
*Corresponding authors: E-mail: olufemiodeniyi@gmail.com, eoomidiora@lautech.edu.ng, soolabiyisi@lautech.edu.ng,
caoyeleye@lautech.edu.ng;

Asian Journal of Research in Computer Science

5(3): 21-38, 2020; Article no.AJRCOS.55744
ISSN: 2581-8260

A Mathematical Programming Model and Enhanced
Simulated Annealing Algorithm for the School

Timetabling Problem

O. A. Odeniyi1*, E. O. Omidiora2*, S. O. Olabiyisi3* and C. A. Oyeleye4*

1
Department of Computer Science, Osun State College of Technology, Esa-Oke, Nigeria.

2Department of Computer Engineering, Ladoke Akintola University of Technology, Ogbomoso,
Nigeria.

3
Department of Computer Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

4Department of Information Systems, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author OAO formulated the
mathematical programming model and Enhanced Simulated Annealing (ESA) algorithm for solving the

school timetabling problem and wrote the first draft of the manuscript. Authors EOO and SOO
implemented and validated the formulated mathematical model and ESA algorithm using Matrix

Laboratory 8.6 software and a Nigerian high school dataset respectively. Author CAO managed the
literature searches, references and does the final manuscript. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2020/v5i330136
Editor(s):

(1) Dr. G. Sudheer, GVP College of Engineering for Women, India.
Reviewers:

(1) Pasupuleti Venkata Siva Kumar, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering & Technology, India.
(2) Tajini Reda, École Nationale Supérieure des Mines de Rabat, Morocco.

(3) Marco Benvenga, UNIP Universidade Paulista, Brazil.
(4) David Lizcano, Madrid Open University, Spain.

Complete Peer review History: http://www.sdiarticle4.com/review-history/55744

Received 20 February 2020
Accepted 27 April 2020
Published 02 May 2020

ABSTRACT

Despite significant research efforts for School Timetabling Problem (STP) and other timetabling
problems, an effective solution approach (model and algorithm) which provides boundless use and
high quality solution has not been developed. Hence, this paper presents a novel solution approach
for solving school timetabling problem which characterizes the problem-setting in the timetabling
problem of the high school system in Nigeria. We developed a mixed integer linear programming
model and meta-heuristic method - Enhanced Simulated Annealing (ESA) algorithm. Our method

Original Research Article

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

22

incorporates specific features of Simulated Annealing (SA) and Genetic Algorithms (GA) in order to
solve the school timetabling problem. Both our solution approach and SA approach were
implemented using Matrix Laboratory 8.6 software. In order to validate and demonstrate the
performance of the developed solution approach, it was tested with the highly constrained school
timetabling datasets provided by a Nigerian high school using constraints violation, simulation time
and solution cost as evaluation metrics. Our developed solution approach is able to find optimal
solution as it satisfied all the specified hard and soft constraints with average simulation time of
37.91 and 42.16 seconds and solution cost of 17.03 and 18.99, respectively, for JSS and SSS to
the problem instance. A comparison with results obtained with SA approach shows that the
developed solution approach produced optimal solution in smaller simulation time and solution
cost, and has a great potential to solve school timetabling problems with satisfactory results. The
developed ESA algorithm can be used for solving other related optimization problems.

Keywords: School timetabling problem; model; mixed integer linear programming; meta-heuristics;
genetic algorithm; simulated annealing.

1. INTRODUCTION

The School Timetabling Problem usually denoted
as High School Timetabling Problems (HSTP) is
concerned with the process of fixing a sequence
of meetings between teachers and classes (set
of lessons) to a specific number of timeslots
within a prefixed time period (typically a week),
satisfying a set of constraints of various kinds
[1,2,3]. These constraints are usually classified
into two types, hard and soft. Hard constraints
must be satisfied in order to provide a feasible
solution, whereas, soft constraints which express
the preferences and the quality of the timetable
can be violated (but must be satisfied as far as
possible) [4]. The quality of a timetable is
measured based on how well the soft constraints
have been satisfied. The more soft constraints
are satisfied, the better is the quality of the
solution considered. Further discussion on
school timetabling can be found in [2,5].

Literature on school timetabling is very extensive
with several solution approaches (models and
algorithms) proposed. In fact, many models
including XHSTT format (which is based on the
Extensible Markup Language standard) and
several NP-complete variants of HSTP have
been proposed in the literature, which differ due
to the difference in educational system of each
country, context of the application, the school
and the place where it is located. Representative
literature include [6,7,8,9,10,11,12,13,14]. In
addition, a variety of heuristic (analytical) and
complete methods have been proposed to solve
HSTP including hybrid or enhanced which is
surveyed by [3].

Nevertheless, developing good models and
algorithms for solving HSTP is a challenging task
due to its inherent problem characteristics and

complexities (a large search space of the
problem – large number of events required to be
assigned to resources while satisfying a large list
of constraints; increasing number of courses/
subjects that are very diverse for the different
countries to be scheduled; a varying structure in
different high schools even in the same country
or educational systems and a wider variety of
many different requirements (both objectives and
constraints) which are usually institution-specific
that changes day by day) [5,15,16,17,18].
Furthermore, [19] confirmed that every model
has limited use and many problems are still not
solved efficiently or optimally as most of these
solution approaches however generated feasible
or low quality solutions. Even [20] opined that
finding a feasible solution to HSTP is often
difficult especially when the resources are tight
and usually results to low computational
efficiency.

HSTP has been intensively investigated since
the1960s [21,22]. Recent years have seen an
increased level of research activity in this area.
This is evidenced (among other things) by survey
studies, for example, [23,24,25], and the
emergence of a series of international
conferences on the Practice and Theory on
Automated Timetabling (PATAT), the Multi-
disciplinary International Scheduling Conference:
Theory and Application (MISTA) and the
establishment of a European Association of
Operational Research Societies (EURO) working
group on automated timetabling [26]. However,
the international conference series on PATAT
has contributed largely to the area, for example
[10,18,27,28,29].

Graphs, Networks and Integer Programming (IP)
have proven to be useful in the mathematical
formulation and solution of school timetabling

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

23

models [15,30]. Integer Programming (IP) has
been used to model problems with more
sophisticated requirements including educational
timetabling problems since the very early days of
Operations Research, for example, [22,31].
However, IP is mainly used for timetabling due to
its modeling strength, and not as an actual
solution method since only small instances, or
simplified variants of the problem, were shown to
be solved in reasonable time. In recent times
several improvements have been made in IP
solvers [32] and several IP based techniques
have been introduced for similar HSTPs which
were able to provide bounds and good solutions
after longer runs. [7,8] surveyed some of these
recent contributions.

Over the last few years, meta-heuristics including
its hybrids have proven to be very effective in the
optimisation literature, and particularly in school
timetabling. Souza et al. [33] applied a hybrid
approach of GRASP-Tabu search algorithm to
solve school timetabling problem in order to
improve the timetable’s compactness and
speeds up the process of obtaining better quality
solutions. In this work, while the partially greedy
constructive procedure was used to generate
good initial solutions and diversifies the search,
the Tabu Search procedure was used to improve
(refine) the constructed solution (search).
Though quality solution was generated, it was
suggested that quality of the solution can be
improved by considering other requirements and
adding component which measures the
difference between the current and the desired
solution to the objective function.

Soza et al. [34] addressed the solution of
timetabling problems using cultural algorithms.
The authors proposed the use of domain
knowledge, both a priori and extracted during the
search to improve the performance of an
evolutionary algorithm when solving timetabling
problems. The experimental results provided
very encouraging results. However, the optimality
of the solution was in doubt as soft constraints
violations were not addressed. It was suggested
that the performance of the developed algorithm
can be improved by analysing the mechanisms
of the simulated annealing method for
incorporation into an evolutionary algorithm or a
cultural algorithm.

