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ABSTRACT 
 

Despite significant research efforts for School Timetabling Problem (STP) and other timetabling 
problems, an effective solution approach (model and algorithm) which provides boundless use and 
high quality solution has not been developed. Hence, this paper presents a novel solution approach 
for solving school timetabling problem which characterizes the problem-setting in the timetabling 
problem of the high school system in Nigeria. We developed a mixed integer linear programming 
model and meta-heuristic method - Enhanced Simulated Annealing (ESA) algorithm. Our method 
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incorporates specific features of Simulated Annealing (SA) and Genetic Algorithms (GA) in order to 
solve the school timetabling problem. Both our solution approach and SA approach were 
implemented using Matrix Laboratory 8.6 software. In order to validate and demonstrate the 
performance of the developed solution approach, it was tested with the highly constrained school 
timetabling datasets provided by a Nigerian high school using constraints violation, simulation time 
and solution cost as evaluation metrics. Our developed solution approach is able to find optimal 
solution as it satisfied all the specified hard and soft constraints with average simulation time of 
37.91 and 42.16 seconds and solution cost of 17.03 and 18.99, respectively, for JSS and SSS to 
the problem instance. A comparison with results obtained with SA approach shows that the 
developed solution approach produced optimal solution in smaller simulation time and solution 
cost, and has a great potential to solve school timetabling problems with satisfactory results. The 
developed ESA algorithm can be used for solving other related optimization problems. 
 

 

Keywords: School timetabling problem; model; mixed integer linear programming; meta-heuristics; 
genetic algorithm; simulated annealing. 

 

1. INTRODUCTION  
 
The School Timetabling Problem usually denoted 
as High School Timetabling Problems (HSTP) is 
concerned with the process of fixing a sequence 
of meetings between teachers and classes (set 
of lessons) to a specific number of timeslots 
within a prefixed time period (typically a week), 
satisfying a set of constraints of various kinds 
[1,2,3]. These constraints are usually classified 
into two types, hard and soft. Hard constraints 
must be satisfied in order to provide a feasible 
solution, whereas, soft constraints which express 
the preferences and the quality of the timetable 
can be violated (but must be satisfied as far as 
possible) [4]. The quality of a timetable is 
measured based on how well the soft constraints 
have been satisfied. The more soft constraints 
are satisfied, the better is the quality of the 
solution considered. Further discussion on 
school timetabling can be found in [2,5]. 
 
Literature on school timetabling is very extensive 
with several solution approaches (models and 
algorithms) proposed. In fact, many models 
including XHSTT format (which is based on the 
Extensible Markup Language standard) and 
several NP-complete variants of HSTP have 
been proposed in the literature, which differ due 
to the difference in educational system of each 
country, context of the application, the school 
and the place where it is located. Representative 
literature include [6,7,8,9,10,11,12,13,14]. In 
addition, a variety of heuristic (analytical) and 
complete methods have been proposed to solve 
HSTP including hybrid or enhanced which is 
surveyed by [3].  
 

Nevertheless, developing good models and 
algorithms for solving HSTP is a challenging task 
due to its inherent problem characteristics and 

complexities (a large search space of the 
problem – large number of events required to be 
assigned to resources while satisfying a large list 
of constraints; increasing number of courses/ 
subjects that are very diverse for the different 
countries to be scheduled; a varying structure in 
different high schools even in the same country 
or educational systems and a wider variety of 
many different requirements (both objectives and 
constraints) which are usually institution-specific 
that changes day by day) [5,15,16,17,18]. 
Furthermore, [19] confirmed that every model 
has limited use and many problems are still not 
solved efficiently or optimally as most of these 
solution approaches however generated feasible 
or low quality solutions. Even [20] opined that 
finding a feasible solution to HSTP is often 
difficult especially when the resources are tight 
and usually results to low computational 
efficiency. 
 
