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1. Introduction

T he piezoelectric phenomenon represents the coupling between the mechanical and the electrical
behavior of a class of materials, called piezoelectric materials. In the simplest of terms, when a

piezoelectric material is squeezed, an electric charge collects on its surface; conversely, when a piezoelectric
material is subjected to a voltage drop, it mechanically deforms. Piezoelectric materials present a great
importance in the development hight technological applications such as actuators, sensors, engineering control
equipments or smart materials and structures, because of the coupling effects between mechanical and electric
fields. During the last years, there is a considerable mathematical interest in frictional contact problems
involving piezoelectric materials, under the assumption that the foundation is electrically conductive (see,
[1–7]). The results in [1,5,6] concern the variational formulation of the problems and their unique week
solvability while the results in [2–4,7] concern mainly the numerical simulation of the problems.

In this work, we numerically analyse and simulate a model for the process of frictional contact between
an electro-viscoelastic body and a conductive foundation. The contact is modeled by the normal compliance
condition and the associated Coulomb’s law of dry friction. This paper continues [1,5], providing the numerical
modelling of the problem supported by numerical simulations. In [1], we established the result of existence
of solution without a smallness assumption given in [5], from now on, this will not represents a physical
obstacle to study numerically a contact problems with a deformable and conductive foundation. The analysis
and numerical approach of this system represent the main trait of novelty of the present paper. To this
end, we introduce a fully discrete approximation scheme and derive error estimates. The frictional contact
conditions are treated by using a numerical approach based on the combination of the penalized method and
the augmented Lagrangian method (see [8,9] for details). We implement this scheme in a numerical code and
present numerical simulations in the study of two-dimensional test problem.

The paper is organized as follows. In Section 2 we present a brief description of the mechanical model
and its variational formulation. A fully discrete scheme is presented in Section 3, based on the finite element
method to approximate the spatial variable and the Euler scheme to discretize the time derivatives. A
main error estimates result is proved, Theorem 2, from which the linear convergence of the algorithm is
deduced under suitable regularity conditions. The numerical algorithm used for solving the discrete problem
is described in Section 4, where some numerical simulations are also presented in order to demonstrate
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the accuracy and the performance of the method. Finally, in Section 5 we present some conclusions and
perspectives.

2. The model

We consider a body made of a piezoelectric material which occupies the domain Ω ⊂ Rd, d = 2, 3 with
a smooth boundary ∂Ω = Γ and a unit outward normal ν = (νi). The body is acted upon by body forces of
density f 0 and has volume electric charges of density q0. It is also constrained mechanically and electrically
on the boundary. To describe these constraints we consider a partition of Γ into three open disjoint parts ΓD,
ΓN and ΓC, on the one hand, and a partition of ΓD ∪ ΓN into two open parts Γa and Γb , on the other hand. We
assume that meas Γ1 > 0 and meas Γa > 0. The body is clamped on ΓD and therefore the displacement field
vanishes there. Surface tractions of density f N act on ΓN . We also assume that the electrical potential vanishes
on Γa and a surface electrical charge of density qb is prescribed on Γb . In the reference configuration, the body
is in contact over ΓC with a deformable obstacle, the so called foundation. We assume that the foundation is
electrically conductive and its potential is maintained at ϕ f . The contact is frictional and there may be electrical
charges on the contact surface.

We denote by Sd the space of second order symmetric tensors on Rd or, equivalently, the space of
symmetric matrices of order d, and “ · ” and ‖ · ‖ represent the inner product and the Euclidean norm on
Rd and Sd, respectively, that is u · v = uivi, ‖v‖ = (v · v)1/2 for u, v ∈ Rd, and σ · τ = σijτij, ‖τ‖ =

(τ · τ)1/2 for σ, τ ∈ Sd. We also use the usual notation for the normal components and the tangential parts of
vectors and tensors, respectively, by uν = u · ν, uτ = u− uνν, σν = σijνiνj, and στ = σν− σνν. Here and
everywhere in this paper i, j, k, l run from 1 to d, summation over repeated indices is implied and the index that
follows a comma represents the partial derivative with respect to the corresponding component of the spatial
variable, i.e. f,i =

∂ f
∂xi

.
The classical model for the process is as follows.

