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1 Introduction

An indefinite integral of a function f(x) is a function F (x) whose derivative F ′(x) = f(x) on a
certain interval of the x-axis [1]. We assume that f(x) is analytic in a simply connected domain D
[2] which we shall define shortly. When we talk of indefinite integrals in the parlance of Numerical
Analysis, we mean integrals in which the upper limit of integration is a variable [3],

F (x) =

∫ x

c

f(u) du. (1.1)

This paper will be restricted to computing the numerical indefinite integrals of functions in which
the lower limit of integration c = −1, and in which the upper limit is x for −1 < x < 1, using
the sinc method. A treatment of other indefinite integrals over such intervals as (0, x), 0 < x < ∞
and (−∞, x) using the double exponential formulas is given by Muhammad and Mori [4] and
the references therein. Monegato and Scuderi [5] proposed numerical methods for computing a
one-dimensional integral of functions having strong or weak singularities at the endpoints of the
interval of integration or complex poles close to the domain of integration. They also computed a
four-dimensional integral which arose from the 3 dimensional Galerkin boundary element methods
applied to hypersingular boundary integral equations. Nevertheless, they did not use the sinc
method. Keller [6] proposed a general method and algorithms for computing indefinite integrals of
the form

I(x) =

∫ x

0

f(u)k(u)du (0 ≤ x ≤ xmax), (1.2)

where f is a smooth function, and k is a function that contains a singular factor or is rapidly
oscillatory. While Keller and Wozny [7] presented the convergence and error estimates of the
method in Kelly’s study [6].

Okayama in [8] gave expressions for the error bounds of sinc quadrature and sinc indefinite integral
on semi-infinite and finite intervals, while comparing the SE and DE formulas. Though in this
present work, we did not discuss error bounds but the interval of integration is infinite. Numerical
methods for the computation of indefinite integrals using the sinc method involve several constants
which often times depend on the nature of the integrand, and that is why Okayama et al., [9] revealed
explicit forms of all constants in a computable form under the same assumptions of the existing
theorems: the function to be approximated is analytic in a suitable region. They also improved some
formulas to decrease their computational costs while numerical examples that confirm the theory
were given. In the study [10], the authors investigated another Single Exponential (SE) formula
obtained by replacing the transformation with Muhammad–Mori’s SE transformation. The error
bound was theoretically analyzed. Numerical comparisons of Stenger’s SE formula with that of
Muhammad–Mori’s were given as well but without any comparison made with the DE formula. In
[11], Hara and Okayama gave an error bound for Mohammed–Mori’s DE formula and compared
the performance with the SE formula. However, their comparison is on the semi-infinite interval
(0,∞). The work in [12] (see, also [13]) is an improvement on Stenger’s SE formula by replacing
the auxiliary basis functions and SE transformation. They concluded by presenting two different
types of error bounds for the modified formula. In a more recent study, Okayama and Kurogi in
[14] proposed better selection formulas for the parameters involved in the numerical approximation
of quadratures using the DE formulas that reduces its error and also presented computable error
bounds of the modified DE formula (see, also [15]).

The word ”sinc” is an abbreviation of the phrase ”sine–cardinal” [16]. The sinc function sinc(x)
arises frequently in Fourier transforms. It is an even function with zeros at kπ for k = ±1,±2, · · · ,
lim

x→±∞
sinc(x) = 0. Gearhart and Shultz [17] described it as a well–behaved function and also gives

some of its properties.
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Definition 1.1. The sinc function is defined in [18] as

sinc(x) =


sinπx
πx

, x ̸= 0

1, x = 0.
(1.3)

From the definition above, it is possible to write the complex integral representation [16] for x ̸= 0,

sinc(x) =
sin(πx)

πx

=
eiπx − e−iπx

2iπx

=
1

2iπx

[
eiwx]π

−π

=
1

2π

∫ π

−π

eiwx dw.

The sinc function has strong relationships with the sine integral. The sine integral is defined in
equation (5.2.1) in [19] as

Si(x) =

∫ x

0

sin u

u
du

=

∫ x

0

sinc(u) du

=
π

2
+ si(x).

(1.4)

where, from [19]

si(x) = −
∫ ∞

x

sinu

u
du. (1.5)

The sine integral satisfies the symmetry relation Si(−x) = −Si(x), which means that it is an odd
function. When one wants to evaluate an integral over an infinite interval (−∞,∞), i.e.

I =

∫ ∞

−∞
f(u) du, (1.6)

in which the integrand f(u) is analytic over (−∞,∞), with a constant step size h, the first thing
that comes to mind is the uniformly divided trapezoidal formula [20]

I = h

∞∑
k=−∞

f(kh). (1.7)

Such a formula is not useful for evaluating integrands with algebraic or logarithmic singularities at
one or both ends of the interval of integration.

In approximating F (x) =
∫ x

−1
f(u)du, we shall make two basic transformations: single exponential

transformation w = ϕ(z) = tanh z
2
and double exponential transformation w = ϕ1(z) = tanh

[
π
2
sinh(z)

]
,

which maps (−∞,∞) to (−1, 1). After the transformation, we will then use the well-known
trapezoidal formula in part to derive the four quadrature formulas.

Let the given integral be

I =

∫ d

c

f(x) dx. (1.8)
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Throughout the analysis, we shall be making variable transformations of the form

x = ϕ(u) where ϕ(−∞) = c, ϕ(∞) = d (1.9)

to (1.8) so as to change the interval from (c, d) to (−∞,∞). Hence, after the transformation, we
have

I =

∫ d

c

f(x) dx =

∫ ∞

−∞
f(ϕ(u))ϕ′(u) du. (1.10)

One or both of the endpoints c and d in the original integral can be finite [20]. We now apply the
trapezoidal rule (1.7) to obtain the quadrature formula,

I = h

∞∑
k=−∞

f(ϕ(kh))ϕ′(kh), (1.11)

Haber’s formulas A and B, which involves the conformal transformation from the interval (−∞,∞)
to (−1, 1) via the transformation w = ϕ(z) = tanh z

2
. McNamee, Stenger and Whitney [21] describe

the cardinal function as a “function of royal blood whose distinguished properties set it apart from
its bourgeois brethren”.

Definition 1.2. Let f be a function which is defined on the real line R. Then the formal series

∞∑
k=−∞

f(kh)S(k, h, x), (1.12)

is called the cardinal series of the function f with respect to a positive step size h. If the series
(1.12) converges, we denote its sum by C(f, h, x), and the function C(f, h, x) is called the cardinal
function (or Whittaker cardinal function) of the function f [21]. Where

S(k, h, x) = sinc

(
x− kh

h

)

=


sin[(π

h
)(x− kh)]

(π
h
)(x− kh)

, x ̸= kh;

1, x = kh,

(1.13)

is the k′th sinc function with step size h, evaluated at x. Kearfott [22] calls (1.13) the interpolation
property of the sinc function.