HSTP has been intensively investigated since 
the1960s [21,22]. Recent years have seen an 
increased level of research activity in this area. 
This is evidenced (among other things) by survey 
studies, for example, [23,24,25], and the 
emergence of a series of international 
conferences on the Practice and Theory on 
Automated Timetabling (PATAT), the Multi-
disciplinary International Scheduling Conference: 
Theory and Application (MISTA) and the 
establishment of a European Association of 
Operational Research Societies (EURO) working 
group on automated timetabling [26]. However, 
the international conference series on PATAT 
has contributed largely to the area, for example 
[10,18,27,28,29]. 
 
Graphs, Networks and Integer Programming (IP) 
have proven to be useful in the mathematical 
formulation and solution of school timetabling 
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models [15,30]. Integer Programming (IP) has 
been used to model problems with more 
sophisticated requirements including educational 
timetabling problems since the very early days of 
Operations Research, for example, [22,31]. 
However, IP is mainly used for timetabling due to 
its modeling strength, and not as an actual 
solution method since only small instances, or 
simplified variants of the problem, were shown to 
be solved in reasonable time. In recent times 
several improvements have been made in IP 
solvers [32] and several IP based techniques 
have been introduced for similar HSTPs which 
were able to provide bounds and good solutions 
after longer runs. [7,8] surveyed some of these 
recent contributions.  
 
Over the last few years, meta-heuristics including 
its hybrids have proven to be very effective in the 
optimisation literature, and particularly in school 
timetabling. Souza et al. [33] applied a hybrid 
approach of GRASP-Tabu search algorithm to 
solve school timetabling problem in order to 
improve the timetable’s compactness and 
speeds up the process of obtaining better quality 
solutions. In this work, while the partially greedy 
constructive procedure was used to generate 
good initial solutions and diversifies the search, 
the Tabu Search procedure was used to improve 
(refine) the constructed solution (search). 
Though quality solution was generated, it was 
suggested that quality of the solution can be 
improved by considering other requirements and 
adding component which measures the 
difference between the current and the desired 
solution to the objective function. 
 
Soza et al. [34] addressed the solution of 
timetabling problems using cultural algorithms. 
The authors proposed the use of domain 
knowledge, both a priori and extracted during the 
search to improve the performance of an 
evolutionary algorithm when solving timetabling 
problems. The experimental results provided 
very encouraging results. However, the optimality 
of the solution was in doubt as soft constraints 
violations were not addressed. It was suggested 
that the performance of the developed algorithm 
can be improved by analysing the mechanisms 
of the simulated annealing method for 
incorporation into an evolutionary algorithm or a 
cultural algorithm. 
 

Santos et al. [35] presented a hybrid SA-ILS 
approach to solve the high school timetabling 
problem. The Kingston’s High School Engine 
(KHE) was used to generate an initial solution 

while Simulated Annealing (SA) and Iterated 
Local Search (ILS) were used to perform local 
search around the initial solution. The 
experimental results produced several best 
known solutions for the test set. However, it was 
suggested that the quality of the solution can be 
improved by the development of an augmented 
set of (larger) neighbourhoods and a proper 
experimental study to fine tune parameter 
selection. 
 
Sorensen et al. [36] established a new hybrid 
approach called matheuristic, combining integer 
programming and meta-heuristics to solve the 
high school timetabling problem. The 
experimental results illustrated that the 
developed matheuristic provided promising 
results and the potential of hybridising 
mathematical programming and meta-heuristics. 
However, it was suggested that the 
computational efficiency of the developed 
matheuristic can be improved by investigating 
more advanced approaches for adjusting the size 
of the neighbourhoods and selecting variables in 
each neighbourhood. 
 