Problem P. Find a displacement field u : Ω × [0, T] → Rd, a stress field σ : Ω × [0, T] → Sd, an electric
potential field ϕ : Ω× [0, T]→ R and an electric displacement field D : Ω× [0, T]→ Rd such that

σ = Aε(u̇)+ Bε(u)− E∗E(ϕ) in Ω× (0, T), (1)

D = Eε(u)+ βE(ϕ) in Ω× (0, T), (2)

Div σ + f 0 = 0 in Ω× (0, T), (3)

div D− q0 = 0 in Ω× (0, T), (4)

u = 0 on ΓD × (0, T), (5)

σν = f N on ΓN × (0, T), (6)

ϕ = 0 on Γa × (0, T), (7)

D · ν = qb on Γb × (0, T), (8)

−σν = pν(uν − g) on ΓC × (0, T), (9)

‖στ‖ ≤ pτ(uν − g)

στ = −pτ(uν − g) u̇τ
‖u̇τ‖ if u̇τ 6= f 0

}
on ΓC × (0, T), (10)

D · ν = ψ(uν − g)φL(ϕ− ϕ f ) on ΓC × (0, T), (11)

u(0) = u0 in Ω. (12)

In (1)–(12) and below, in order to simplify the notation, we do not indicate explicitly the dependence of
various functions on the spatial variable x ∈ Ω ∪ Γ and the time variable t ∈ [0, T], where T > 0.

Equations (1) and (2) represent the electro-viscoelastic constitutive law of the material in which denotes
σ = (σij) the stress tensor, ε(u) = (εij(u)) denotes the linearized strain tensor, E(ϕ) is the electric field. We
recall that εij(u) = (ui,j + uj,i)/2 and E(ϕ) = −∇ϕ = −(ϕ,i). A B E and η are respectively, the viscosity,
elasticity, piezoelectric and permittivity tensors. E∗ is the transpose of E . Also the tensors E and E∗ satisfy the
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equality Eσ · v = σ · E∗v for all σ ∈ Sd, v ∈ Rd, and the components of the tensor E∗ are given by e∗ijk = ekij.
Equations (3) and (4) are the steady equations for the stress and electric-displacement fields, respectively, in
which ” Div” and ” div” denote the divergence operators for tensor and vector valued functions, i.e. Divσ =

(σij,j), divD = (Di,i). We use these equations since the process is assumed to be mechanically quasistatic and
electrically static. Conditions (5) and (6) are the displacement and traction boundary conditions, whereas (7)
and (8) represent the electric boundary conditions; these conditions model the fact that the displacement field
and the electrical potential vanish on ΓD and Γa, respectively, while the forces and the electric charges are
prescribed on ΓN and Γb respectively.

We turn to the boundary conditions (9)–(11) which describes the mechanical and electrical conditions on
the potential contact surface ΓC. Condition (9) represents the normal compliance contact condition in which
pν is a given function; such that pν(r) = 0 when r ≤ 0, g is the initial gap and the condition, uν − g ≥ 0
represents the penetration of body in the foundation. As an example, we may use pν(r) = cνr+, where cν is a
positive constant and r+ = max{r, 0}. Condition (10) represents the associated friction law where pτ is a given
function. According to (10) the tangential shear cannot exceed the maximum frictional resistance pτ(uν − g),
the so-called friction bound. Moreover, when sliding commences, the tangential shear reaches the friction
bound and it is opposite to the slip. When we choose pτ = µpν, we obtain the usual Coulomb law, where
µ ≥ 0 is the coefficient of friction. Conditions (9) and (10), were used in several studies as in [10].

Condition (10) is a regularized electrical contact condition on ΓC, similar to that already used in [3,5].
Here ψ represents the electrical conductivity coefficient, which vanish when its argument is negative, and φL
is a given function and, therefore, in applications φL(ϕ− ϕ f ) = ϕ− ϕ f . Thus, condition (10) shows that when
there is no contact at a point on the surface (i.e. when uν < g) then the normal component of the electric
displacement field vanishes, and when there is contact (i.e. when uν ≥ g) then there may be electrical charges
which depend to the difference between the potential of the foundation ϕ f and the body’s surface potential.
Finally, the initial displacement u0 in (12) is given.

To present the variational formulation of Problem P we need some additional notation and preliminaries.
We start by introducing the spaces

H = L2(Ω;Rd), H = { τ = (τij) : τij = τji ∈ L2(Ω) } = L2(Ω;Sd),

H1 = { u ∈ H : ε(u) ∈ H } = H1(Ω;Rd), H1 = { τ ∈ H : Divτ ∈ H },
w = {D ∈ H : divD ∈ L2(Ω) }.