Santos et al. [35] presented a hybrid SA-ILS
approach to solve the high school timetabling
problem. The Kingston’s High School Engine
(KHE) was used to generate an initial solution

while Simulated Annealing (SA) and Iterated
Local Search (ILS) were used to perform local
search around the initial solution. The
experimental results produced several best
known solutions for the test set. However, it was
suggested that the quality of the solution can be
improved by the development of an augmented
set of (larger) neighbourhoods and a proper
experimental study to fine tune parameter
selection.

Sorensen et al. [36] established a new hybrid
approach called matheuristic, combining integer
programming and meta-heuristics to solve the
high school timetabling problem. The
experimental results illustrated that the
developed matheuristic provided promising
results and the potential of hybridising
mathematical programming and meta-heuristics.
However, it was suggested that the
computational efficiency of the developed
matheuristic can be improved by investigating
more advanced approaches for adjusting the size
of the neighbourhoods and selecting variables in
each neighbourhood.

Raghavjee [37] presented genetic algorithms to
solve STP in order to test the effectiveness of a
genetic algorithm approach in solving more than
one type of STP and as well to evaluate the
performance of a genetic algorithm that uses an
indirect representation (IGA) with that of a
genetic algorithm that uses a direct
representation (DGA) when solving the STP.
Both the DGA and IGA when tested on five STPs
were found to produce timetables that were
competitive and in some cases superior to that of
other methods. However, the IGA outperformed
the DGA for all of the tested STPs. The solution
did not address the problem of optimality and
both software and computational complexities
which can be considered for future research. In
addition, it was recommended that future
research may be geared towards implementing
more advanced techniques (more efficient
algorithms) to solve the STP so as to provide
more bases for comparison.

Kristiansen [38] developed different techniques
to solve Multiple Timetabling Problems (High
School Timetabling, Student Sectioning and
Meeting Planning Problem) at the Danish High
Schools. Techniques developed included
Adaptive Large Neighbourhood Search (ALNS),
Mixed Integer Programming (MIP) Dantzig-Wolfe
decomposition in a Branch-and-Bound and
Column generation with a Branch-and-Price

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

24

(B&P). The experimental results proved that all
the developed techniques and algorithms were
efficient. However, it was suggested that future
research may be geared towards investigating
more techniques such as hyper-heuristics and
matheuristics to measure and improve the quality
of solution and computational efficiency of the
developed exact methods.

Odeniyi et al. [2] developed a modified simulated
annealing (MSA) algorithm to solve STP. The
implementation of the MSA was characterized by
cooling schedule modification with the
introduction of a non-linear factor to the
exponential cooling schedule of classical
simulated annealing (α = (1/log(1+t)) to become
parabolic (as α = (1/log(1+t+t

2
)), in order to

decrease the sensitivity to the initial values
(parameters) that accounted for the excessive
convergence time of classical simulated
annealing. MSA when tested on some variants of
the STP that originated from Nigerian secondary
educational institutions produced conflict-free
school timetables which satisfied all hard
constraints and optimally minimised all soft
constraints violations in less simulation time and
less solution cost. However, the solution did not
address the problem of software and
computational complexities which can be
considered for future research. In addition, it was
recommended that future research may be
geared towards improving the quality of the
solution of the developed algorithm by
implementing more advanced techniques such
as efficient hybridised algorithms.

Dorneles [39] developed techniques that
combine mathematical programming and
heuristics, so-called matheuristics (fix-and-
optimize heuristic combined with a variable
neighbourhood descent strategy and column
generation approach), to solve efficiently and in a
robust way some variants of the High School
Timetabling Problem (HSTP) that originated from
Brazilian institutions. The performance of the
developed matheuristics were evaluated and
compared with the state-of-the-art MIP solvers
designed for solving the GHSTP, referred as
GOAL and SVNS. The experimental results
provided very encouraging results which
indicated that the state-of-the-art MIP solvers
were not efficient for solving instances of the
HSTP

+
. It was suggested that future research

may be geared towards reducing the simulation
time while improving both the quality of the
solution and computational efficiency of the
developed matheuristics.

Raghavjee et al. [40] presented a genetic
algorithm selection perturbative hyper-heuristic
(GASPHH) to solve the STP. A 2-phased
approach was taken, with the first phase focusing
on hard constraints, and the second on soft
constraints. GASPHH used tournament selection
to choose parents, to which the mutation and
crossover operators were applied. GASPHH was
applied to five different school timetabling
problems. The performance of GASPHH was
evaluated and compared to that of other methods
applied to these problems, including a GA that
was applied directly to the solution space.
GASPHH produced feasible timetables for all
problem instances, provided a generalized
solution to the STP, and performed better than
other methods applied to the same set of
problems. However, GASPHH was computa-
tional intensive in comparison to SGA based
benchmark heuristics. It was suggested that
future research may be geared towards
investigating approaches to reduce both the
simulation time and computational complexity as
well to improve the computational efficiency of
the developed GASPHH.

Demirovic [6] presented SAT-based approaches
for HSTP. The problem of determining whether a
propositional logic formula has a solution is
called the satisfiability problem (abbreviated as
SAT). The thesis explored the relation between
propositional logic and HSTP, as well as related
approaches. The thesis described the general
HSTP (XHSTT), introduced a formal definition,
as well two different modelling approaches, SAT-
and bitvector based. The author combined local
search and large neighbourhood search to solve
XHSTT instances which were modelled as
maxSAT. Each of the described methods is
vastly different from each other and represented
distinct ways to tackle XHSTT. The
computational results showed that the developed
models and solution methods were competitive
with the state-of-the-art. However, it was
suggested that future research may be geared
towards investigating techniques to find and
prove optimal solutions in reasonable time for
XHSTT in many instances.

A review of the above related works with
literature analysis revealed most of these
solution approaches however generated feasible
or near-optimal solutions with low computational
efficiency. Therefore, this research focuses on
developing a more efficient solution approach,
utilising the strength and minimising the
weaknesses of two well-known meta-heuristics,

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

25

Simulated Annealing (SA) and Genetic Algorithm
(GA). SA is based on an analogy to
thermodynamics simulating the cooling of a set
of heated atoms. This technique starts its search
from any initial solution which can be generated
randomly or by using solutions generated by
another algorithm [2,41]. The main procedure
consists of a loop that randomly generates, at
each iteration, one neighbour s′ of the current
solution s. Movements are probabilistically
selected considering a temperature T and the
cost variation of the movement ∆ [42].

SA is known for its power to avoid local optima
and its theoretical guaranty to find the global
optimum solution when the initial temperature is
high enough and cooling rate is infinitely slow
[43,44,45] but converges at excessive time
especially when the search space is large [46].
Several attempts have been made to speed up
this process, such as treatment or modification of
the temperature parameter, which is known as
annealing schedule or strategy [2], and hybridiza-
tion with other techniques [47,48,49,50], among
others.

GA is a biologically motivated adaptive meta-
heuristic that is based on natural selection and
genetic recombination. It utilizes selection,
crossover and mutation mechanisms to evolve
the population. The usage of GA in obtaining the
optimal parameters for a kernel function, its
flexibility, coupled with its demonstrated
capability of searching or exploring large search
spaces [51,52], its demonstrated ability to reach
near-optimum solutions to large problems, and
its power to discover good solutions rapidly for
difficult high-dimensional problems makes the
technique an ideal candidate for consideration in
solving the timetabling problem.

In this work, we extend previous studies about
the HSTP. We propose a mathematical
programming model and meta-heuristic method
to construct school timetables. We utilise mixed
integer linear programming formulation to model
the problem to be solved but due to the limitation
of a mathematical programming approach to
solve large problem instances and slow
convergence speed of classical simulated
annealing (SA) algorithm, we propose a new
meta-heuristic method, called Enhanced
Simulated Annealing (ESA) algorithm which
incorporates best features of Simulated
Annealing (SA) and Genetic Algorithm (GA) to
find quality solutions to some variants of the
HSTP.