Raghavjee [37] presented genetic algorithms to 
solve STP in order to test the effectiveness of a 
genetic algorithm approach in solving more than 
one type of STP and as well to evaluate the 
performance of a genetic algorithm that uses an 
indirect representation (IGA) with that of a 
genetic algorithm that uses a direct 
representation (DGA) when solving the STP. 
Both the DGA and IGA when tested on five STPs 
were found to produce timetables that were 
competitive and in some cases superior to that of 
other methods. However, the IGA outperformed 
the DGA for all of the tested STPs. The solution 
did not address the problem of optimality and 
both software and computational complexities 
which can be considered for future research. In 
addition, it was recommended that future 
research may be geared towards implementing 
more advanced techniques (more efficient 
algorithms) to solve the STP so as to provide 
more bases for comparison. 
 
Kristiansen [38] developed different techniques 
to solve Multiple Timetabling Problems (High 
School Timetabling, Student Sectioning and 
Meeting Planning Problem) at the Danish High 
Schools. Techniques developed included 
Adaptive Large Neighbourhood Search (ALNS), 
Mixed Integer Programming (MIP) Dantzig-Wolfe 
decomposition in a Branch-and-Bound and 
Column generation with a Branch-and-Price 
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(B&P). The experimental results proved that all 
the developed techniques and algorithms were 
efficient. However, it was suggested that future 
research may be geared towards investigating 
more techniques such as hyper-heuristics and 
matheuristics to measure and improve the quality 
of solution and computational efficiency of the 
developed exact methods. 
 
Odeniyi et al. [2] developed a modified simulated 
annealing (MSA) algorithm to solve STP. The 
implementation of the MSA was characterized by 
cooling schedule modification with the 
introduction of a non-linear factor to the 
exponential cooling schedule of classical 
simulated annealing (α = (1/log(1+t)) to become 
parabolic (as α = (1/log(1+t+t

2
)), in order to 

decrease the sensitivity to the initial values 
(parameters) that accounted for the excessive 
convergence time of classical simulated 
annealing. MSA when tested on some variants of 
the STP that originated from Nigerian secondary 
educational institutions produced conflict-free 
school timetables which satisfied all hard 
constraints and optimally minimised all soft 
constraints violations in less simulation time and 
less solution cost. However, the solution did not 
address the problem of software and 
computational complexities which can be 
considered for future research. In addition, it was 
recommended that future research may be 
geared towards improving the quality of the 
solution of the developed algorithm by 
implementing more advanced techniques such 
as efficient hybridised algorithms. 
 
Dorneles [39] developed techniques that 
combine mathematical programming and 
heuristics, so-called matheuristics (fix-and-
optimize heuristic combined with a variable 
neighbourhood descent strategy and column 
generation approach), to solve efficiently and in a 
robust way some variants of the High School 
Timetabling Problem (HSTP) that originated from 
Brazilian institutions. The performance of the 
developed matheuristics were evaluated and 
compared with the state-of-the-art MIP solvers 
designed for solving the GHSTP, referred as 
GOAL and SVNS. The experimental results 
provided very encouraging results which 
indicated that the state-of-the-art MIP solvers 
were not efficient for solving instances of the 
HSTP

+
. It was suggested that future research 

may be geared towards reducing the simulation 
time while improving both the quality of the 
solution and computational efficiency of the 
developed matheuristics. 

Raghavjee et al. [40] presented a genetic 
algorithm selection perturbative hyper-heuristic 
(GASPHH) to solve the STP. A 2-phased 
approach was taken, with the first phase focusing 
on hard constraints, and the second on soft 
constraints. GASPHH used tournament selection 
to choose parents, to which the mutation and 
crossover operators were applied. GASPHH was 
applied to five different school timetabling 
problems. The performance of GASPHH was 
evaluated and compared to that of other methods 
applied to these problems, including a GA that 
was applied directly to the solution space. 
GASPHH produced feasible timetables for all 
problem instances, provided a generalized 
solution to the STP, and performed better than 
other methods applied to the same set of 
problems. However, GASPHH was computa-
tional intensive in comparison to SGA based 
benchmark heuristics. It was suggested that 
future research may be geared towards 
investigating approaches to reduce both the 
simulation time and computational complexity as 
well to improve the computational efficiency of 
the developed GASPHH. 
 