The spaces H,H, H1,H1 and w, are Hilbert spaces equipped with the inner products

(u, v)H =
∫

Ω
u · v dx,

(σ, τ)H =
∫

Ω
σ · τ dx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H,

(σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H ,

(D, E)w = (D, E)H + (divD,÷E)L2(Ω).

The associated norms in H, H, H1, H1 and W are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 , ‖ · ‖H1 and ‖ · ‖w,
respectively.

For the displacement and the electric potential fields we introduce the spaces

V = { v ∈ H1(Ω;Rd) | v = 0 on ΓD }, and W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }

which are closed subspaces of H1 and H1(Ω), respectively. On V and W we consider the inner products and
the corresponding norms given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H for all u, v ∈ V,

(ϕ, ψ)W = (∇ϕ,∇ψ)H , ‖ψ‖W = ‖∇ψ‖H for all ϕ, ψ ∈W.
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Since meas (ΓD) > 0 and meas meas (Γa) > 0 are positive, it follows from the Korn and the
Friedrichs-Poincaré inequalities, respectively, that (V, ‖ · ‖V) and (W, ‖ · ‖W) are Hilbert spaces.

We now list the assumptions on the problem’s data. We assume that the viscosity tensor A : Ω× Sd → Sd

and the elasticity tensor B : Ω× Sd → Sd satisfy
(a) The mapping x 7→ A(x, ξ) is Lebesgue measurable on Ω f or any ξ ∈ Sd.

(b) There exists MA > 0such that‖A(x, ξ1)− A(x, ξ2)‖ ≤ MA‖ξ1 − ξ2‖∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that(A(x, ξ1)− A(x, ξ2)) · (ξ1− ξ2) ≥ mA‖ξ1− ξ2‖2∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, 0) belongs to H.
(13)

(a) There exists MB > 0 such that‖B(x, ξ1)− B(x, ξ2)‖ ≤ MB‖ξ1 − ξ2‖∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, {∼) is Lebesgue measurable on Ω, f or any ξ ∈ Sd.

(c) The mapping x 7→ B(x, 0) belongs to H.

(14)

The piezoelectric tensor E and the electric permittivity tensor β satisfy{
(a) E = (eijk) : Ω× Sd → Rd.

(b) eijk = eikj ∈ L∞(Ω).
(15)


(a) β = (βij) : Ω×Rd → Rd.

(b) βij = β ji ∈ L∞(Ω).

(c) There exists mβ > 0 such that βij(x)EiEj ≥ mβ‖E‖2 ∀ E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(16)

The normal compliance functions pr, (r = ν, τ) satisfy

(a) pr : ΓC ×R 7→ R+.

(b) ∃ Lr > 0 such that |pr(x, u1)− pr(x, u2)| ≤ Lr|u1 − u2|∀ u1, u2 ∈ R, a.e. x ∈ ΓC.

(c) The mapping x 7→ pr(x, u) is measurable on ΓC, for all u ∈ R.

(d) x 7→ pr(x, u) = 0, for all u ≤ 0.

(17)

The surface electrical conductivity function ψ satisfies:

(a) ψ : ΓC ×R 7→ R+.

(b) ∃ Lψ > 0 such that |ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2|∀ u1, u2 ∈ R, a.e. x ∈ ΓC.

(c) ∃Mψ > 0 such that |ψ(x, u)| ≤ Mψ ∀ u, ∈ R, a.e. x ∈ ΓC.

(d) The mapping x 7→ ψ(x, u) is measurable on ΓC, for all u ∈ R.

(e) x 7→ ψ(x, u) = 0, for all u ≤ 0.

(18)

The following regularity is assumed on the density of volume forces, tractions, volume electric charge
and surface electric charges:

f 0 ∈W1,1(0, T; H), f N ∈W1,1(0, T; L2(ΓN ,Rd)),

q0 ∈W1,1(0, T; L2(Ω)), qb ∈W1,1(0, T; L2(Γb)).
(19)

Finally, we assume that the gap function, the given potential of the foundation and the initial
displacements satisfy

g ∈ L2(ΓC), g ≥ 0 a.e. on ΓC, ϕ f ∈ L2(ΓC), u0 ∈ V. (20)

Next, we can define the element f : [0, T] −→ V given by

( f (t), w)V =
∫

Ω
f 0(t) ·w dx +

∫
ΓN

f N(t) ·w da,
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and then f ∈W1,1(0, T; V).
Using the Riesz’ Theorem, we define the linear mapping q : [0, T] −→W as follows:

(q(t), ψ)W = −
∫

Ω
q0(t)ψ dx−

∫
Γb

qb(t)ψ da ∀ψ ∈W.