The truncated cardinal series is given by

C(M,N, f, h, x) =

N∑
k=−M

f(kh)S(k, h, x),

in generalN ̸=M . But as we are assuming that the functions we shall be dealing with are symmetric
[18], hence N =M , and the truncated series can be written as

C(N, f, h, x) =

N∑
k=−N

f(kh)S(k, h, x). (1.14)

An interesting property of the cardinal function is given in Theorem 1.2. We give a property of the
Paley-Wiener class of functions B(h) below.
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Theorem 1.1. If f ∈ B(h), then for all z ∈ C

f(z) =
1

h

∫ ∞

−∞
f(u) sinc

(u− z

h

)
du. (1.15)

Proof. See [18].

Definition 1.3. Let h be a positive constant, the Paley-Wiener class of functions (denoted by
B(h)) is the family of entire functions f such that on the real line f ∈ L2(R) and in the complex
plane f is of exponential type π

h
[18] i.e

|f(z)| ≤ Keπ|z|h, K > 0.

We are now in a position to derive an exact interpolation and quadrature formula for functions in
B(h). These can be found in the theorem below, coupled with all the results obtained earlier.

Theorem 1.2. Let f ∈ B(h), then for all z ∈ C [18],

f(z) =
∞∑

k=−∞

f(kh) sinc

(
z − kh

h

)
(1.16)

f(kh) means evaluating f(x) at x = kh,

f(kh) =
1

h

∫ ∞

−∞
f(u) sinc

(
u− kh

h

)
du. (1.17)

Moreover, according to [23]

lim
N→∞

∫ N

−N

f(x) dx = lim
N→∞

h

N∑
k=−N

f(kh). (1.18)

Proof. See [18].

2 Derivation of Haber’s Formula A

We shall start from the contour integral [18]

G(z) =

∫
Bk,ε

g(z) dz, (2.1)

where

g(z) =
sin πx

h
f(z)

(z − x) sin πz
h

.

Let h and c be positive constants. From [18] we are given that for each positive integer k, Bk,ε is

the rectangular contour with vertical sides x = ± (2k+1)h
2

and horizontal sides y = ±(c− ϵ):

Bk,ε =

{
z = x+ iy : −

(
2k + 1

2

)
h < x <

(
2k + 1

2

)
h, |y| < (c− ε)

}
.

Assume that

A1 f is analytic in the strip |y| < c.

11
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The assumption A1 above is the same as Haber’s condition H1 in [24].

The real number x [24] is less than or equal to kh in absolute value. The singularities of g(z) in
(2.1) are z = x and z = kh, where k is all integers between −n and n. From residue theory, at
z = kh

Res(g, kh) =
sin(πx

h
)f(kh)[

(z − x) sin(πz
h
)
]′
z=kh

=
sin(πx

h
)f(kh)[

sin(πz
h
) + π

h
(z − x) cos(πz

h
)
]
z=kh

=
sin(πx

h
)f(kh)[

sin(πk) + π
h
(kh− x) cos(πk)

]
=

(−1)kh sin(πx
h
)f(kh)

π(kh− x)

= −h sin (π(x− kh)/h)f(kh)

π(x− kh)

= −f(kh) sinc
(
x− kh

h

)
.

Thus

Res(g, kh) = −f(kh) sinc
(
x− kh

h

)
. (2.2)

The residue at z = x is given by
Res(g, x) = f(x). (2.3)

For the singularities, the Residue Theorem [2] yields

G(z) = 2πi

[
Res(g, x) +

n∑
k=−n

Res(g, kh)

]

= 2πi

[
f(x)−

n∑
k=−n

f(kh) sinc

(
x− kh

h

)]
.

Making f(x) the subject, we have

f(x) =

n∑
k=−n

f(kh) sinc

(
x− kh

h

)
+

sin πx
h

2πi

∫
Bk,ε

f(z) dz

(z − x) sin πz
h

and

f(x) =

n∑
k=−n

f(kh) sinc

(
x− kh

h

)
+Rk,ε(x);

Rk,ε(x) =
sin πx

h

2πi

∫
Bk,ε

f(z) dz

(z − x) sin πz
h

. (2.4)

The above equation holds for x = ±nh, |n| ≤ k and for all x ∈ [−kh, kh].

Haber [24] also gave another condition

A2 for a small positive ε, each of the integrals
∫∞
−∞ |f(x− i(c− ε))|dx and

∫∞
−∞ |f(x+

i(c− ε))|dx exists, and is bounded in ε;

12
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and

A3 for each small positive ε, the integral
∫ c−ε

ε−c
|f(x + iy)| dy is a bounded function

of x.

The next section contains some useful identities.

The following Lemma was proved by Stenger ([23], pages 172-173). It contains an important identity
that will help us derive Haber’s formula A.

Lemma 2.1. (Main Result) Let h > 0, k ∈ Z, x ∈ R and set

J (k, h, x) =

∫ x

−∞
S(k, h, x) dx, (2.5)

where S(k, h, x) is as defined in (1.13). Then, for x ∈ R,

|J (k, h, x)| ≤ 1.1h. (2.6)

Proof. See [25].

The lemma below is from Haber’s paper [24].

Lemma 2.2. Assuming that f satisfies A1, A2 and A3, then

f(u) =

∞∑
k=−∞

f(kh) sinc

(
u− kh

h

)
+

sin πu
h

2πi
(R− −R+), ∀ u ∈ R. (2.7)

Conditions A1 and A2 are not very explanatory, because if one wants to change to the interval
(−1, 1) one needs simpler conditions. We integrate (2.7) with respect to u in the following manner:∫ x

−C

f(u) du =

∞∑
k=−∞

f(kh)

∫ x

−C

sinc

(
u− kh

h

)
du

+
1

2πi

{∫ x

−C

sin
πu

h

∫ ∞

−∞

f(v − i(c− ε))

(v − u− i(c− ε)) sin π(v−i(c−ε))
h

dv du

−
∫ x

−C

sin
πu

h

∫ ∞

−∞

f(v + i(c− ε))

(v − u+ i(c− ε)) sin π(v+i(c−ε))
h

dv du

}
, (2.8)

where

G± =

∫ x

−C

sin
πu

h

∫ ∞

−∞

f(v ± i(c− ε))

(v − u± i(c− ε)) sin π(v±i(c−ε))
h

dv du.

Haber [24] points out that the interchange of integration and summation is possible by imposing
the following condition on f :

A4 a constant α > 0 exists such that for all x ∈ R, f(x) = O(e−α|x|) as |x| → ∞.

The order of integration in G± can be exchanged, since∫ −B

−∞

f(v ± i(c− ε)) dv

(v − u± i(c− ε)) sin π(v±i(c−ε))
h

tends to zero as B → ∞, uniformly for u ∈ [−C, x]. The same holds for the integral from B to ∞.
The inner integral that is left ∫ x

−C

sin πu
h

du

v − u± i(c− ε)
= O(h).

13
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uniformly on C, v, u and ε. We can deduce from other identities already encountered that∣∣∣∣sin π(v ± i(c− ε))

h

∣∣∣∣ ≥ sinh
π(c− ε)

h

≥ 1

2
e

π(c−ε)
h ,

and then

|G±| ≤ Khe−
π(c−ε)

h

∫ ∞

−∞
|f(v ± i(c− ε))| dv.