Demirovic [6] presented SAT-based approaches 
for HSTP. The problem of determining whether a 
propositional logic formula has a solution is 
called the satisfiability problem (abbreviated as 
SAT). The thesis explored the relation between 
propositional logic and HSTP, as well as related 
approaches. The thesis described the general 
HSTP (XHSTT), introduced a formal definition, 
as well two different modelling approaches, SAT- 
and bitvector based. The author combined local 
search and large neighbourhood search to solve 
XHSTT instances which were modelled as 
maxSAT. Each of the described methods is 
vastly different from each other and represented 
distinct ways to tackle XHSTT. The 
computational results showed that the developed 
models and solution methods were competitive 
with the state-of-the-art. However, it was 
suggested that future research may be geared 
towards investigating techniques to find and 
prove optimal solutions in reasonable time for 
XHSTT in many instances. 
 
A review of the above related works with 
literature analysis revealed most of these 
solution approaches however generated feasible 
or near-optimal solutions with low computational 
efficiency. Therefore, this research focuses on 
developing a more efficient solution approach, 
utilising the strength and minimising the 
weaknesses of two well-known meta-heuristics, 
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Simulated Annealing (SA) and Genetic Algorithm 
(GA). SA is based on an analogy to 
thermodynamics simulating the cooling of a set 
of heated atoms. This technique starts its search 
from any initial solution which can be generated 
randomly or by using solutions generated by 
another algorithm [2,41]. The main procedure 
consists of a loop that randomly generates, at 
each iteration, one neighbour s′ of the current 
solution s. Movements are probabilistically 
selected considering a temperature T and the 
cost variation of the movement ∆ [42].  
 
SA is known for its power to avoid local optima 
and its theoretical guaranty to find the global 
optimum solution when the initial temperature is 
high enough and cooling rate is infinitely slow 
[43,44,45] but converges at excessive time 
especially when the search space is large [46]. 
Several attempts have been made to speed up 
this process, such as treatment or modification of 
the temperature parameter, which is known as 
annealing schedule or strategy [2], and hybridiza-
tion with other techniques [47,48,49,50], among 
others. 
 
GA is a biologically motivated adaptive meta-
heuristic that is based on natural selection and 
genetic recombination. It utilizes selection, 
crossover and mutation mechanisms to evolve 
the population. The usage of GA in obtaining the 
optimal parameters for a kernel function, its 
flexibility, coupled with its demonstrated 
capability of searching or exploring large search 
spaces [51,52], its demonstrated ability to reach 
near-optimum solutions to large problems, and 
its power to discover good solutions rapidly for 
difficult high-dimensional problems makes the 
technique an ideal candidate for consideration in 
solving the timetabling problem. 
 
In this work, we extend previous studies about 
the HSTP. We propose a mathematical 
programming model and meta-heuristic method 
to construct school timetables. We utilise mixed 
integer linear programming formulation to model 
the problem to be solved but due to the limitation 
of a mathematical programming approach to 
solve large problem instances and slow 
convergence speed of classical simulated 
annealing (SA) algorithm, we propose a new 
meta-heuristic method, called Enhanced 
Simulated Annealing (ESA) algorithm which 
incorporates best features of Simulated 
Annealing (SA) and Genetic Algorithm (GA) to 
find quality solutions to some variants of the 
HSTP. 

The aim of this work is to develop an effective 
solution approach (model and algorithm) which 
provides boundless use and high quality solution 
to the school timetabling problem. The overall 
idea is to overcome the problem of low solution 
quality (slow convergence speed), which is a 
common problem when using simulated 
annealing (SA). The developed solution 
approach was implemented using Matrix 
Laboratory 8.6 software. In order to validate             
and demonstrate the performance of the 
proposed solution approach, it was tested             
with the highly constrained school timetabling 
datasets provided by a Nigerian high school, 
using computation time, solution cost and 
constraints violation as evaluation metrics. 
 