We notice that the regularity assumptions imply that q ∈W1,1(0, T; W).
Let j : V ×V −→ R and K : V ×W ×W −→ R be the mapping defined by

j(v, w) =
∫

ΓC

[pν(vν − g)wν + pτ(vτ − g)‖wτ‖] da,

K(u, ϕ, ψ) =
∫

ΓC

ψ(uν − g)φL(ϕ− ϕ f )ψ da,

for all w ∈ V, and ψ ∈W.
Plugging (1) into (3) and (2) into (4), keeping in mind that E(ϕ) = −∇ϕ and using the boundary

conditions (5)-(11) and the initial condition (12), applying a Green’s formula we derive the following
variational formulation of Problem P in terms of the displacement and the electric potential fields.
Problem PV . Find a displacement field u : [0, T] → V and an electric potential field ϕ : [0, T] → W such that
u(0) = u0 and for a.e. t ∈ (0, T),

(Aε(u̇(t)), ε(w)− ε(u̇(t)))H + (Bε(u(t)), ε(w)− ε(u̇(t)))H

+(E∗∇ϕ(t), ε(w)− ε(u̇(t)))H + j(u(t), w)− j(u(t), u̇(t)) ≥ ( f (t), w− u̇(t))V ,

(β∇ϕ(t),∇ψ)H − (Eε(u(t)),∇ψ)H + K(u(t), ϕ(t), ψ) = (q(t), ψ)W ,

for all w ∈ V and ψ ∈W.
The following result is proved in [1].

Theorem 1. Assume that (13)–(20) hold. Then there exists a unique solution (u, ϕ) to Problem PV with the regularity
u ∈ W2,1(0, T; V), ϕ ∈W1,1(0, T; W).

3. Numerical analysis

We now introduce a fully discrete scheme to approximate the solution of Problem PV . First, we consider
two finite dimensional spaces Vh ⊂ V and Wh ⊂ W approximating the spaces V and W, respectively. h > 0
denotes the spatial discretization parameter. Secondly, the time derivatives are discretized by using a uniform
partition of [0, T], denoted by 0 = t0 < t1 < . . . < tN = T. Let k be the time step size, k = T/N, and for a
continuous function f (t) let fn = f (tn). Finally, for a sequence {wn}N

n=0 we denote by δwn = (wn − wn−1)/k
the divided differences.

The fully discrete approximation of Problem PV , based on the forward Euler scheme, is the following.
Problem Phk

V . Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ Vh and a discrete electric potential field ϕhk =

{ϕhk
n }N

n=0 ⊂Wh such that uhk
0 = uh

0 and for all n = 1, . . . , N,

(Aε(δuhk
n ), ε(wh)− ε(δuhk

n ))H + (Bε(uhk
n ), ε(wh)− ε(δuhk

n ))H

+(E∗∇ϕhk
n , ε(wh)− ε(δuhk

n ))H + j(uhk
n , wh)− j(uhk

n , δuhk
n ) ≥ ( f n, wh − δuhk

n )V ∀wh ∈ Vh,

(η∇ϕhk
n ,∇ψh)H − (Eε(uhk

n ),∇ψh)H + K(uhk
n , ϕhk

n , ψh) = (qn, ψh)W ∀ψh ∈Wh.

Here uh
0 is appropriate approximation of the initial condition u0 and ϕhk

0 is the unique solution of the
second equation in Problem Phk

V for n = 0.
Using the assumptions of Theorem 1, it can shown that Problem Phk

V has a unique solution (uhk, ϕhk) ∈
Vh ×Wh. Now, we proceed to derive some error estimates for the discrete solution. In the sequel, c denotes
positive constants which are independent of the discretization parameters h and k.