If C is allowed to tend to infinity and ε to zero in (2.8),∫ x

−∞
f(u) du = h

∞∑
k=−∞

f(kh)

(
1

2
+

1

π
Si

(
πx− πkh

h

))
+O(he−

πc
h ) (2.9)

as h→ 0. By making use of condition A4 and the boundedness of the sine integral,

∫ x

−∞
f(u) du = h

N∑
k=−N

f(kh)

(
1

2
+

1

π
Si

(
πx− πkh

h

))
+O(he−

πc
h ) +O(e−αNh/h). (2.10)

To obtain the step size h, we equate the magnitude of the O terms as follows:

exp(−πc/h) = exp(−αNh).

Taking the logarithm of both sides, we have

h =

√
πc

αN
. (2.11)

The next theorem summarises what we have done so far. The statement of this was given in [24]
without a proof.

Theorem 2.3. If f satisfies A1, A2, A3 and A4, and h =
√

πc
αN

, then

∫ x

−∞
f(u) du = h

∞∑
k=−∞

f(kh)

(
1

2
+

1

π
Si

(
πx− πkh

h

))
+O(

√
Ne−

√
πcαN ), (2.12)

as N → ∞ uniformly for x ∈ R.

3 Transformation Via Conformal Mapping

The bulk of this section will be devoted to transforming the interval in (2.12) from (−∞, x] to
(−1, 1), using conformal mapping. In addition, we shall end up with the analysis given by Haber
in [24] to derive his formula A.

If x and y are real, then | sin(x+ iy)| = [sinh2 y + sin2 x]
1
2 ≥ sinh |y| [26].

14
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3.1 Approximation over (−1, 1)

Let ϕ : (−∞,∞) 7→ (−1, 1) and ψ : (−1, 1) 7→ (−∞,∞) such that

w = ϕ(z) = tanh
z

2
, z = ϕ−1(w) = ψ(w). (3.1)

It follows from the exponential form of tanh z that

tanh
z

2
=
e

z
2 − e−

z
2

e
z
2 + e−

z
2
= w,

cross-multiplying and making z the subject of the formula gives

ψ(w) = z = log

(
w + 1

1− w

)
, ψ′(w) =

2

1− w2
. (3.2)

We define the domain as given in [27] for ρ ∈ (0, π
2
by

D = [{z : |z + i cot ρ| < cosec ρ} ∩ [{z : x+ iy, y ≥ 0}
∪ [{z : |z − i cot ρ| < cosec ρ} ∩ [{z : x+ iy, y ≤ 0}. (3.3)

Furthermore, Lunding and Stenger [28] considered

Γ = {z ∈ D : ψ(z) ∈ (−∞,∞)} = {x : −1 ≤ x ≤ 1}, (3.4)

and
g(x) = (1− x2)β , β ≥ 0, (3.5)

which are very useful in understanding Haber’s analysis.
The next theorem is found in [28] and gives a clear picture of g used in Haber’s conditions
A′

1, A
′
2, A

′
3 and A′

5 which we will encounter shortly.

Using the change of variables t = ϕ(u), and subsequently −1 = ϕ(−∞), v = ϕ(x), x = ϕ−1(v) =

log
(

1+v
1−v

)
, we can write ∫ x

−∞
f(u) du =

∫ v

−1

g(t) dt, (3.6)

and using f(u) = g(ϕ(u))ϕ′(u):∫ x

−∞
f(u) du =

∫ v

−1

g(t) dt =

∫ ϕ−1(x)

−∞
g(ϕ(u))ϕ′(u) du,

so that Haber’s formula A from (2.12) becomes∫ v

−1

g(u) du = h
N∑

k=−N

g(ϕ(kh))ϕ′(kh)

(
1

2
+

1

π
Si

(
πϕ−1(v)− πkh

h

))
+O(

√
Ne−

√
πcαN ). (3.7)

Haber’s conditions H1 and H4, which are the same as A1 and A4, can be translated into the
condition

A′
1 g is analytic on Φc.

and

A′
4 there is a constant α > 0 such that for t ∈ R, g(t) = O((1− t2)α−1) as t→ −1 and
t→ +1 from inside (-1, 1).

15
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Furthermore, we can write the integral in condition A3 as∫
Lx,ε

|g(w) dw|,

where Lx,ε is the image of the line segment z = x+ iy, |y| < c− ε under ϕ. As w tends to ±1 from
inside Φc, if we require of g that g(w) = O(|1 − w2|−1) as w → ±1, then A3 would be satisfied.
But we shall require the stronger condition

A′
3 there is a constant α > 0 such that g(w) = O(|1− w2|α−1) as w tends to ±1 from

inside Φc.

Let Mb be the image under ϕ of the line y = b and Mb,β , β > 0 be the part of Mb that lies outside
circles of radius β and center ±1. With the above, we can write the integrals in A2 as∫

M±(c−ε)

|g(w) dw|. (3.8)

In [24], it was also assumed that

A′
2 for small β, the integrals

∫
M±(c−ε),β

|g(w) dw| are bounded in ε for ε ∈ (0, c).

To check whether A′
2 holds for a given g in which A′

1 and A′
3 holds, Haber [24] considered

singularities of g at points on the boundary of Φc except at t = ±1. In addition, if c′ > 0 such that
c′ < c, then A′

2 will hold with c′ instead of c. This leads us to the next two theorems, which can
be found in [24]. They summarise the above analysis and give us Haber’s formula A (3.10).

Theorem 3.1. If g is analytic in Φc for some positive c ≤ π, and g(w) = O(|1−w2|α−1) for some
α > 0 as w → ±1 from inside Φc, then [24]∫ v

−1

g(t) dt = h

N∑
k=−N

g(ϕ(kh))ϕ′(kh)

(
1

2
+

1

π
Si

(
πϕ−1(v)− πkh

h

))
+O(

√
Ne−

√
πc′αN ), (3.9)

holds uniformly in [−1, 1], where c′ is any number in (0, c) and h =
√

πc′
αN

.

Theorem 3.2. If 0 < c ≤ π, α > 0, and g satisfies conditions A′
1, A

′
2 and A′

3, then∫ v

−1

g(t) dt = h

N∑
k=−N

g(ϕ(kh))ϕ′(kh)

(
1

2
+

1

π
Si

(
πϕ−1(v)− πkh

h

))
+O(

√
Ne−

√
πcαN ), (3.10)

holds uniformly in [−1, 1].

4 Derivation of Haber’s Formula B

The driving force behind formula B is that, instead of calculating general values of the sine integral
(Si) as in formula A, we shall only use the values of Si(kπ), k ∈ Z. The latter can be calculated
easily, as will be shown by the numerical experiments.

Haber’s formula B involves working within the context of integrals over R. We start by setting

F (x) =

∫ x

−∞
f(u) du, (4.1)

16
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and F is approximated by an interpolation formula that makes use of evaluations of F at integral
multiples of h, the step size.