The aim of this work is to develop an effective
solution approach (model and algorithm) which
provides boundless use and high quality solution
to the school timetabling problem. The overall
idea is to overcome the problem of low solution
quality (slow convergence speed), which is a
common problem when using simulated
annealing (SA). The developed solution
approach was implemented using Matrix
Laboratory 8.6 software. In order to validate
and demonstrate the performance of the
proposed solution approach, it was tested
with the highly constrained school timetabling
datasets provided by a Nigerian high school,
using computation time, solution cost and
constraints violation as evaluation metrics.

Developing models and algorithms that
automatically generate high quality timetables is
of great importance [6] and is still an active field
of research as well as important issues in this
domain. High quality timetables are relevant for
financial and pedagogical reasons. High quality
timetables directly influence the quality of
teaching and learning, working conditions of
teachers as well as the maintenance of the
satisfaction of students and staff, among other
things, which leads to an overall better use of
resources and learning environment [12,53].
Conversely, timetables construction by hand is
usually very difficult, time consuming, and error
prone. Consequently, assisting the high school
planners with efficient algorithms and decision
support software that will automatically generate
high quality timetables and/or spend less time is
of great importance [6,7]

Furthermore, the high schools administration
requires a model of the HSTP which is
general enough to suit many different
requirements, and which is also tractable by
computer aided solution methods. This
supports the recent trend of developing general
models for HSTP, for example [6,9,10,12,
14,16,17,54,55,56,57,58]. In addition, the
mathematical programming model formulated in
this paper is the first for high school system in
Nigeria, and as well as among the most
comprehensive models of school timetabling to
be found in the literature. Although the developed
model is tailored to the Nigeria case but can
easily be adapted to other variants from other
countries and other related optimization
problems. The model is 'complete' in the sense
that it contains all relevant practical constraints
available in the context of high school timetabling
problem in Nigeria.

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

26

2. METHODOLOGY

In this work, mixed integer linear programming
technique was used to formulate the
mathematical programming model of the school
timetabling problem for the high school system in
Nigeria (HNSTP). An Enhanced Simulated
Annealing (ESA) algorithm for solving the school
timetabling problem was formulated, which
incorporates specific features of Simulated
Annealing (SA) and Genetic Algorithms (GA).
The formulated mathematical model with ESA
algorithm and SA algorithm were implemented
using Matrix Laboratory 8.6 software on an
Intel(R) Core(TM) i3-7100 CPU with 2.50GHz
speed, 32GB Hard Disk, 4GB Random Access
Memory and 32-bit Operating System, with the
Window 7 operating system, and validated using
a highly constrained Nigerian high school
dataset. The implemented algorithms were
evaluated using constraints violation, simulation
time and solution cost as performance metrics.

2.1 Problem Specification and Model

Formulation

The goal of the High School Timetabling Problem
in high school system in Nigeria (NHSTP) is to
build a weekly timetable. The week is organized
as a set of days D, and each day is split into a
set of periods P. All Periods are distributed in D
week days and H daily periods which occur
during the same shift, that is, P = D ∗ H. Let C be
a set of classes (class-sections), T a set of
teachers and S a set of subjects. A class k ∈ C is
a disjoint group of students that follow the same
subjects, and no idle time periods during the
week, and each subject of a class is taught by
only one teacher who is previously determined. A
timeslot is a pair, composed of a day and a class
period (i,j), with i ∈ D and j ∈ P wherein all
periods have the same duration. Teachers l ∈ T
may be unavailable in some timeslots.

The inputs for the NHSTP are a set of events (or
meetings) E that must be scheduled, C*T matrix
of lesson requirements R = (Rlk) where Rlk is the
number of periods teacher l is required to meet
class k for the duration of the timetable
(containing a total of P periods in a set P), and
teachers and classes unavailability’s binary
matrices Tij and Ckj. Each event requires a class
k(e) ∈ C, a teacher l(e) ∈ T, and a number of
weekly hours hours(e) ∈ N. Particularly in the
Nigerian context, a teacher, a class, and a room
are pre-assigned to each event e such that
classrooms are not considered in the scheduling.

In addition, each event defines how lessons are
distributed over a week by requesting an amount
of double lessons, restricting the daily limit of
lessons, and defining whether lessons taught on
the same day are consecutive or not.

A feasible timetable has a timeslot assigned to
each lesson of events satisfying
the hard constraint requirements HC1-HC13
below:

HC1: The number of lessons that each teacher
must give to each class must be met
(Lesson Requirement Constraint).

HC2: No two classes must be scheduled to the
same teacher at the same period (Class
Clashes Constraint).

HC3: No two teachers must be scheduled to

the same class at the same period
(Teacher Clashes Constraint).

HC4: A lesson cannot be scheduled to periods

where the teacher is unavailable
(Teachers’ Unavailability Constraint).

HC5: A lesson cannot be scheduled to periods

where the class is unavailable (Classes’
Unavailability constraint).

HC6: Each class, for a given set of periods,

must be involved in one lesson (One
Class One Lesson Constraint).

HC7: Every teacher may be assigned at most

one subject and one class (class-
section) in a given period with the
exception of indicated subjects that
require more than one instructor
(Uniqueness Constraint).

HC8: All subjects in the curriculum of a class-

section should appear in the timetable
for the required number of teaching
periods (Completeness for Students
Constraints).

HC9: All subjects assigned to a given teacher
should appear in the timetable for the
required number of teaching periods
(Completeness for Teachers constraint).

HC10: The teaching periods assigned to a given
subject over a whole week should add
up to the weekly requirements for the
specific subject (Completeness for
Subjects Constraint).

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

27

HC11: Some pairs of lessons must be
scheduled simultaneously (Simultaneity
Constraint).

HC12: Certain subjects to be taught in multi-
period slots at most once a day for a
given class section must be followed
(Consecutiveness constraint).

HC13: The timetable of every class-section
should not carry empty slots during the
week (Compact Student Schedules
Constraint).

Besides feasibility regarding hard constraints,
as many as possible of the soft
requirements SC1-SC8 stated below should be
satisfied:

SC1: More lessons to the same class in the

same day than the maximum specified
for the pair teacher-class must be
avoided (Classes’ maximum workload
per day constraint).

SC2: The specified maximum number of daily

lessons of each teacher must be
respected (Teachers’ maximum
workload per day constraint).

SC3: Assignment of teachers to periods in

which teachers would prefer not to teach
must be avoided (Teachers’ Preference
or undesired Constraint).

SC4: Avoid teachers’ idle periods. As much as

possible, minimise the number of empty
or holes periods between two
consecutive periods where a teacher is
assigned to a class. Breaks and free-
time periods are not considered as idle
periods or holes (Teachers’ Idle Period
Constraint).

SC5: Teachers’ request for double lessons

(lessons conducted in two consecutive
periods) should be granted as often as
possible (Double lesson per week
constraint).

SC6: Teachers’ request for parallelism of

subjects (subjects scheduled for the
same time periods) should be granted as
often as possible (Parallelism of subjects
Constraint).

SC7: Lessons for any given subject must be
scheduled for at most one teaching

period per day of the week, unless it
requires more teaching periods than the
days of the week or there is a special
request for multiple or consecutive
hours, in which cases they are
scheduled accordingly (Uniform
distribution of subjects Constraint).

SC8. Pre-assignments of certain subjects to

specific time periods must be respected
(Pre assignments of certain subjects
Constraint).

The notation used in the problem specification
and the formulated model for NHSTP considering
all the hard and soft constraints requirements
listed above are presented as follows.

Sets

i ∈ D days of week. D = {1,2,...,|D|}.

j ∈ P periods of a day. P = {1,...,|P |}.

P1 P without the last two periods of a day.