Open J. Math. Anal. 2020, 4(2), 15-25 20

Theorem 2. Assume the conditions of Theorem 1 hold. One has the following error estimates:

max
0≤n≤N

(
‖un − uhk

n ‖V + ‖u̇n − δuhk
n ‖V + ‖ϕn − ϕhk

n ‖W

)
(21)

≤ c max
0≤n≤N

{
‖u̇n −wh

n‖V + ‖ϕn − ψh
n‖W + |Rn(u̇n, wh

n)|1/2
}
+ c‖u0 − uh

0‖V + ck‖u̇‖W1,1(0,T;V),

where
Rn(u̇n, wh

n) = (σn, varepsilon(wh
n − u̇n))H + j(un, wh

n)− j(un, u̇n)− ( f n, wh
n − u̇n)V .

Proof. We follow the technics developed in (see [10] and [7]). The reader is invited to consult the mentioned
thesis for details.

We notice that the above error estimates are the basis for the analysis of the convergence rate of the
algorithm. Thus, let Ω be a polygonal domain and let Th a regular finite element partition of Ω. Let Vh ⊂ V and
Wh ⊂W be the finite element space consisting of continuous and piecewise affine functions, corresponding to
the partition Th. Assume that the discrete initial condition uh

0 is obtained by uh
0 = Πhu0, where Πh = (πh)d

i=1 :
[C(Ω)]d → Vh, and πh is the standard finite element interpolation operator (see, e.g., [11]).

We assume the following additional data and solution regularities:

σν ∈ C([0, T]; L2(ΓC)), στ ∈ C([0, T]; L2(ΓC)
d). (22)

u̇ ∈ C([0, T]; H2(Ω)d), u̇τ ∈ C([0, T]; H2(ΓC)
d), u0 ∈ H2(Ω)d. (23)

ϕ ∈ C([0, T]; H2(Ω)). (24)

By the relations (3) and (6) and using a Green’s formula, we have

Rn(u̇n, wh
n) =

∫
ΓC

(
στn · (wh

τn − u̇τn) + (pτ(uνn − gh)(|wh
τn | − |u̇τn |)

)
da,

which implies that

|Rn(u̇n, wh
n)| ≤ c‖wh

τn − u̇τn‖L2(ΓC)d .

Thus, from (21), we obtain

max
0≤n≤N

(
‖un − uhk

n ‖V + ‖u̇n − δuhk
n ‖V + ‖ϕn − ϕhk

n ‖W

)
≤ c max

0≤n≤N

{
‖u̇n −wh

n‖V + ‖wh
τn − u̇τn‖1/2

L2(ΓC)d

}
+ c max

0≤n≤N

{
‖ϕn − ψh

n‖W

}
+ c‖u0 − uh

0‖V + ck‖u̇‖W1,1(0,T;V).

Under the solution regularity assumptions (22)-(24), we can apply standard finite element interpolation
error estimates (see e.g., [11]) to see that each of the terms

‖u0 − uh
0‖V , max

0≤n≤N

{
‖u̇n −wh

n‖V + ‖wh
τn − u̇τn‖1/2

L2(ΓC)d

}
and max

0≤n≤N

{
‖ϕn − ψh

n‖W

}
is bounded by h multiplied by a constant depending on certain norm of the solution. Hence, we get the
following error bound for the fully discrete numerical solution of Problem PV :

max
0≤n≤N

(
‖un − uhk

n ‖V + ‖u̇n − δuhk
n ‖V + ‖ϕn − ϕhk

n ‖W

)
≤ c(h + k). (25)

4. Numerical algorithm

In this section, we present first the numerical scheme which we have implemented. Then, we describe
two-dimensional example of the numerical results, that we obtained by employing it, to show the performance
of the method.
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4.1. Numerical scheme

We now turn to a hybrid variational formulation of the model which is more appropriate for the numerical
modelling. To this end, we consider the space of traces X = {wτ |ΓC

: w ∈ V}, together with his dual X
′
, and

let Yh ⊂ X
′ ∩ L2(ΓC) be a discrete multiplier space. Then, using the arguments in [12], it follows that Problem

Phk
V is equivalent with the following hybrid formulation, in which the multiplier λhk represents the tangential

stress on the contact boundary.
Problem P̃hk

V . Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ Vh, a discrete multiplier λhk = {λhk
n }N

n=0 ⊂ Yh

and a discrete electric potential field ϕhk = {ϕhk
n }N

n=0 ⊂Wh such that, for all n = 1, . . . , N,

(Aε(δuhk
n ), ε(wh))H + (Bε(uhk

n ), ε(wh))H + (E∗∇ϕhk
n , ε(wh))H + J(uhk

n , λhk
n , wh) = ( f n, wh)V ∀wh ∈ Vh,

(η∇ϕhk
n ,∇ψh)H − (Eε(uhk

n ),∇ψh)H + K(uhk
n , ϕhk

n , ψh) = (qn, ψh)W (26)

∀ψh ∈Wh,−λhk
n ∈ ∂I∗C[pτ(uhk

νn−gh)]
(δuhk

τn ) in Yh.