Formula B can be derived by the change of variables w = ϕ(z) = tan z
2
and by setting f(u) =

g(ϕ(u))ϕ′(u) with φ(w) = η(ϕ−1(w)). Multiplying the numerator and denominator of η by e−αx,
we will have

φ(w) = η(ψ(w))

= η

(
log

(
w + 1

1− w

))
=

1

1 + exp
(
−α log

(
w+1
1−w

))
=

1

1 +
(

1−w
w+1

)α
=

(w + 1)α

(w + 1)α + (1− w)α
.

It follows from the previous analysis that conditions A′
1 and A′

3 on g imply A2, A3a and A4 on f ,
while A′

1 on η is equivalent to A1 on f . Consequently, A′
1 on φ is the same as condition A1 on η.

The condition A5 on η holds if we require that

A′
5 φ is continuous on [−1, 1] and φ(−1) = 0, φ(1) = 1.

In addition, φ satisfies a Hölder condition on [−1, 1] of order α.

For A3a to hold on η, Haber imposed A′
3 on φ′; conditions A′

3 for φ′ and A′
5 for φ imply the Hölder

condition for φ. We conclude with this theorem from [24].

Theorem 4.1. If 0 < c ≤ π, α > 0, g satisfies conditions A′
1,A

′
2 and A′

3, φ satisfies A′
1 and A′

5,
and η′ satisfies A3. Then (4.2) holds uniformly in [−1, 1], and I⋆ is defined by (4.3).

A close look at A′
5 and the choice of the functions φ = w+1

2
satisfies the conditions for all c and for

any α ≤ 1, and the function φ = −w3+3w+2
4

satisfies the conditions for all c for any α ≤ 2, since
φ′(−1) = φ′(1) = 0. To avoid the condition A′

2, Haber states that we should replace c′ by c in the
error term. He presents this in the form of a theorem, which is Haber’s formula B .

Theorem 4.2. If 0 < c ≤ π and α > 0, and

1. g is analytic in Φc and g(w) = O(|1− w2|α−1) as w → ±1 from the interior or inside Φc;

2. φ is analytic in Φc and φ(−1) = 0, φ(1) = 1; φ′(w) = O(|1 − w2|α−1) as w → ±1 from
inside Φc,

then ∫ v

−1

g(t) dt = h

N∑
k=−N

N∑
m=−N

g(ϕ(mh))ϕ′(mh)σk−m sinc

(
ϕ−1(v)− kh

h

)

+ I⋆
(
φ(v)−

N∑
k=−N

(
φ(ϕ(kh))− 1

2

)
sinc

(
ϕ−1(v)− kh

h

))
(4.2)

+O((
√
N)3e−

√
πcαN ),

17
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holds uniformly on [−1, 1], c′ ∈ (0, c), h =
√

πc′
αN

and

I⋆ = h

N∑
m=−N

g(ϕ(mh))ϕ′(mh). (4.3)

If
∫ 1

−1
g(t) dt = 0, then I⋆ may be replaced by zero.

5 Computational Considerations

We shall consider two cases for the computation of the double sum in (4.2)-on the one hand for a
single value of v and on the other hand for several values.

The double sum in (4.2) involves computing 2N +1 values of sine in the sinc function, but because
k is an integer we can simplify matters.

sinc

(
ϕ−1(v)− kh

h

)
=
h sin

(
πϕ−1(v)

h
− πk

)
πϕ−1(v)− πkh

=
h

π

(−1)k sin πϕ−1(v)
h

ϕ−1(v)− kh

Thus, we can write

h

N∑
k=−N

N∑
m=−N

g(ϕ(mh))ϕ′(mh)σk−m sinc

(
ϕ−1(v)− kh

h

)

=
h2

π
sin

πϕ−1(v)

h

N∑
k=−N

N∑
m=−N

(−1)kσk−m

ϕ−1(v)− kh
g(ϕ(mh))ϕ′(mh), (5.1)

which uses only one sine evaluation. It follows that (4.2) involves more calculation than (3.9)
because of the double sum. If we are to approximate the integral for many values of v, we write the
double sum as

h2

π
sin

πϕ−1(v)

h

N∑
k=−N

Zk

ϕ−1(v)− kh
, (5.2)

where

Zk =

N∑
m=−N

(−1)kσk−mg(ϕ(mh))ϕ
′(mh). (5.3)

The Zk are independent of v, which allows us to calculate Zk first before each new value of v, which
requires the calculation of a single sum. The simplification makes formula B faster than A when
several values of the indefinite integral are needed. It should also be noted that each value of v
requires only a sine, a logarithm and two simple sums for B, and 2N + 1 new values of the sine
integral for A.

However, developments in software has circumvented the above simplifications, since sinc values
can be computed easily by typing sinc(x) in Matlab or octave.

One thing that is noteworthy is that the parameters α and c have to be chosen to ”normalise” the
functions in such a way that, ∫ 1

−1

|g(t)| dt = 1. (5.4)
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It also becomes clear as remarked in Haber ([29], p. 148, [24]) that most of the abscissas ϕ(kh) are
very close to ±1 because, as |kh| → ∞,

tanh
kh

2
= ±1 +O(e−|kh|). (5.5)

It might not be possible to evaluate integrands that contain factors such as (1 − x), because the
integrand may be infinite at ±1. This computational pitfall can be avoided by studying the function
ϕ′(x)f(ϕ(x)).

6 Stenger’s SE Formula

Before proceeding to the derivation of Stenger’s SE formula, a definition is provided of single
exponential transformation and the family of analytic functions Lα(Dc) and Mα(Dc) is introduced.

Definition 6.1. (Single Exponential Transformation) A function f is said to decay single
exponentially [30] with respect to the conformal map ϕ, if there exist positive constants α and K
such that

|f(ϕ(x))ϕ′(x)| ≤ K exp(−α|x|) for all x ∈ R, (6.1)

and any ϕ that satisfies (6.1) is called a single exponential transformation.

Definition 6.2. Let α, β be positive numbers, and Lα,β(Dc) denote the family of functions f that
are analytic in Dc [23], such that for some constants K > 0, and all z ∈ Dc , we have

|f(z)| ≤ K
eαz

(1 + |ez|)α+β
. (6.2)

Let α ∈ (0, 1], β ∈ (0, 1], c ∈ (0, π), and Mα,β(Dc) denote the family of functions in which v is
holomorphic in Dc, which has finite limits at a and b [31], such that f ∈ Lα,β(Dc), where f is
defined by

f = v − ℓv, (6.3)

and

ℓv(z) =
v(a) + eϕ(z)v(b)

1 + eϕ(z)
. (6.4)

Stenger ([31], p. 383, 387) suggests that, in approximating integrals over various intervals, one
should select a mapping ϕ that gives a one-to-one transformation of (a, b) onto the real line and
that provides a conformal mapping of the region D on which the integrand is analytic onto Dc. He
also illustrates that for problems that involve approximating functions that decay exponentially in
at least one of the points at ±∞, we take ϕ(z) = z, so that (6.3) reduces to

f(x) = v(x)− [v(−∞) + exv(∞)]

(1 + ex)
, (6.5)

by replacing z with x.

Remark 6.1. For the sake of notation, we shall write Lα(Dc) for Lα,α(Dc) and Mα(Dc) for
Mα,α(Dc).

