. The parameter 
specification of the SVR model was depicted in 
Table 11. Furthermore, the residual test of the 
fitted model yielded a non-significant result as 
probability value was 0.62 (p>0.05). The 
residuals plot of the SVR model was depicted in 
Fig. 11. Table 13 and Table 14 showed the SVR 
model performance metrics of both the training 
and testing datasets. Similar performance was 
observed by Minruhi [15], SVRX model 
performed better than ANNX and INGARCH 
models in her research for forecasting of leaf 
minor population in Groundnut crop. Further, the 
results were also confirmed by the studies of 
Saha et al. [16] for forecasting cotton                
production in India, SVR model performed better 
than ARIMA model and Rathod et al. [17], SVR 
model outperformed ARIMA and TDNN      
models for forecasting of oil seed production in 
India. 
 

3.8 Fitting of Random Forest 
 
Random Forest (RF) model was used to fit 
redgram price series, before model estimation, to 
ensure that the data under consideration was 
autocorrelated by applying Box-Pierce non-
correlation test, it was found to be significant as 
the probability value of the actual price series 
was 0.00 (p<0.05) and concluded that the data 
was autocorrelated in nature [18-21. For the 
development of random forest regression model, 
random forest algorithm was used. The 
parameter specification of the best performed RF 
model was depicted in Table 12. The loss of 
error per tree was plotted in Fig. 12, which 
means the model stored the loss after each tree. 
From the Fig. 12, it was shown that loss was 
decreasing at each tree. After model 
development, diagnostic checking of the 
residuals by Box- Pierce non-correlation test, it 
was showed that residuals were non-correlated 
in nature as probability value was 0.29 (p>0.05). 
The modelling and forecasting performance of 
the training and testing data sets were given in 
Table 13 and Table 14, respectively. Notably, in 
this study, the RF model outperformed SVR, 
ANN, GARCH, and SARIMA models. These 
findings were in congruent with Paul et al. [14] 
who revealed that the superior forecasting 
performance RF and over ARIMA, SVR and 
GBM models for forecasting of wholesale price of 
Brinjal in four markets viz., Athagarh, Betnoti, 
Boudh and Khunthabandha markets of Odisha, 
India [22,23]. 

 
 

Fig.  12. Loss of Error per tree in RF model for Redgram prices of Andhra Pradesh 
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Table 12. Model specification of RF for Redgram prices of Andhra Pradesh 
 

Parameters Specification 

No. of trees 150 
No of Variables taken at each split 3 
Depth of the tree 10 

Box- Pierce non-correlation test ~ χ2 = 0.06,  p =0.29(>0.05) 

 
Table 13. Performance metrics of Training set for Redgram prices of Andhra Pradesh 

 

Training set SARIMA GARCH ANN SVR RF 

RMSE 339.24 325.42 254.35 245.04 226.54 
MSE 115083.78 105898.18 64693.92 60044.6 51320.37 

 
Table 14. Performance metrics of Testing set for Redgram prices of Andhra Pradesh 

 

Testing 
set 

Actual SARIMA GARCH ANN SVR RF 

Jan-23 6515 6581.92 6598.36 7896.32 7415.98 6770.17 
Feb-23 6217 6529.35 6695.32 7706.32 6974.43 6782.15 
Mar-23 6919 6503.75 6897.56 7836.79 6188.02 6237.21 
Apr-23 7414 6536.68 6897.64 7953.23 8576.24 7514.43 
May-23 7567 6568.15 6986.56 7981.36 7143.19 7847.20 
Jun-23 7767 6579.63 6984.24 7985.51 7641.16 7560.30 
Jul-23 8205 6588.98 7084.23 7963.85 8117.60 7336.19 
Aug-23 8373 6604.82 7171.01 8347.69 8969.96 7343.13 
Sep-23 8795 6622.22 7225.23 8272.43 9681.97 8313.36 
Oct-23 9081 6637.64 7285.69 8674.81 9972.82 9325.84 
Nov-23 8703 6652.27 7756.98 8635.56 9894.21 9742.18 
Dec-23 8995 6667.46 7896.41 8278.18 8669.19 9421.11 