The inclusion (26) represents the subdifferential form of Coulomb’s law of dry friction (10). Here
C[pτ(uhk

νn − gh)] denotes the ball radius pτ(uhk
νn − gh) where gh represents an appropriate approximation of

the gap and ∂I∗S denotes the subdifferential of the conjugate of the indicator function of the set S. In Problem
P̃hk

V the contact functional term J(uhk
n , λhk

n , wh) is defined by

J(uhk
n , λhk

n , wh) =
∫

ΓC

pν(uhk
νn − gh)wh

ν da +
∫

ΓC

λhk
n ·wτ

h da.

The numerical treatment of the frictional contact of Problem P̃hk
V , is based on the use of a penalized

method for the contact part and the augmented Lagrangian method for the non-smooth friction. To this end we
consider additional fictitious nodes for the Lagrange multiplier in the initial mesh. The construction of these
nodes depends on the contact element used for the geometrical discretization of the interface ΓC. In the case of
the numerical example presented in Section 4.2, the discretization is based on "node-to-rigid" contact element,
which is composed by one node of ΓC and one Lagrange multiplier node. This contact interface discretization
is characterized by a finite dimensional subspace Hh

ΓC
⊂ Yh. Let Ntot be the total number of nodes and denote

by αi, βi the basis functions of the space Vh and Wh, respectively, for i = 1, . . . , Ntot. Moreover, let NΓC represent
the number of nodes on the interface ΓC and let µi be the shape functions of the finite element space Hh

ΓC
, for

i = 1, · · · , NΓC ; so, Hh
ΓC

= {γh ∈ Yh : γh = ∑
NΓC
i=1 γiµi}. Usually, if a P1 finite element method is used for the

displacement, then a P0 finite element method is considered for the multipliers. Then, the expressions of the

functions wh, ψh and γh is given by wh =
Ntot

∑
i=1

wiαi, ψh =
Ntot

∑
i=1

ψiβi, γh =

NΓC

∑
i=1

γiµi, where wi and ψi represent

the values of the coreesponding functions wh and ψh at the ith node of T h. Also, γi denotes the values of the
function γh at the ith node of the contact element discretization of the contact interface. More details about this
discretization step can be found in [8,9] for details.

The augmented Lagrangian approach we use shows that the Problem P̃hk
V can be governed by the

following system of nonlinear equations

R(δun, un, ϕn, λn) = Ã(δun) + G̃(un, ϕn) + F(un, ϕn, λn) = 0, (27)

that we describe below. First, the vectors δun, un, ϕn and λn represent the velocity, the displacement, the
electric potential and the Lagrange multiplier generalized vectors, respectively, defined by

δun = {δui
n}

Ntot
i=1 , un = {ui

n}
Ntot
i=1 , ϕn = {ϕi

n}
Ntot
i=1 and λn = {λi

n}
NΓC
i=1 ,

where δui
n :=

ui
n − ui

n−1
k

, ui
n and ϕi

n represent the values of the corresponding functions δuhk
n , uhk

n and ϕhk
n at

the ith node of T h. Also, λi
n denote the values of the corresponding function λhk

n at the ith node of the contact
element of the discretized contact interface.
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Next, the generalized viscous term Ã(v) ∈ Rd×Ntot ×RNtot ×Rd×NΓC and the generalized electro-elastic
term G̃(u, ϕ) ∈ Rd×Ntot × RNtot × Rd×NΓC are defined by Ã(v) = (A(v), 0Ntot , 0d×NΓC

) and G̃(u, ϕ) =

(G(u, ϕ), 0d×NΓC
). Here, 0Ntot is the zero element of RNtot and 0d×NΓC

is the zero element of Rd×NΓC ;

also, A(v) ∈ Rd×Ntot , G(u, ϕ) ∈ Rd×Ntot ×RNtot denote the viscous term and the elastic-piezoelectric term,
respectively, given by

(A(v) ·w)Rd×Ntot = (Aε(vh), ε(wh))H ∀v, w ∈ Rd×Ntot , ∀vh, wh ∈ Vh,

(G(u, ϕ) · (w, ψ))Rd×Ntot×RNtot = (Bε(uh), ε(wh))H + (Eε(wh),∇ϕh)H − (n, wh)V − (Eε(uh)

−β∇ϕh,∇ψh)H − (qn, ψh)W , ∀u, w ∈ Rd×Ntot , ∀ϕ, ψ ∈ RNtot , ∀uh, wh ∈ Vh, ∀ϕh, ψh ∈Wh.