For all real x, after simplifying (6.2) we have

1

22α
e−α|x| ≤ eαx

(1 + eαx)2α
≤ e−α|x|. (6.6)

Let α′, c′ be positive numbers, and f a given function. Throughout this section, the assumption is
that f ∈ Lα′(Dc′).

19



Akinola; ARJOM, 17(11): 7-41, 2021; Article no.ARJOM.77112

Define v, V for τ > 0 by

v(z) = f(z)− τ

2 cosh2(τz)

∫ ∞

−∞
f(u) du,

= f(z)− τ

2
sech2(τz)

∫ ∞

−∞
f(u) du. (6.7)

V (z) =
∫ z

−∞ v(t) dt. Integrating τ
2
sech2(τt) with respect to t and using the exponential forms of

tanh,

τ

2

∫ z

−∞
sech2(τt) dt =

1

2
tanh(τt)

∣∣∣∣z
−∞

=
e2τz

e2τz + 1

=
eτz

eτz + e−τz

=
eτz

2 cosh(τz)
,

from which we arrive at

V (z) =

∫ z

−∞
f(u) du− eτz

2 cosh(τz)

∫ ∞

−∞
f(u) du. (6.8)

Stenger [23] points out that we set

c = min
(
c′,

π

2τ
− ε
)
, α = min(α′, τ), (6.9)

with ε ∈ (0, π
2τ

), but otherwise ε is an arbitrary positive number.

This paves the way for the following fundamental result from [32], which also helps us to find the
parameters.

Theorem 6.1. Let αg and cg be positive numbers. Using the variable transformation u = ϕ(t),
the transformed function g(t) = f(ϕ(t))ϕ′(t) ∈ Lαg (Dαg ), then there exists a positive number K
independent of N , such that

sup
−1<x<1

∣∣∣∣ ∫ x

−1

f(u) du−
[

exp[τϕ−1(x)]

2 cosh(τϕ−1(x))
h

N∑
k=−N

f(ϕ(kh))ϕ′(kh)

+ h

N∑
k=−N

{ N∑
m=−N

I(k −m)

(
f(ϕ(mh))ϕ′(mh)

− τ

2 cosh2(τmh)
h

N∑
k=−N

f(ϕ(kh))ϕ′(kh)

)}
S(k, h, ϕ−1(x))

]∣∣∣∣
≤ K

√
N exp(−(πα′

gc
′
gN)1/2), (6.10)

with

α′
g = min(αg, 2τ),

c′g = min

(
cg,

π − 2τεc
2τ

)
, (6.11)

h =

√
πc′g
α′
gN

,

and εc is any number such that c′g > 0.
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From (6.11) one will observe that

α′
gc

′
g ≤ min(αgcg, π − 2τεc), (6.12)

where τ =
αg

2
, (6.13)

because it reduces the estimated error and gives us what Tanaka et al. call the best SE formula .

From the above theorem, we can now deduce Stenger’s formula, which Tanaka et al. call the SE
formula, ∫ x

−1

f(u) du =

[
exp[τϕ−1(x)]h

2 cosh(τϕ−1(x))

N∑
k=−N

f(ϕ(kh))ϕ′(kh)

+ h

N∑
k=−N

{ N∑
m=−N

I(k −m)

(
f(ϕ(mh))ϕ′(mh)

− τh

2 cosh2(τmh)

N∑
k=−N

f(ϕ(kh))ϕ′(kh)

)}
S(k, h, ϕ−1(x))

]
, (6.14)

with the step size given by (6.11).

7 Derivation of Tanaka et al.’s Formula

In approximating F (x) =
∫ x

−1
f(u) du, −1 < x < 1, we shall make a double exponential transformation,

u = ϕ1(t) in line with Mori
(
[4], [20]

)
, using

ϕ1(t) = tanh
[π
2
sinh t

]
, (7.1)

giving

ϕ′
1(t) =

π cosh t

2 cosh2(π
2
sinh t)

, (7.2)

which maps the entire real line (−∞,∞) to (−1, 1), i.e. ϕ1(t) satisfies{
−1 = ϕ1(−∞) = tanh

[
π
2
sinh(−∞)

]
;

1 = ϕ1(∞) = tanh
[
π
2
sinh(∞)

]
.

(7.3)

To find the inverse, let u = tanh
[
π
2
sinh t

]
, π

2
sinh t = tanh−1 u,

t = sinh−1
(
2
π
tanh−1 u

)
. Alternatively, using tanhx = ex−e−x

ex+e−x = u, x = tanh−1 u, cross-multiplying

and taking loge of both sides, we have x = 1
2
log
(
1+u
1−u

)
, thus π

2
sinh t = 1

2
log
(
1+u
1−u

)
and

t = ϕ−1
1 (u) = sinh−1

[
1

π
log

(
1 + u

1− u

)]
= sinh−1

[
2

π
tanh−1 u

]
. (7.4)

With the above analysis one can now define a double exponential transformation and decay.

Definition 7.1. A function f is said to decay double exponentially [30] if there exist positive
constants α and K, such that

|f(x)| ≤ K exp(−α exp(|x|)) for all x ∈ R. (7.5)

Alternatively, a function f is said to decay double exponentially with respect to the conformal map
ϕ1, if there exist positive constants α and K, such that

|f(ϕ1(x))ϕ
′
1(x)| ≤ K exp(−α exp(|x|)) for all x ∈ R. (7.6)

Thus, any ϕ1 satisfying (7.6) is called a double exponential transformation [30].

21



Akinola; ARJOM, 17(11): 7-41, 2021; Article no.ARJOM.77112

Consequently, we have ∫ x

−1

f(u) du =

∫ ϕ−1
1 (x)

−∞
f(ϕ1(t))ϕ

′
1(t) dt.

Theorem 7.1. Using the variable transformation u = ϕ1(t), the transformed function g(t) =
f(ϕ1(t))ϕ

′
1(t) satisfies

g ∈B(Dcf ), (7.7)

|g(x)| ≤αg exp(−τg exp(λg|x|), (7.8)

for positive numbers αg, τg, λg and cg. Then, for any ε ∈ (0, cv̂), there is a positive number K
′′
ε ,

independent of N , such that

sup
−1<x<1

∣∣∣∣ ∫ x

−1

f(u) du−
[
tanh(P sinh(Qϕ−1

1 (x))) + 1

2
h

N∑
k=−N

f(ϕ1(kh))ϕ
′
1(kh)

+ h

N∑
k=−N

{ N∑
m=−N

σk−m

(
f(ϕ1(mh))ϕ

′
1(mh)

− PQ cosh(Qmh)

2 cosh2(P sinh(Qmh))
hf(ϕ1(mh))ϕ

′
1(mh)

)}
× sinc

(
ϕ−1
1 (x)− kh

h

)]∣∣∣∣
≤ K

′′
ε exp

[
−π(cv̂ − ε)λv̂N

log(π(λv̂ − ε)λv̂N/τv̂)

]
, (7.9)

where v̂ and h are defined as

v̂ = g − s, h =
log(π(λv̂ − ε)λv̂N/τv̂)

λv̂N
, (7.10)

and where P , Q , λv̂, τv̂ and cv̂ are as defined in either (7.23) to (7.27) or (7.28) to (7.31), with f
and v replaced by g and v̂ respectively.