P1 = {1,...,|P | −2}.

k ∈ C set of classes.

l ∈ T set of teachers.

m ∈ S set of subjects.

e∈ E set of events.

B set of quadrupes of the form (l1; k1; l2; k2)
with l1 ≠ l2 and k1 ≠ k2 such that all
lessons of teacher l1 to class k1 must be
simultaneous to lessons of teacher l2 to
class k2

Skl = {mS: m is a subject that teacher l
teaches for class-section k}

S*

kl = {mS: m is any regular subject that teacher
l teaches for class-section k}, where the term
“regular” refers to all subjects that do not require
any special type of scheduling.

Sl

Sim = {(m, k, l*): mS is a subject that teacher
lT teaches for a part of section k
simultaneously with another subject taught by
the “basic” teacher l*}

Sl

Col = {(m, k, l*): mS is a subject that teacher
lT teaches for section k in collaboration with
the “basic” teacher l*}

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

28

Scons = {(m, k, hm): mS is a subject of section
k that needs to be scheduled in block(s) of hm
consecutive periods}

Sparal = {[(ma, mb); (ka, kb); (la, lb)]: maS is a
subject that teacher la teaches for section ka that
needs to be scheduled always in parallel to mb a
subject taught by teacher lb for section kb}

Sexcl = {[(ma, ka, la; mb, kb, lb; ...;mw, kw, lw)
(la)]:ma, mb, ..., mwS are subjects that teachers
la,lb,..., lw T teach to sections ka, kb, ..., kw,
respectively, however no more than a certain
number of them may be scheduled in the same
day or time period}

S
fix

 = {(ia, ja, ma, ka, la): maS is a subject that
teacher la teaches to section ka and should be
scheduled on day ia and in period ja}

Dl = { iD : i is any day of the week for which
teacher l is available for the school}

Cl = { kC : k is a class-section of the school to
which teacher l teaches at least one subject}

Parameters

Rlk: The workload of an event (l,k), that is, the
number of lessons that must be taught by the
teacher l for the class k.

λ: The maximum number of permitted lessons
per day

m : Is the number of the multi-period slots
(double lessons) required for subject m every
week.

il ,
: The maximum number of double lessons

requested by teacher l with class k.

il, : The effective number of allocated double
lessons.

ilk ,, : The total number of lessons allocated for
class k with teacher l on day i.

lk ,
: The maximum number of permitted

lessons per day.

ijl ,,
: The total number of lessons allocated for

teacher l on period j of day i.

il, : The number of idle times at the agenda of
teacher l on day i

TTP: Total Time Periods. TTP indicates the total
number of time periods to be scheduled in the
timetable.

WTLl: Weekly Teaching Load for teacher l. WTLl

indicates the total number of time periods to be
assigned to teacher l each week.

DTLl: Average Daily Teaching Load for teacher l.
DTLl indicates the daily average number of time
periods assigned to teacher l.

WTLkl: Weekly Teaching Load of teacher l for
class-section k. WTLkl indicates the total number
of time periods to be assigned to teacher l for
class-section k each week.

WTLklm: Weekly Teaching Load of teacher l for
class-section k and subject m. WTLklm indicates
the total number of time periods to be assigned
to teacher l for subject m each week.

TTPk: Total Time Periods for section k. TTPk
indicates the total number of time periods over all
subjects of class-section k to be assigned each
week.

Hk

max: Is a parameter that indicates the maximum
number of teaching periods that section k may
have during any day of the week. Hk

max may be
set equal to J, the length of each day, however,
in order to create more balanced timetables for
the classes, it is preferable to set a different
upper limit for each section of the school.
Therefore, Hk

max equals to [TTPk/D]. In general,
however, it holds that Hk

max  P, kC.

Variables

x i, j, k, l, m: Binary variable that indicates whether
subject m, taught by teacher l to the class section
k, is scheduled for the j

th
 period of day i.

mlkjix ,,,, : Complement of the binary variable x i,

j, k, l, m, that is, x i, j, k, l, m = 0 if mlkjix ,,,, = 1 and
vice versa.

mhkti mm
y ,,,, : Binary variable that indicates

whether subject m, is scheduled for hm
consecutive periods on day i for class-section k,
with tm being the 1

st
 period for this assignment.

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

29

Tij: binary variable that indicates whether
teacher l is available to teach class k subject m
scheduled for jth period of day i.

Ckj : binary variable that indicates whether
class k is available to be taught by teacher l
subject m scheduled for j

th
 period of day i.

Zkj : binary matrix that indicates whether
class k must be taught a subject m by teacher l
at j

th
 period of day i,

jill ,, : binary variable that indicates whether
teacher l has been scheduled to teach at an
undesired period j on day i.

X = An arbitrary matrix (x i, j, k, l, m) is called a
timetable. X ∈ {0, 1}

The objective function is to minimise the
constraints (soft) violation that is formulated as
solution cost function Cf(s), which associates a
cost value to a given solution. Such value was
used to compare the goodness of different
solutions. This function was defined as follows:
Let S be the search space; sS, a solution; n,
the number of type of problem constraints
considered, wi, the penalty weighting associated
with each constraint type i and vi(s), represents
the number of constraint violations of type i in a
solution s, vi(s) = 0 if constraint type i is satisfied
and vi(s) = 1 if constraint type i is violated.

Therefore, the solution cost function Cf(s) is given as:

. Cf(s) =)(
1

svw i

n

i
i



 (1a)

Minimise)(
1

svw i

n

i
i



 (1b)

Subject to

 P
 ∑ xi,j,k,l,m = Rlk PjDi   , CkTl   , (2)

j=1

C
∑ xi,j,k,l,m ≤ 1 PjDi   , SmTl   , (3)

k=1

T
∑ xi,j,k,l,m ≤ 1 PjDi   , SmCk   , (4)

l=1

C
∑ xi,j,k,l,m ≤ Tij PjDi   , SmTl   , (5)

k=1

T
∑ xi,j,k,l,m ≤ Ckj PjDi   , SmCk   , (6)

l=1

T
∑ xi,j,k,l,m ≥ Zkj PjDi   , SmCk   , (7)

l=1

   lmlkjiSSlkm
mlkji

SmCk
DiPjTlxx

col
l

sim
lkll







,,,1
,,,,,,

,,,, *
**

 (8)

 
CkTTPxx kmlkjiPjDiSSlkmTl

mlkji
PjDiSmTl l

col
l

sim
lklklk







,
,,,,,,

,,,, *
*

 (9)

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

30

 
TlCkWLTxx klmlkjiPjDiSSlkm

mlkji
SmPjDi l

col
l

sim
lkl







,,
,,,,,,

,,,, *
**

 (10)

klkklmmlkji
PjDi

SmTlCkWTLx
l




 ,,,,,,,
 (11)

jkljkl
xx

2211 + jkljkl xx 2211 = 1  ([l1; k1; l2; k2]  B; jP) (12)

  1,,,,1 ,,,,,,,,,

1

,,,,

*





mmlconmmmhktimlkji

ht

tj
mhktim hPtDiShkmhyxyh

mm

mm

m
mm


 (13a)

  lconmmhkti

hp

t
DiShkmy

mm

m

m

 ,,,,,

1

1
,,,1 



 (13b)

  conmmmhkti

hp

tDi
Shkmy

mm

m

ml




,,,,,,,

1

1




 (13c)

 
 1,....,1,,1 max

,,,,,,
,,,, *

**



kmlkjiSSlkm

mlkji
SmTl

HjDiCkxx
col
l

sim
lklk


 (14a)

 
CkDiHxHx

mlkki
SSlkm

mlkki
SmTl col

l
sim
lklk







,,1,,
,,,

max

,,
,,,

max *

**

 (14b)