Above, v, u, w, ϕ and ψ represent the generalized vectors of components vi, ui, wi, ϕi and ψi for i =

1, . . . , Ntot, respectively, and note that the volume and surface efforts are contained in the term G(u, ϕ). Finally,
The contact operator F(u, ϕ, λ), which permits to take into account the conductivity of the foundation, is given
by

(F(u, ϕ, λ), (w, ψ, γ))
Rd×Ntot×RNtot×Rd×NΓC

=
∫

ΓC

pν(uh
ν − gh)wh

ν da

+
∫

ΓC

∇ulr
τ(u

h, λh).wh da +
∫

ΓC

∇λlr
τ(u

h, λh).γh da + K(uh, ϕh, ψh),

∀ u, w ∈ Rd×Nh
tot , ∀ ϕ, ψ ∈ RNh

tot , ∀ λ, γ ∈ Rd×Nh
ΓC , ∀uh, wh ∈ Vh, ∀ϕh, ψh ∈Wh, ∀ λh, γh ∈ Yh.

Here the Lagrangian multiplier λ represents the friction force and γ is a test function; also, lr
τ denote the

augmented Lagrangian functional given by

lr
τ(u

h, λh) = δuh
τ · λh +

r
2
|δuh

τ |2 −
1
2r

dist2{λh + rδuh
τ , C[pτ(uh

ν − gh)]}

where r is positive penalty coefficient and the Coulomb convex set C[pτ(uh
ν − gh)] denotes the convex disk of

constant radius pτ(uh
ν − gh). For more details about the Lagrangian method, we refer the reader to [8,9].

The solution algorithm consists in a prediction-correction scheme based on a finite differences method (the
backward Euler difference method) and a linear iterations methods (the Newton method). The finite difference
scheme we use is characterized by a first order time integration scheme, both for the velocity vn = δun. To
solve (27), at each time increment the variables (un, ϕn, λn) are treated simultaneously through a Newton
method and, for this reason, we use in what follows the notation xn = (un, ϕn, λn).

Inside the loop of the increment time indexed by n, the algorithm we use can be developed in three steps
which are the following.

For n = 0 until N, let ϕ0, u0, δu0 and λ0 be given or chosen in an appropriate way.

• A prediction step: This step provides the initial values ϕ0
n+1, u0

n+1, δu0
n+1 and λ0

n+1 by the formulas:
ϕ0

n+1 = ϕn, u0
n+1 = un, δu0

n+1 = 0 and λ0
n+1 = λn.

• A Newton linearization step: for i = 0 until convergence, compute

xi+1
n+1 = xi

n+1 −
(

Qi
n+1
k

+ Ki
n+1 + T i

n+1

)−1

R
(

δui
n+1, ui

n+1, ϕi
n+1, λi

n+1

)

where xi+1
n+1 denotes the pair (ui+1

n+1, ϕi+1
n+1, λi+1

n+1); i and n represent respectively the Newton iteration index
and the time index; Qi

n+1 = Du A(vi
n+1) denotes the damping matrix, Ki

n+1 = Du,ϕG(ui
n+1, ϕi

n+1) represents
the elastic matrix and T i

n+1 = Du,ϕ,λF(ui
n+1, ϕi

n+1, λi
n+1) is the contact tangent matrix; also, Du A, Du,ϕG and



Open J. Math. Anal. 2020, 4(2), 15-25 23

Du,ϕ,λF denote the differentials of the functions A, G and F with respect to the variables u, ϕ and λ. This leads
us to solve the resulting linear system(

Qi
n+1
k

+ Ki
n+1 + T i

n+1

)
∆xi = −R

(
δui

n+1, ui
n+1, ϕi

n+1, λi
n+1

)
, (28)

where δxi = (δui, ∆ϕi, δλi) with δui = ui+1
n+1 − ui

n+1, δϕi = ϕi+1
n+1 − ϕi

n+1 and ∆λi = λi+1
n+1 − λi

n+1.