RMSE 1568.03 997.60 735.64 760.33 602.05 
MSE 2458718.08 995205.76 541166.21 578101.71 362464.20 

 
Table 15. DM test for Redgram prices series of Andhra Pradesh 

 
Data type M1, M2 M1, M3 M1, M4 M1, M5 M2,M3 

Training set -0.87 (0.37) 2.83 (p<0.004) 2.80 (p<0.005) -2.37 (p<0.05) 2.47 (p<0.05) 

Data type M2, M4 M2, M5 M3, M4 M3, M5 M4,M5 

Training set 3.68 (p<0.001) -4.69 (p<0.005) 0.0009(p<0.15) 2.65 (p<0.05) 2.02 (p<0.05) 

 

3.9 Model Performance in Terms of MSE 
and RMSE for Training and Testing 
data sets of Redgram Prices in 
Andhra Pradesh 

 

The prediction accuracy of all the models under 
consideration for both the training and testing 
data sets was measured in terms   of MSE and 
RMSE. For forecasting the redgram prices data 
of Andhra Pradesh, the models like SARIMA, 
GARCH, ANN, SVR and RF have been 
investigated [24,25]. The above-mentioned 
models have been evaluated in terms of their 
prediction capacity as measured by model errors 
under both training and testing data sets. RF 
model was performed better than other models in 

both training and testing sets of redgram prices 
data of Andhra Pradesh as it yielded lowest MSE 
and RMSE values. The artificial intelligence-
based models outperformed from univariate 
SARIMA and GARCH models. The performance 
hierarchy of the model for redgram price series in 
training dataset were RF>SVR 
>ANN>GARCH>SARIMA. 

 
The criteria for comparison MSE and RMSE 
merely showed the observed difference between 
the predicted values of the models [26]. As a 
result, the statistical significance difference 
between the models utilized in the study was 
determined using Diebold-Mariano test statistic 
(DM test). In comparison to the RF (M5) model, 



 
 
 
 

Swarnalatha et al.; J. Sci. Res. Rep., vol. 30, no. 7, pp. 252-271, 2024; Article no.JSRR.118728 
 
 

 
270 

 

the SVR (M4) ANN (M3), GARCH (M2) and 
SARIMA (M1) models were significantly different. 
It means that RF model outperformed remaining 
models significantly [27,28]. The ability of RF 
model to outperform SVR, ANN, GARCH and 
SARIMA in the training set was due to its 
superior capacity of the model and the non-linear 
nature of the time series data of redgram prices 
data under consideration. Inter combinational 
significance of training set were presented in 
Table 15.  
 

4. CONCLUSIONS 
 
The redgram monthly price series of Andhra 
Pradesh, India was analysed by 
SARIMA,GARCH, ANN, SVR and RF algorithms. 
The results revealed that RF model was 
outperformed ARIMA, GARCH, ANN and SVR 
models in both training and testing data sets. In 
both training and testing sets in the performance 
hierarchy of the models were given as follows. 
The performance hierarchy of the model for 
redgram monthly prices of training data                   
set was RF>SVR>ANN>GARCH >                           
SARIMA. The performance hierarchy of the 
testing data set was RF>ANN> 
SVR>GARCH>SARIMA.  
 
The criteria’s MSE and RMSE were used for 
comparison merely showed the observed 
difference between the predicted values of the 
models. The Diebold-Mariano test statistic (DM 
test) was used to know the statistical significance 
difference between the performance of models 
utilized in the study and the results revealed that 
the RF model outperforms univariate and 
Machine learing models like ANN and SVR. The 
ability of RF model outperforms other models in 
both training and testing sets was due to its 
superior capacity to the model and non-linear 
nature of the time series data under 
consideration. Furthermore, the diagnostic 
checking of the residuals obtained                         
by the SARIMA, GARCH, ANN and SVR                
models were also non-autocorrelated                          
and non-random in nature, which indicate                 
that models under consideration were            
adequate.  
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