 
CkDiHxx kmlkjiPjSSlkm

mlkji
PjSmTl col

l
sim
lklk







,,max

,,,,,,
,,,, *

**

 (14c)

mlkji
DiTlCk
x

ll
,,,,




 ≤
DiTlCkilk   ,,,, (15)

mlkji
PjDiTl
x

ll
,,,,




 ≤
DiPjTlijl   ,,,, (16)

mlkji
PjDiTl
x

ll
,,,,




 ≤
PjDiTll kjil   ,,,, (17)

il
DiTl

,



 ≤ 1 DiTl   , (18)

il , ≤
 ililil

DiTl
DiTl ,,, ,,, 




 (19)

       PiDiSllkkmmxx paralmlkjmlkji   ,,,;,;,,0 212121,,,,,,,, 222111 (20)

klkmlkji
Pj

SmTlCkDix 


 ,,,,1,,,,
 (21)

  fixmlkji
Smlkjix ,,,,,1

,,,,


 (22)

xi,j,k,l,m = 0 or 1 CkPjDi   ,, SmTl   , (23)

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

31

Constraint set (2) ensures that the number of
lessons that each teacher must give to each
class is fully scheduled. Constraint set (3)
ensures that no two classes are scheduled to the
same teacher at the same period. Constraint set
(4) ensures that no two teachers are scheduled
to the same class at the same period. Constraint
set (5) ensures that a lesson cannot be
scheduled to periods where the teacher is
unavailable. Constraint set (6) ensures that a
lesson cannot be scheduled to periods where the
class is unavailable. Constraint set (7) ensures
that each class, for a given set of periods, are
scheduled to only one lesson at a time.
Constraint set (8) ensures that every teacher is
assigned at most one subject and one class
(class-section) in a given period with the
exception of indicated subjects that require more
than one instructor. Constraint set (9) ensures
that all subjects in the curriculum of a class-
section appeared in the timetable for the required
number of teaching periods. Constraint set (10)
ensures that all subjects assigned to a given
teacher appeared in the timetable for the
required number of teaching periods.

Constraint set (11) ensures that the teaching
periods assigned to a given subject over a whole
week added up to the weekly requirements for
the specific subject. Constraint set (12) ensures
that some pairs of lessons are scheduled
simultaneously. Constraint set (13) ensures that
certain subjects to be taught in multi-period slots
at most once a day for a given class section are
followed. Constraint (13a) forces hm basic
variables xi,j,k,l,m that refer to consecutive time
periods to take the value of 1, while constraint
(13b) ensures that only one block of consecutive
periods may be assigned in any given day and
constraint (13c) indicates that there should be

exactly m of these blocks for the whole week.
Constraint set (14) ensures that the timetable of
every class-section did not carry empty slots
during the week. Basically Constraint set (14a)
and (14b) ensure that for each class-section
there is exactly one subject scheduled for any
given period (except may be the last one) of any
day, while Constraint (14c) on the other hand,
checks whether all subjects of class-section k are
scheduled within the maximum stretch allowed
for the class-section.

Constraint set (15) ensures that the limit set on
the maximum number of lessons a class may
have per day is met. Constraint set (16) ensures
that the specified maximum number of daily

lessons of each teacher is respected. Constraint
set (17) ensures the assignment of teachers to
periods in which teachers would prefer not to
teach is avoided. Constraint set (18) determines
the number of teachers’ idle periods in a solution.
Constraint set (19) ensures that teachers’
request for double lessons is granted. Constraint
set (20) ensures that teachers’ request for
parallelism of subjects is granted. Constraint set
(21) ensures that uniform distribution of subjects
is met. Constraint set (22) ensures pre-
assignments of certain subjects to specific time
periods are respected while Constraint set (23) is
required to ensure the integrality of the solution.

In this work each hard constraint was assigned a
weight of 20 to stipulate their higher priority than
the soft constraints and to allow the proposed
solution leads the search process towards valid
solutions in accordance to the literature [59]. The
weight assigned to each of the soft constraints
(preferences) varies to indicate the relative
importance of each preferences compared to
others such that a weight of 6 was assigned to
SC1, SC2, SC5 and SC6; a weight of 4 was
assigned to SC7 and SC8; a weight of 3 was
assigned to SC3 and finally a weight of 1 was
assigned to SC4.

These weight set was informed by the literature
which stated that weighted penalty based
evaluation function should be used for
timetabling problems where an abundance of
different constraint combinations is encountered
[60,61,62] and thus allows for some constraints
to have a higher priority than others. It must be
noted that (i) the lower the value of Cf(s) for a
given solution s, the more the quality of s, (ii)
both the distance to feasibility and the goodness
of the solution was measured.

2.2 Formulation of Enhanced Simulated

Annealing (ESA) Algorithm

The simulated annealing (SA) algorithm was
enhanced to form Enhanced Simulated
Annealing (ESA) Algorithm through the following
three stages:

(1) Modification of Simulated Annealing (SA)
in terms of the temperature reduction
parameter in order to improve its
efficiency in terms of convergence speed
and solution cost, by introducing a
parabolic reduction parameter  (α =
(1/log(1+t+t

2
)) as suggested by [2]. This is

due to the fact that the efficiency of SA

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

32

often depends on cooling schedule and by
carefully controlling the rate of cooling the
temperature; SA can find the global
optimum exponential faster [63,64].

(2) Integration with Genetic Algorithm (GA) in
order to: (i) further improve the
performance of SA in terms of speed and
quality of solution as suggested by [65]; (ii)
find a good balance between the
exploitation of found-so-far elements and
the exploration of the search space in
order to find global optimal solution as
suggested by [66] and (iii) improve its local
search ability as suggested by [67]. By this
enhancement (integration), the genetic
operators of GA were applied to observe
the behaviour of Simulated Annealing
which resulted into less parameter to
control. In tune with the principle of the
integration, new individuals were produced
with Genetic Algorithm (GA) after which
these individuals were processed with SA
while the corresponding results were
further used as the new individuals of the
next generation.

(3) Reordering the sequence of evolutionary
operations to become (mutation, selection
and crossover) instead of (selection,
crossover and mutation) in order to further
reduce the convergence time and as well
as to generally improve its computational
efficiency as reported by [68,69].

The above sequence of processes resulted into
Enhanced Simulated Annealing (ESA) algorithm.
The algorithmic structure of ESA algorithm that
was coded using the MATLAB Laboratory 8.6
software is as presented as follows:

Step 1: Initialize the temperature parameter T,
that is, set T = T0, in which T0 is a large positive
number, set the exponential temperature
reduction factor as α = (1/log(1+t+t

2
)), and final

temperature as Tt+1 = αTt

Step 2: Produce the initial population made up of
n individuals.

Step 3: Compute the fitness of each individual in
the initial population.

Step 4: Repeat:

Step 4.1: Carry out evolutionary operations, that
is, mutation, selection and crossover, for
individuals in the current solution population.

Step 4.2: Let Cj be the child individual produced
by a parent individual Pj, j = 1, …, n.

Step 4.3: Compute the fitness E(Cj) of new
individual Cj, j = 1, …, n.

Step 4.4: For j = 1, …, n, compute ∆E = E(Cj)-
E(Pj), where E(Pj) is the fitness of parent
individual Pj. If ∆E ≥ 0, then produce a number r
with uniform distribution in interval [0,1]. If exp
(-∆E/T) > r, then replace individual Pj by child
individual Cj. If ∆E < 0, then discard the child
individual Cj.

Step 4.5: If the termination condition is satisfied,
then the whole procedure is stopped, else the
value of temperature T is decreased.

The algorithmic structure of SA algorithm that
was coded using the MATLAB Laboratory 8.6
software is as presented as follows:

Step 1: Generate an initial schedule S.

Step 2: Set the initial best schedule S* = S.

Step 3: Compute cost of S: C(S).

Step 4: Compute initial temperature T0.