Tanaka et al.’s formula can now be deduced from (7.9) above as:∫ x

−1

f(u) du =
tanh(P sinh(Qϕ−1

1 (x))) + 1

2
h

N∑
k=−N

f(ϕ1(kh))ϕ
′
1(kh)

+ h

N∑
k=−N

{ N∑
m=−N

σk−m

(
f(ϕ1(mh))ϕ

′
1(mh)

− PQ cosh(Qmh)

2 cosh2(P sinh(Qmh))
hf(ϕ1(mh))ϕ

′
1(mh)

)}
S(k, h, ϕ−1

1 (x)). (7.11)

The choice of the parameters P and Q is without any discretion (we are free to choose them), but
with the intention of minimising the error for a given integrand f . The determination of the set of
parameters (P,Q) should be such that they give the maximum value of λvcv, and choosing among
the maximizers [32] (P,Q) that make τv as large as possible. Bear in mind that τv, λv and cv are
to be determined from P and Q using the results in Proposition 7.1 and Lemma 7.2.

The following propositions and the explanations that follow help one to determine the parameters.
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Proposition 7.1. Let τω, λω and cω be determined as

τω =


P − ετ , λω = Q, cω = π−2Qεc

2Q
, P ∈ (0, π/2);

P − ετ , λω = Q, cω =
sin−1( π

2P
)−Qεc

Q
, P ≥ π/2;

(7.12)

where ετ and εc are positive numbers such that τω > 0 and cω > 0. Then we have

ω ∈ B(Dcω ), (7.13)

|ω(x)| ≤ αω exp(−τω exp(λω|x|)), ∀ x ∈ R. (7.14)

Lemma 7.2. Let τf , λf and cf be constants such that

f ∈B(Dcf ), (7.15)

|f(x)| ≤ αf exp(−τf exp(λf |x|)), ∀ x ∈ R. (7.16)

If τω, λω and cω are constants in (7.12), then for

τv =


τf , λf < λω

τω, λf > λω

min(τf , τω), λf = λω

(7.17)

λv = min(λf , λω) (7.18)

cv = min(cf , cω) (7.19)

we have

v ∈B(Dcv ) (7.20)

|v(x)| ≤αv exp(−τv exp(λv|x|)), ∀ x ∈ R. (7.21)

Proposition 7.2. If f satisfies the conditions f ∈ B(Dcf ) and |f(x)| ≤ αf exp(−τf exp(λf |x|)),
for all x ∈ R and f ̸= 0, then λvcv ≤ π

2
.

To start with, we want to emphasise that (7.18) and (7.19) imply that

λvcv ≤ λfcf , (7.22)

where λfcf ≤ π
2
. We shall divide the argument into two cases, depending on the value of λfcf .

7.0.1 First Case: λfcf < π
2

P =
π

2 sinλfcf
− εP , (7.23)

Q = λf , (7.24)

where εP , is any positive number such that P > π
2
. Then

λv = min{λf , Q} = λf , (7.25)

cv = min

{
cf ,

arcsin π
2P

− 2εcQ

Q

}
= min

{
cf ,

1

λf
arcsin

[
π sinλfcf

π − 2εP sinλfcf

]
− εc

}
= min

{
cf ,

1

λf
arcsin

[
sinλfcf

1− (2εP /π) sinλfcf

]
− εc

}
= cf . (7.26)
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Because εP and εc are very small, λvcv in (7.22), attains the upper bound λfcf , which is obtained
when λv = λf and cv = cf , which means that P ∈ (0, π

2
) or P ∈ (π

2
, π
2 sinλf cf

).

τv = min

{
τf ,

π

2 sinλfcf
− (εP + ετ )

}
, (7.27)

ετ > 0 such that τv > 0.

7.0.2 Second Case: λfcf = π
2

Since λvcv ≤ λωcω < π
2
, one cannot attain the upper bound λfcf if λfcf = π

2
in (7.22). But we

can make λvcv arbitrarily close to π
2
with

P =
π

2
, Q = λf , (7.28)

from which

λvcv = min

{
λf , Q

}
min

{
cf ,

π − 2εcQ

2Q

}
= λf min

{
cf ,

π − 2εcQ

2Q

}
=
π − 2εcQ

2
. (7.29)

λv = λf , (7.30)

cv =
π − 2εcλf

2λf
, (7.31)

where ετ and εc are positive numbers such that τv > 0 and cv > 0.

8 Numerical Experiments

In this section, we apply the four quadrature formulas discussed in the previous section to find
numerical approximations to two test problems. In doing this, we show how the parameters for
finding the step size h for each of the formulas can be obtained. We also illustrate using figures,
the actual form of the error by plotting the actual error against v in each case for each of the
formulas, as well as plotting the error against ϕ−1(v). This stretches out the ends of the interval
−1 < v < 1 so that the true behaviour of v near the end-point singularities is shown more clearly.
Throughout this section, error is the absolute value of the difference between the exact and the
approximate values. The section concludes with a performance evaluation and an analysis of the
results. The octave and gnuplot codes used for each of the computations and figures respectively
can be obtained on request from the author.

8.1 Implementing Haber’s Formula A

Example 8.1. We use formula (3.10) to approximate the integral below:∫ v

−1

1

π
√
1− x2

dx. (8.1)

Let us first find the values of the parameters α and c, bearing in mind that they are to be
chosen so that the functions are ”normalised”. To find α, we shall use condition A4 with ϕ(x) =

24



Akinola; ARJOM, 17(11): 7-41, 2021; Article no.ARJOM.77112

tanh
x

2
, ϕ′(x) =

1

2
sech2 x

2
:

f(ϕ(x)) =
1

π
√

1− tanh2 x
2

=
1

π sech x
2

f(ϕ(x))ϕ′(x) =
1

2π cosh x
2

|f(ϕ(x))ϕ′(x)| =
∣∣∣∣ 1

2π cosh x
2

∣∣∣∣
= O(e−

1
2
|x|), |x| → ∞, (8.2)

which implies that α = 1
2
. From Theorem 3.2, we can choose 0 < c ≤ π and, for this example, we

chose c = π. We used 370 values of v, which are

V = −0.999,−0.998,−0.997, · · · ,−0.9;−0.89,−0.88,−0.87, · · · ,+0.96;

+ 0.911,+0.912,+0.913, · · · ,+0.999.

We plugged these values of v, α, c into (3.10), we present results by Fig. 1, Fig. 2 and Table 1.
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Fig. 1. The error against v for

∫ v

−1

1

π
√
1− x2

dx, N = 25, using Haber’s formula A

Fig. 1 shows some oscillations that increase toward the endpoint singularities (±1), but the
behaviour towards ±1 is shown clearly in Fig. 2. From Fig. 1, it is quite difficult to see the
maximum absolute value of the error of applying Haber’s formula A, thus we decided to plot Figure
8.1 (v ∈ [−0.8,−1]) to show that it occurs at v = −0.87.