• A correction step: Once the system (28) is resolved, we update xi+1
n+1 and δui+1

n+1 by

xi+1
n+1 = xi

n+1 + ∆xi and δui+1
n+1 = δui

n+1 +
∆ui

k
.

Note that formulation (27) has been implemented in the open-source finite element library GetFEM++
(see http://getfem.org/).

4.2. Numerical simulations

Now we illustrate our theoretical results by numerical simulations in the study of two-dimensional test
problem. In order to observe the effect of the piezoelectric properties of the material, a physical setting as
the one depicted in Figure 1 is considered. In this case the body Ω = (0, 1) × (0, 1) ⊂ R2 is clamped on
ΓD = [0, 1]× {0} and the electric potential is free there (we choose ΓD = Γa). The tractions fn

1(x1, x2, t) :=
(0.8 t, 0.2 t) N/m and fn

2(x1, x2, t) := (−0.3 t, 0.1 t) N/m are prescribed on the lateral parts Γ1
N , Γ2

N respectively
(i.e. ΓN := Γ1

N ∪ Γ2
N = Γb). The body is in contact with a conductive foundation on its lower boundary

ΓC = [0, 1] × {0}. No volume forces and no electric charges are supposed to act in the body, i.e. f 0 = 0
N/m2, q0 = 0 W/m2, qb = 0 W/m. The functions pν and pτ in the frictional contact conditions (9) and (10) are
given by pν(r) = cνr+ and pτ = µpν, where cν represent large positive constant and µ represents the friction
coefficient. And, finally, The truncation function φL, and the conductivity functions ψ in the conditions (11) are
given by

φL(s) = s, ψ(s) = ke ·


0 if s < 0,
s
εe

if 0 ≤ s ≤ εe,
1 if s > εe,

where ke and εe are positive constants.
Here, we use as material the visco-elasto-piezoelectric body whose constants are taken as [2,3]. The

following data have been used in the numerical simulations:

cν = 107 N/m2, µ = 0.1, g = 0 m.

ke = 1, εe = 10−5 m, ϕ f = 128 V, T = 0.1 s, u0 = 0 m.

Our interest in this example is to study the influence of the electrical conductivity of the foundation on
the contact process and, to this end, we consider the problem both in the case when the foundation is insulated
(i.e. D · ν = 0 on ΓC) and in the case when it is conductive.

In Figure 2 we show the deformed configuration at final time. We can easily note that considering an
electrically conductive foundation reduce the deformations and increases the contact surface.

Both electric potential and Von Mises stress norm are plotted in Figures 3 at final time for the value
ϕ f = 128 V.

To see the convergence behaviour of the fully discrete scheme, we compute a sequence of numerical
solutions based on uniform partitions of the time interval [0, T], and uniform triangulations of the body. Then,
we provide the estimated error values for several discretization parameters h and k. Here, the sides of the
square are divided into 1/h equal parts and the time interval [0, T] is divided into 1/k time steps. We start
with h = 1/2 and k = 1/2 which are successively halved. The numerical solution corresponding to h = 1/256
and k = 1/256 is taken as the "exact" solution, which is used to compute the errors of the numerical solutions
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Figure 1. Physical setting.

Figure 2. Amplified deformed mesh in the case of an insulated foundation (left) and in the case of a conductive
foundation (right).

Figure 3. Electric potential (left) and the Von Mises stress norm (right) in the deformed configuration.

with larger values of h and k; this finer discretization corresponds to a problem with around 199432 degrees of
freedom. The linear asymptotic convergence behaviour obtained in (25) is almost observed (see Figure 4).

5. Conclusion

In this paper we have provided an error estimate of a mathematical model which describes the frictional
contact between an electro-viscoelastic body and a conductive foundation. The numerical treatment of the
frictional contact conditions is obtained by combining the penalty method for the normal compliance condition
and the augmented Lagrangian approach for the friction condition. Moreover, numerical simulations for
a representative two-dimensional example were provided. These simulations validate the theoretical error
estimates and, in addition, allow to study the influence of the electric potential field of the foundation on the
process. This work opens the way to study further problems with other conditions for thermally-electrically
conductive taking into the account the frictional heating effects.
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Figure 4. Estimated errors.
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