Step 5: Set the Initial Temperature T = T0, set

Parabolic Temperature reduction factor
as α = (1/log(1+t)), and Final
Temperature as Tt+1 = αTt

Step 6: While stop criterion is not satisfied do.

(a) Repeat Markov Chain Length (M) times:
 i. Select a random neighbor S

1
 to the

 current schedule, (S
1
  NS).

 ii. Set ∆ (C) = C(S1) – C(S).
 iii. If (∆ (C) ≤ 0 {downhill move}).
 • Set S = S1
 • If C(S) < C(S*) then set S* = S
 iv. If (∆ (C) > 0 {uphill move}).
 • Choose a random number r uniformly
 from [0, 1]
 • If r < e- ∆(C)/T then set S = S1
(b) Reduce (or update) temperature T.

Step 7: Return the Schedule S*

3. RESULTS AND DISCUSSION

The Simulated Annealing (SA) algorithm and the
developed Enhanced Simulated Annealing (ESA)
algorithm were tested with the highly constrained
school timetabling dataset provided by a Nigerian
high school. The algorithms were tested under
several optimization runs. The results of

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

33

performance evaluation of both algorithms (SA
and ESA) are as shown in Table 1.

As depicted in Table 1, both the average
simulation time and solution cost to generate a
high quality timetable in SA algorithm is higher
than that to generate an optimal timetable in the
developed ESA algorithm. The higher simulation
time and solution cost of SA algorithm can be
attributed to the slow convergence speed and
exponential cooling schedule inherent in SA
algorithm. The modified annealing schedule
(slow cooling schedule - parabolic), improved
local search ability and the reordered
evolutionary operation sequence in the
developed ESA algorithm helped to improve the
convergence speed which in turns reduced the
average simulation time and solution cost to
generate an optimal timetable in the developed
ESA algorithm.

This result confirmed the previous literatures that
indicated that: high quality solutions can only be
obtained if SA’s parameters (cooling schedule,
update moves, initial solution, among others) are
well tuned and that (i) the efficiency of SA
algorithm depend on cooling schedule and by
carefully controlling the rate of cooling the
temperature SA can find the global optimum
exponential faster [63,64]; (ii) the performance of
SA in terms of speed, quality of solution (global
optimal solution) and local search ability can be
improved by integrating it with GA [65,66,67];
and (iii) the convergence time and computational
efficiency of GA-based algorithm can be
improved by reordering the sequence of
evolutionary operations to become (mutation,
selection and crossover) instead of (selection,
crossover and mutation) [68,69].

The following section gives the detailed result of
the performance evaluation of the two solution
approaches (SA and the developed ESA):

(i) Constraints violation: Constraints violation is
the metric that measures the feasibility and
optimality of the solution produced by an
algorithm. An algorithm that satisfies the
problem’s all hard constraints is said to
produce a feasible solution. The optimality
(goodness/quality) of an algorithm’s solution is
indicated by how much soft constraints an
algorithm satisfied. As depicted in Table 1, SA
algorithm produced high quality timetable as a
result of violation of one of the soft constraints
while the developed ESA algorithm produced
optimal solution as it satisfied all the specified
constraints (hard and soft).

(ii) Simulation Time: Simulation time is the
parameter which measures the time utilized by is
an algorithm to run until the result is produced. It
otherwise known as computation, execution or
run time. As advocated by [73], simulation time
should be considered first when dealing with the
performance evaluation of optimization
algorithms for combinatorial problems. It should
be a key element of any such evaluation [74].
Indicated that one of the most important factors
considered before choosing the winner during
the second international timetabling competition
(ITC-2007) was the simulation time.

Table 1 showed the obtained values of the
simulation time of both SA algorithm and the
developed ESA algorithm for JSS and SSS
respectively. The simulation time of the SA
algorithm and the developed ESA algorithm are
40.90 and 37.91 seconds respectively for JSS
and 45.82 and 42.16 seconds respectively for
SSS. This is clear evidence that the developed
ESA algorithm utilized less time and converges
faster than the SA algorithm to produce an
optimal timetable as a result of its enhanced
features (slow cooling schedule - parabolic,
improved local search ability and the reordered
evolutionary operation sequence).

Table 1. Constraints violation, simulation time and solution cost evaluation result

Parameters SA ESA
Junior Secondary School
Number of Hard Constraint Violated 0 0
Number of Soft Constraint Violated 1 0
Average Simulation time (Seconds) 40.90 37.91
Average Solution Cost 20.88 17.03
Senior Secondary School
Number of Hard Constraint Violated 0 0
Number of Soft Constraint Violated 1 0
Average Simulation time (Seconds) 45.82 42.16
Average Solution Cost 23.43 18.99

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

34

It was observed that the developed ESA yielded
high convergence speed which resulted into the
lower average simulation time in producing
optimal solution, but utilised more time to
compute the timetables for SSS classes than
JSS classes because of the different subject
groups that exist in SSS, such as Science group,
Commercial group and Art group.. This result
confirmed the literatures that by carefully
controlling the rate of cooling the temperature,
SA can find the global optimum exponential
faster since slow cooling schedules are
generally more effective [63] and that the
performance of SA in terms of speed and quality
of solution can be improved by integrating it with
GA [65,67].

(iii) Solution cost: The quality of a timetable is
defined by a solution cost, otherwise known as
fitness value or solution quality function. The
fitness function calculates the number of
constraint breaches (usually with a weighted
value) for different constraints. This value is used
as measurement for quality of the timetable
generated by the algorithms. It is used to
compare the goodness of different solutions as
better timetables are produced the better fitness
values emerges. It is implicitly defined through
the school timetabling problem specification and
constraints as given in Equation 1a. The lower
the value of solution cost for a given solution the
more the quality of the solution [70].

Table 1 showed the measured values of the
solution cost of the two algorithms (SA and the
developed ESA) for Junior Secondary School
(JSS) and Senior Secondary School (SSS)
respectively. The average solution cost values of
SA algorithm and the developed ESA algorithm
were 20.88 and 17.03 respectively for JSS, and
23.43 and 18.99 respectively for SSS. This is
clear evidence that the developed ESA returned
the best optimal solution (with lower solution cost
value), but with higher value for SSS because of
the somewhat more complicated structure of
student groups and the demand for compact
scheduling in SSS than JSS. This is attributed to
the slow temperature reduction component
(parabolic cooling rate of the developed ESA
algorithm) since the solution cost is generally
improved with slow cooling rate. This result
confirmed the literatures that the choice of the
cooling schedule influences the quality of
solution obtained with SA [71,72] and that that
slow cooling schedules are generally more
effective, and also that the solution cost generally
improves with slower cooling rates [63].

4. CONCLUSION

The high school timetabling is a classical
combinatorial optimization problem that takes a
large number of variables and constraints into
account. Due to its combinatorial nature, solving
medium and large instances to optimality is a
challenging task. Specifically, school timetabling
problem is perhaps the most difficult problem
which high schools face in Nigeria. In this paper,
we presented a novel solution approach for
solving a highly constrained school timetabling
problem which characterizes the problem-setting
in the timetabling problem of the high school
system in Nigeria which has not been completely
addressed in the literature. We presented a new
mathematical programming model of timetabling
for high schools in Nigeria using mixed integer
linear programming formulation for which the
current timetable is considerably improved. In
addition, we presented a meta-heuristic method,
an Enhanced Simulated Annealing (ESA)
algorithm that incorporates specific features of
Simulated Annealing and Genetic Algorithms for
solving the problem. Results show that our
approach provides high quality solutions (optimal
timetables) in smaller computational time and
solution cost when compared with results
obtained with SA approach.