Example 8.2. Let us use formula (3.10) to approximate the integral below:

1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx. (8.3)
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Fig. 2. The error against ϕ−1(v) for

∫ v

−1

1

π
√
1− x2

dx, N = 25, using Haber’s formula A.
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Fig. 3. The error against v for

∫ v

−1

1

π
√
1− x2

dx, N = 25, using Haber’s formula A.

We shall do this by finding the value of α, using condition A4 with ϕ(x) = tanh
x

2
,

ϕ′(x) =
1

2
sech2 x

2
, so that

f(ϕ(x)) =
1

4 log 2
log

(
1 + tanh x

2

1− tanh x
2

)
.
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Table 1. The maximum error of the formulas on

∫ v

−1

1

π
√
1− x2

dx.

Max. Error
N Haber’s A Haber’s B SE Tanaka

1 5.92e-02 1.08e-01 7.15e-02 2.88e-01

4 5.80e-03 1.70e-02 5.37e-03 1.08e-02

9 6.67e-04 2.09e-03 4.37e-04 1.07e-04

16 7.58e-05 2.36e-04 4.90e-05 2.84e-07

25 8.45e-06 2.63e-05 5.25e-06 1.78e-10

36 9.34e-07 2.90e-06 5.78e-07 2.97e-11

49 1.03e-07 3.18e-07 6.29e-08 2.97e-11

64 1.13e-08 3.48e-08 6.89e-09 2.97e-11

81 7.51e-10 2.97e-11

100 1.08e-10 2.97e-11

After some algebra using the exponential form of tanh
x

2
, one obtains

f(ϕ(x)) =
1

4 log 2
log ex =

x

4 log 2

f(ϕ(x))ϕ′(x) =
x

4 log 2
× 1

2
sech2 x

2

=
x

8 log(2) cosh2 x
2

=
x

2 log(2)(e
x
2 + e−

x
2 )2

|f(ϕ(x))ϕ′(x)| ≤ O(e−|x|), |x| → ∞. (8.4)

As in Example 8.1, 370 values of v were used with α = 1. These values of v, α, c were substituted
into (3.10), results are presented by Figs. 4 and 5 as well as Table 2.

A close look at Fig. 4 shows a dying oscillation as v tends to ±1, which means that the maximum
absolute value of the error decreases towards the endpoints. The maximum absolute value of the

error for Haber’s formula A on the integrand
1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx occurs at v = 0, as shown

in Fig. 4.

8.2 Implementing Haber’s Formula B

We shall try to implement Haber’s Formula B on the integrals (8.1) and (8.3). From Haber’s
condition A4, they both decay single exponentially. The same analysis is applicable to the two
integrals in the previous section, the only difference being that we use an auxiliary function φ(x) =
x+ 1

2
.

Example 8.3. From the right-hand side of equation (8.2), with α =
1

2
, c = π and using the

auxiliary function φ(x) =
x+ 1

2
, we substituted these values into (4.2), which is Haber’s Formula

B. Table 1 shows the values of N used and the maximum error (See also Figs. 6 and 7).
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Fig. 4. The error against v for
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Fig. 5. The error against ϕ−1(v) for
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4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx, N = 25, using Haber’s

formula A

The oscillations in Fig. 6 are higher around v = 0 and decreases towards ±1. From Fig. 8, we can
see that the maximum absolute value of the error occurs at v = −0.18.

Example 8.4. From the right-hand side of equation (8.4), with α = 1, c = π and using the auxiliary

function φ(x) =
x+ 1

2
, we then substituted these values into (4.2), which is Haber’s Formula B.

The results are tabulated in Table 2 and illustrated by Fig. 9 and Fig. 10.
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Table 2. The maximum error of the formulas on
1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx.

Max. Error
N Haber’s A Haber’s B SE Tanaka

1 1.67e-01 1.67e-01 1.66e-01 2.24e-01

4 1.06e-02 1.06e-02 1.06e-02 9.83e-03

9 6.01e-04 6.01e-04 6.03e-04 6.18e-05

16 3.35e-05 3.35e-05 3.38e-05 8.13e-08

25 1.77e-06 1.77e-06 1.79e-06 3.54e-11

36 9.10e-08 9.10e-08 9.25e-08 5.39e-14

49 4.55e-09 4.55e-09 4.65e-09 5.43e-14

64 2.24e-10 2.24e-10 2.30e-10 5.43e-14

81 1.08e-11 1.08e-11 1.12e-11 5.41e-14

100 5.20e-13 5.20e-13 5.40e-13 5.42e-14
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Fig. 6. The error against v for

∫ v

−1

1

π
√
1− x2

dx, N = 36, using Haber’s formula B

As can be seen in Fig. 9, the oscillations decreases towards the endpoints, but Fig. 10 stretches the
original figure like an ”ideal spring”. The maximum absolute error occurs at v = 0.

8.3 Implementing the SE Formula

We shall use the integral in Examples 8.1 and 8.2 (they decay single exponentially) to implement
the Single Exponential Formula.

Example 8.5. As already shown with Example 8.1, we can deduce that αf =
1

2
, and using (6.13),

one will find that τ =
1

4
, α′

f = min

(
1

2
, 2(

1

4
)

)
=

1

2
, c′f = min(cf , 2π − εc) = π − ε when εc = ε.
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Fig. 7. The error against ϕ−1(v) for
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Fig. 8. The error against v for
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−1
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π
√
1− x2

dx, N = 36, using Haber’s formula B.

Substituting these values into (6.11) we have that

h =

√
2π(π − ε)

N
.

These values are then plugged into the SE formula (6.14), as are the 370 values of v (see Table 1,
Fig. 11 and Fig. 12).
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Fig. 10. The error against ϕ−1(v) for
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4 log 2
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log

(
1 + x

1− x

)
dx, N = 36, using Haber’s

formula B

By looking at Fig. 11 we find that the oscillations increase toward ±1. We plotted the figure with
the gnuplot histeps option, because the other options did not join the point v = 0 with the other
points, which is why the figure appears different to the other figures. A plot within the interval
[−1,−0.9], similar to that in Fig. 3, shows that the maximum absolute value of the error occurs at
v = −0.933.
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Example 8.6. From the analysis of the integral in Example 8.2,
1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx, we will take αf = 1, and from (6.11) and (6.13) we use τ =

1

2
, c′f =

π − εc = π − ε, when εc = ε, α′
f = min(1, 1) = 1:

h =

√
π(π − ε)

N
.

The values obtained above, with the step size, are then substituted into (6.14) (Refer to Table 2,
Fig. 13 and Fig. 14).
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Fig. 13 shows that the maximum absolute value of the error occurs at v = 0. It also shows that
the maximum absolute error decreases towards ±1.
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formula.
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8.4 Implementing Tanaka et al.’s Formula

Example 8.7. We want to use formula (7.11) to approximate the integral in Example 8.1 with

ϕ1(x) = tanh

(
π

2
sinhx

)
.

f(x) =
1

π
√
1− x2

= O(|1− x2|)−
1
2 ; (x→ ±1)

f(ϕ1(x))ϕ
′
1(x) =

1

π
√

1− tanh2(π
2
sinhx)

π coshx

2 cosh2(π
2
sinhx)

=
coshx

2 sech(π
2
sinhx) cosh2(π

2
sinhx)

=
coshx

2 cosh(π
2
sinhx)

|f(ϕ1(x))ϕ
′
1(x)| = O(exp(−π

4
exp |x|)); (x→ ±∞).