The results of this work confirmed previous
research reports that high quality solutions can
be obtained if SA’s parameters are well tuned as
the analysis of the results showed that though
both the SA algorithm and developed ESA
algorithm yielded better quality solutions when
compares to manual allocation procedures but
the developed ESA algorithm yielded higher
quality solutions. The observed high quality
solutions provided by the developed ESA
algorithm resulted from its tuned parameters -
modified annealing schedule (slow cooling
schedule - parabolic), improved local search
ability and the reordered evolutionary operation
sequence. Furthermore, the result shows that the
developed solution method (ESA algorithm) is
very promising to solve the school timetabling
problem, motivating its use to variants of this
problem, as well as to other general
combinatorial optimization problems.

A possible future research area is to develop
other solution methods that might solve the
problem more efficiently. For example, the
efficiency of the developed solution method can
be improved by incorporating it within an
evolutionary algorithm or a cultural algorithm..

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

35

Another future research area is to incorporate
additional requirements that might be required by
other high schools and then solve the resulting
problem using the developed solution method. It
is also possible to consider extending the
developed solution method to solve other types
of timetabling problems.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Melício F, Caldeira P, Rosa A. THOR: A

tool for school timetabling. In: Burke EK,
Rudova H, editors, PATAT. 2006;6:532–
535.

2. Odeniyi OA, Omidiora EO, Olabiyisi SO,
Aluko JO. Development of a modified
simulated annealing to school timetabling
problem. International Journal of Applied
Information Systems. 2015;8(2):16-24.

3. Odeniyi OA, Oyeleye CA, Olabiyisi SO,
Omidiora EO, Makinde BO, Aluko JO, et
al. School timetabling: Solution method-
logies and applications. International
European Extended Enablement in
Science, Engineering & Management.
2020;8(3):35-62.

4. Tassopoulos IX, Beligiannis GN. Solving
effectively the school timetabling problem
using particle swarm optimization. Expert
Systems with Applications. 2012;39(5):
6029-6040.

5. Pillay N. A survey of school timetabling
research. Annals of Operations Research.
2014;218(1):261-293.

6. Demirovic E. SAT-based approaches for
the general high school timetabling
problem. Unpublished PhD dissertation,
Vienna PhD School of Informatics, TU
Wien; 2017.

7. Sørensen M, Stidsen TR. Comparing
solution approaches for a complete model
of high school timetabling. Technical
report, DTU Management Engineering;
2013a.

8. Sorensen M, Dahms FHW. A two-stage
decomposition of high school timetabling
applied to cases in Denmark. Computers
& Operations Research. 2014;43:36-
49.

9. Demirovic E, Musliu N. Modeling high
school timetabling as partial weighted
maxsat. LaSh 2014: The 4th Workshop on

Logic and Search (a SAT/ICLP workshop
at FLoC 2014); 2014a.

10. Demirovic E, Musliu N. Solving high school
timetabling with satisfiability modulo
theories. In: Ozcan E, Burke EK,
McCollum B, editors. Proceedings of the
10

th
 International Conference of the

Practice and Theory of Automated
Timetabling. 2014b;142-166.

11. Kristiansen S, Sørensen M, Stidsen TR.
Integer programming for the generalized
high school timetabling problem. Journal of
Scheduling. 2015;18(4):377–392

12. Demirovic E, Musliu N. Modeling high
school timetabling with bitvectors. Ann
Oper Res; 2016.
DOI: 10.1007/S10479-016-2220-6

13. Al-Yakoob SM, Sherali HD. A mixed-
integer programming approach to a class
timetabling problem: A case study with
gender policies and traffic considerations.
European Journal of Operational
Research. 2007;180(3):1028-1044.

14. Al-Yakooba SM, Sheralib HD.
Mathematical models and algorithms for a
high school timetabling problem. Comput.
Op. Res. 2015;61:56–68.

15. Schaerf A. A survey of automated
timetabling. Artificial Intelligence Review.
1999;13(2):87–127.

16. Post G, Kingston J, Ahmadi S, Daskalaki
S, Gogos C, Kyngas J, et al. XHSTT: an
XML archive for high school timetabling
problems in different countries. Ann Oper
Res. 2011;1–7.

17. Post G, Ahmadi S, Daskalaki S, Kingston
J, Kyngas J, Nurmi C, Ranson D. An xml
format for benchmarks in high school
timetabling. Annals of Operations
Research. 2012a;194:385-397.

18. Post G, Gaspero LD, Kingston JH,
McCollum B, Schaerf A. The third
international timetabling competition.
Proceedings of the Ninth International
Conference on the Practice and Theory of
Automated Timetabling (PATAT 2012),
Son, Norway; 2012b.

19. Birbas T, Daskalaki S, Housos E. School
timetabling for quality student and teacher
schedules. Journal of Scheduling. 2009;
12(2):177-197.

20. Dorneles AP, de Araújo OCB, Buriol LS.
The impact of compactness requirements
on the resolution of high school timetabling
problem. Pre-anais: XVI CLAIO - XLIV
SBPO - LIASGT, Rio de Janeiro. 2012;
3336–3347.

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

36

21. Appleby JS, Blake DV, Newman EA.
Techniques for producing school
timetables on a computer and their
application to other scheduling problems.
The Computer Journal. 1961;3(4):237-245.

22. Gotlieb C. The construction of class-
teacher timetables. In: Popplewell CM,
editor, Proceedings of IFIP Congress
(Munchen 62), North Holland, Amsterdam.
1962;73-77.

23. Pillay N. An overview of school timetabling
research. Proceedings of the International
Conference on the Theory and Practice of
Automated Timetabling, Belfast, United
Kingdom. 2010;321-335.

24. Schmidt G, Ströhlein T. Timetable
construction – an annotated bibliography.
Computer Journal. 1979;23(4):307-316.

25. Bardadym V. Computer-aided school and
university timetabling: The new wave. In:
Burke E, Ross P, editors, Practice and
Theory of Automated Timetabling, volume
1153 of Lecture Notes in Computer
Science. Springer: Berlin / Heidelberg.
1996;22-45.

26. Qu R, Burke EK, McCollum B, Merlot LTG,
Lee SY. A survey of search methodologies
and automated system development for
examination timetabling. Journal of
Scheduling. 2009;12(1):55-89.

27. Gendreau M, Burke E, editors.
PATAT2008: Proceedings of the 7th
International Conference on the Practice
and Theory of Automated Timetabling;
2008.

28. McCollum B, Burke E, White G. editors.
PATAT: Proceedings of the 8th
International Conference on the Practice
and Theory of Automated Timetabling;
2010.

29. Kjenstad D, Riise A, Nordlander TE,
McCollum B, Burke E. editors. PATAT
2012: Proceedings of the 9

th
 International

Conference on the Practice and Theory of
Automated Timetabling; 2012.

30. de Werra D. An introduction to timetabling.
European Journal of Operational
Research. 1985;19(2):151-162.

31. Lawrie NL. An integer linear programming
model of a school timetabling problem.
The Computer Journal.1969;12(4):307–
316.

32. Lodi A. Mixed integer programming
computation. In: 50 years of integer
programming 1958–2008. Berlin, Germany:
Springer. 2010;619-645.

33. Souza M, Ochi L, Maculan N. A GRASP-
Tabu search algorithm for solving school
timetabling problems. In Metaheuristics:
Computer Decision Making, Kluwer
Academic Publishers, Boston. 2003;659–
672.

34. Soza C, Becerra RL, Riff M C, Coello,
CAC. A cultural algorithm with operator
parameters control for solving timetabling
problems. Lecture Notes in Computer
Science. 2007;4529:810–819.

35. Santos HG, Toffolo TAM, Brito SS, Souza
MJF, Fonseca GHG. A SA-ILS approach
for the high school timetabling problem.
Proceedings of the Ninth International
Conference on the Practice and Theory of
Automated Timetabling (PATAT 2012),
Son, Norway; 2012

36. Sorensen M, Stidsen TR. Hybridising
integer programming and meta-heuristics
for solving high school timetabling. In
comparing solution approaches for a
complete model of high school timetabling.
DTU Management Engineering. DTU
Management Engineering Report, No. 5;
2013b.