Comparing this with the right-hand side of the expression |f(x)| ≤ αf exp(−τf exp(λf |x|)), one
finds that

τf =
π

4
, λf = 1; cf =

π

2Q
− εc =

π

2
− εc;

and using (7.23) to (7.27), Q = λf = λv = 1, τv =
π

4
, cv =

π

2
− εc;

P =
π

2 sin(π
2
− εc)

− εP ; εP > 0 ∋ P > 0. (8.5)

For any small εc, sin
(π
2
− εc

)
≡ 1 and P may be close to

π

2
, thus P =

π

2
− ε must be chosen when

εP = ε and, making the appropriate substitutions,

h =
log(π(cv − ε)λvN/τv)

λvN
=

log((2π − 8ε)N)

N
.

(Refer to Table 1, Fig. 15 and Fig. 16). Fig. 15 displays no oscillations and, in contrast to the
other figures, we see a clustering around zero, except at v = 0.911, which is the maximum absolute
value of the error and at v = −0.25.

Example 8.8. We want to use formula (7.11) to approximate the integral

1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx. (8.6)

We illustrate how to obtain the parameters below.

f(ϕ1(x))ϕ
′
1(x) =

1

4 log 2
log

(
1 + tanh(π

2
sinhx)

1− tanh(π
2
sinhx)

)
π coshx

2 cosh2(π
2
sinhx)

=
π log(exp(π sinhx)) coshx

8 log 2 cosh2(π
2
sinhx)

=
π2 sinhx coshx

8 log 2 cosh2(π
2
sinhx)

|f(ϕ1(x))ϕ
′
1(x)| = O(exp(−π

2
exp(|x|))), x→ ±∞.
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Thus |f(ϕ1(x))ϕ
′
1(x)| decays double exponentially with τf =

π

2
, λf = 1. Using (7.23) to (7.27),

P =
π

2
, λv = 1, τv = min

{
π

2
,
π

2
− (εP − ετ )

}
= min

{
π

2
,
π

2
− 2ε

}
=
π

2
− 2ε, cv =

π

2
− εc =

π

2
− ε

and

h =
log(π(cv − ε)λvN/τv)

λvN
=

log πN

N
.

A closer look at Fig. 17 shows a clustering or increase in the error towards +1. Fig. 18, which
is supposed to stretch the plot so that we can see the behaviour towards the end-points, does not
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really help. So for us to trully see the maximum value of the error v = 0.994, and the behaviour
towards +1, we plotted Figure 8.4, on the interval [0.9, 1].
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Fig. 17. The error against v for
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4 log 2
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formula.
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Fig. 18. The error against ϕ−1(v) for
1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx, N = 49, using Tanaka et

al.’s formula

From Table 1, we discover that, for N ≥ 81, there was a blow up for Haber’s formulas A and B
for the reason given in the final paragraph of section 5. This blow up is illustrated in Fig. 20 by
the vertical line going downwards at N = 64. In addition, one can see that Tanaka et al.’s formula
gives the most accurate results as N becomes larger. However, Stenger’s SE formula perform better
than the Haber’s formulas and did not blow up at N = 64.
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A close look at Table 2 shows that Tanaka et al.’s formula gives more accurate results than the other
formulas as well as a faster convergence to the exact solution. Fig. 21 shows that the maximum
absolute errors for the other three formulas coincide, indicating that they give almost the same

results to a certain degree of accuracy on the integral
1

4 log 2

∫ v

−1

log

(
1 + x

1− x

)
dx.
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After deriving and showing how to implement the four quadrature formulas for numerical approxima-
tion to indefinite integrals based on the sinc method, and in the earlier part of this section. Next,
we want to ascertain the performances of the methods on the computational examples. This will
be done by comparing the maximum absolute errors of the four formulas and the CPU times. In
each table, ”Max. Error” represents the maximum absolute value of the error of the approximation
for the values of v for which the integral was evaluated, and N represents the number of function
evaluations.

Table 3. A comparison of the minimum CPU time of the four quadrature formulas
on

∫ v

−1
1

π
√

1−x2
dx.

Minimum CPU Time
N Haber’s A Haber’s B SE Tanaka

1 3.60e-02 3.60e-02 3.20e-02 3.20e-02

4 6.80e-02 3.16e-01 2.96e-01 2.52e-01

9 1.24e-01 1.82e+00 1.65e+00 1.79e+00

16 2.48e-01 7.24e+00 6.84e+00 6.92e+00

25 4.12e-01 2.25e+01 2.15e+01 2.17e+01

36 7.64e-01 6.04e+01 5.84e+01 5.85e+01

49 1.24e+00 1.42e+02 1.38e+02 1.38e+02

64 1.92e+00 3.03e+02 2.95e+02 3.54e+02

81 5.63e+02 5.69e+02

100 1.05e+03 1.06e+03

In order to ascertain which of the four quadrature formulas is the fastest, we computed the minimum
CPU time it took for the numerical approxima-tion of the two integrals under discuss. The results
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are as tabulated in Tables 3 and 4. For example, a close look at Table 3 shows that for N = 64,
while the minimum CPU time for Haber’s formula A is 1.92, it took 303, 295 and 354 seconds for
Haber’s formula B, Steger’s Single Exponential formula and Tanaka et al.’s formula respectively. A
similar performance was observed in Table 4. Therefore, this shows that Haber’s formula A which
involves a single sum evaluation converges the fastest.

Table 4. A comparison of the minimum CPU time of the four quadrature formulas

on 1
4 log 2

∫ v

−1
log
(

1+x
1−x

)
dx.

Minimum CPU Time
N Haber’s A Haber’s B SE Tanaka

1 4.80e-02 2.00e-02 2.00e-02 2.80e-02

4 4.80e-02 1.68e-01 1.56e-01 3.44e-01

9 1.00e-01 9.88e-01 9.32e-01 1.62e+00

16 2.20e-01 4.08e+00 3.92e+00 6.58e+00

25 4.08e-01 1.30e+01 1.27e+01 2.10e+01

36 7.92e-01 3.51e+01 3.41e+01 6.14e+01

49 1.20e+00 8.23e+01 8.11e+01 1.34e+02

64 1.84e+00 1.78e+02 1.75e+02 2.87e+02

81 2.98e+00 3.42e+02 3.37e+02 5.76e+02

100 4.08e+00 6.35e+02 6.27e+02 1.06e+03

9 Conclusions

As shown by the tables and figures above, the Double Exponential sinc method proposed by Tanaka,
Sugihara and Murota [32] is the most accurate for the numerical approximation of indefinite integrals
of functions with or without singularities. However, Haber’s formula A, which involves one single
sum evaluation had the smallest minimum CPU time as shown in Tables 5 and 6; in agreement
with the unsubstantiated claims in [25].
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