37. Raghavjee R. Study of genetic algorithms
for solving the school timetabling problem;
Unpublished M.Sc. Dissertation, University
of Kwazulu-Natal, Pietermaritzburg; 2013.

38. Kristiansen S. Solving Multiple Timetabling
Problems at Danish High Schools.
Unpublished PhD Thesis, Department of
Management Engineering, Technical
University of Denmark; 2014.

39. Dorneles AP. A matheuristic approach for
solving the high school timetabling
problem. Unpublished Ph.D. Thesis,
Universidade Federal do Rio Grande do
Sul, Porto Alegre; 2015.

40. Raghavjee R, Pillay N. A genetic algorithm
selection perturbative hyperheuristic for
solving the school timetabling problem.
Orion. 2015;31(1):39-60.

41. Bogdanov D. A comparative evaluation of
meta-heuristic approaches to the problem
of curriculum-based course timetabling.
Unpublished Bachelor’s Thesis, KTH
Royal Institute of Technology, School of
Computer Science and Communication;
2015.

42. Fonseca G, Brito S, Santos H. A simulated
annealing based approach to the high
school timetabling problem. Lecture Notes
in Computer Science. 2012a;7435:540-
549.

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

37

43. Chen DJ, Lee CY, Park CH, Mendes P.
Parallelizing simulated annealing algo-
rithms based on high-performance
computer. Journal of Global Optimization.
2007;39(2):261-289.

44. Smith KI, Everson EM, Fieldsend JE.
Dominance based multi-objective simulated
annealing. IEEE Transactions on
Evolutionary Computation. 2008;12(3):
323-342.

45. Omidiora EO, Olabiyisi SO, Arulogun OT,
Oyeleye CA, Adegbola A. A prototype of
an access control system for a computer
laboratory scheduling. Proceedings of
AICTTRA 2009, Obafemi Awolowo
University, Ile Ife. 2009;114-120.

46. Janaki Ram D, Screenivas TH, Ganapathy
SK. Parallel simulated annealing algorithm.
Journal of Parallel and Distributed
Computing. 1996;37:207-212.

47. Olabiyisi SO, Fagbola TM, Omidiora EO,
Oyeleye AC. Hybrid meta-heuristic feature
extraction technique for solving timetabling
problem. International Journal of Scientific
& Engineering Research. 2012;3(8):1-6.

48. Oyeleye CA, Olabiyisi SO, Omidiora EO,
Fagbola T. Hybrid metaheuristic of
simulated annealing and genetic algorithm
for solving examination timetabling
problem. International Journal of Computer
Science and Engineering. 2014;3(5):7-22.

49. Delport V. Parallel simulated annealing
and evolutionary selection for
combinatorial optimisation. Electronic
Letters. 1998;34:758-759.

50. Kanoh H, Nakamura T. Knowledge based
genetic algorithm for dynamic route
selection. Proceedings of Knowledge-
Based Intelligent Engineering Systems
and Allied Technologies. 2000;2:616-619.

51. Zhou J, Bai T, Tian J, Zhang A. The study
of SVM optimized by culture genetic
algorithm on predicting financial distress.
Proceedings of IEEE International
Conference on CSIT. 2008;524-528.

52. Liogys M, Žilinskas A. On multi-objective
optimization heuristics for nurse rostering
problem. Baltic Journal of Modern
Computing. 2014;2(1):32-44.

53. Dorneles AP, de Araújo OCB, Buriol LS. A
fix-and-optimize heuristic for the high
school timetabling problem. Computers &
Operations Research. 2014;52:29-38.

54. Burke E, Kingston J, Pepper P. A standard
data format for timetabling instances. In:
Burke E, Carter M, editors, Practice and
Theory of Automated Timetabling II,

volume 1408 of Lecture Notes in
Computer Science,. Springer: Berlin
/Heidelberg. 1998;213-222.

55. Asratian AS, de Werra D. European
Journal of Operational Research. 2002;
143(3):531-542.

56. Özcan E. Towards an XML-based
standard for timetabling problems: Ttml. In
Kendall G, Burke EK, Petrovic S,
Gendreau M, editors, Multidisciplinary
Scheduling: Theory and Applications
Springer: US. 2005;163-185.

57. Causmaecker PD, Berghe G. Towards a
reference model for timetabling and
rostering. Annals of Operations Research.
2010;1-10

58. Bonutti A, De Cesco F, Gaspero LD,
Schaerf A. Benchmarking curriculum-
based course timetabling: formulations,
data formats, instances, validation,
visualization and results. Annals of
Operations Research. 2010;1-12.

59. Cedeira-Pena A, Carpente L, Farina A,
Seco D. New approaches for the school
timetabling problem. Proceedings of the
7th Mexican conference on artificial
intelligence (MICAI 2008). 2008;261-267.

60. Schaerf A. Tabu search techniques for
large high school timetabling problems.
Proceedings of 13th National Conference
on Artificial Intelligence (AAAI-96),
Portland, USA. 1996;363-368.

61. Wright M. School timetabling using
heuristic search. Journal of the
Operational Research Society. 1996;
47(3):347-357.

62. Lewis R. A survey of metaheuristic-based
techniques for university timetabling
problems. OR Spectrum. 2008;30(1):167-
190.

63. Thompson JM, Dowsland KA. A robust
simulated annealing based examination
timetabling system. Computers and
Operational Research. 1998;25(7/8):637-
648.

64. Aarts E, Kort J, Michiels W. Simulated
Annealing. In Burke E, Kendall G (editors),
Search Methodologies: Introductory
Tutorials in Optimization and Decision
Support and Search Techniques. Springer.
2005;7:187-211.

65. Delport V. Parallel simulated annealing
and evolutionary selection for combina-
torial optimisation. Electronic Letters.
1998;34:758-759.

66. Tan KC, Chiam SC, Mamun AA, Goh CK.
Balancing Exploration and Exploitation

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744

38

with Adaptive Variation for Evolutionary
Multi-Objective Optimization. European
Journal of Operational Research. 2009;
197(1):701-713.

67. Kanoh H, Nakamura T. Knowledge based
genetic algorithm for dynamic route
selection. Proceedings of Knowledge-
Based Intelligent Engineering Systems
and Allied Technologies. 2000;2:616-619.

68. Angelova M, Pencheva T. Tuning genetic
algorithm parameters to improve
convergence time. International Journal of
Chemical Engineering, ID 646917; 2011.
Available:http://www.hindawi.com/journals/
ijce/2011/646917

69. Angelova M, Atanassov K, Pencheva T.
Multi-population genetic algorithm: Quality
assessment implementing intuitionistic
fuzzy logic. Proceedings of Federated
Conference on Computer Science and
Information Systems. 2012;365-370.

70. Kohonen J. A brief comparison of
simulated annealing and genetic algorithm
approaches. Term Paper for the Three

Concepts Utility Course, Department of
Computer Science, University of Helsinki;
1999.

71. McCollum B. University timetabling:
bridging the gap between research and
practice. Proceedings of the 6

th

International Conference on Practice and
Theory of Automated Timetabling. 2006;
15-35.

72. Reis LP, Oliveira E. A language for
specifying complete timetabling problems.
Lecture Notes in Computer Science. 2001;
2079:322-341.

73. Johnson D, Aragon C, Mcgeoch L,
Schevon C. Optimization by simulated
annealing: An experimental evaluation,
Part 1: Graph Partitioning. Operational
Research. 1990;37:865-892.

74. Kohonen J. A brief comparison of
simulated annealing and genetic algorithm
approaches. Term Paper for the Three
Concepts Utility Course, Department of
Computer Science, University of Helsinki;
1999.

© 2020 Odeniyi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/55744