Developing models and algorithms that 
automatically generate high quality timetables is 
of great importance [6] and is still an active field 
of research as well as important issues in this 
domain. High quality timetables are relevant for 
financial and pedagogical reasons. High quality 
timetables directly influence the quality of 
teaching and learning, working conditions of 
teachers as well as the maintenance of the 
satisfaction of students and staff, among other 
things, which leads to an overall better use of 
resources and learning environment [12,53]. 
Conversely, timetables construction by hand is 
usually very difficult, time consuming, and error 
prone. Consequently, assisting the high school 
planners with efficient algorithms and decision 
support software that will automatically generate 
high quality timetables and/or spend less time is 
of great importance [6,7] 
 
Furthermore, the high schools administration 
requires a model of the HSTP which is              
general enough to suit many different 
requirements, and which is also tractable by 
computer aided solution methods. This             
supports the recent trend of developing general 
models for HSTP, for example [6,9,10,12, 
14,16,17,54,55,56,57,58]. In addition, the 
mathematical programming model formulated in 
this paper is the first for high school system in 
Nigeria, and as well as among the most 
comprehensive models of school timetabling to 
be found in the literature. Although the developed 
model is tailored to the Nigeria case but can 
easily be adapted to other variants from other 
countries and other related optimization 
problems. The model is 'complete' in the sense 
that it contains all relevant practical constraints 
available in the context of high school timetabling 
problem in Nigeria.  
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2. METHODOLOGY  
 
In this work, mixed integer linear programming 
technique was used to formulate the 
mathematical programming model of the school 
timetabling problem for the high school system in 
Nigeria (HNSTP). An Enhanced Simulated 
Annealing (ESA) algorithm for solving the school 
timetabling problem was formulated, which 
incorporates specific features of Simulated 
Annealing (SA) and Genetic Algorithms (GA). 
The formulated mathematical model with ESA 
algorithm and SA algorithm were implemented 
using Matrix Laboratory 8.6 software on an 
Intel(R) Core(TM) i3-7100 CPU with 2.50GHz 
speed, 32GB Hard Disk, 4GB Random Access 
Memory and 32-bit Operating System, with the 
Window 7 operating system, and validated using 
a highly constrained Nigerian high school 
dataset. The implemented algorithms were 
evaluated using constraints violation, simulation 
time and solution cost as performance metrics. 
 
2.1 Problem Specification and Model 

Formulation  
 
The goal of the High School Timetabling Problem 
in high school system in Nigeria (NHSTP) is to 
build a weekly timetable. The week is organized 
as a set of days D, and each day is split into a 
set of periods P. All Periods are distributed in D 
week days and H daily periods which occur 
during the same shift, that is, P = D ∗ H. Let C be 
a set of classes (class-sections), T a set of 
teachers and S a set of subjects. A class k ∈ C is 
a disjoint group of students that follow the same 
subjects, and no idle time periods during the 
week, and each subject of a class is taught by 
only one teacher who is previously determined. A 
timeslot is a pair, composed of a day and a class 
period (i,j), with i ∈ D and j ∈ P wherein all 
periods have the same duration. Teachers l ∈ T 
may be unavailable in some timeslots.  
 
The inputs for the NHSTP are a set of events (or 
meetings) E that must be scheduled, C*T matrix 
of lesson requirements R = (Rlk) where Rlk is the 
number of periods teacher l is required to meet 
class k for the duration of the timetable 
(containing a total of P periods in a set P), and 
teachers and classes unavailability’s binary 
matrices Tij and Ckj. Each event requires a class 
k(e) ∈ C, a teacher l(e) ∈ T, and a number of 
weekly hours hours(e) ∈ N. Particularly in the 
Nigerian context, a teacher, a class, and a room 
are pre-assigned to each event e such that 
classrooms are not considered in the scheduling. 

In addition, each event defines how lessons are 
distributed over a week by requesting an amount 
of double lessons, restricting the daily limit of 
lessons, and defining whether lessons taught on 
the same day are consecutive or not. 
 

A feasible timetable has a timeslot assigned to 
each lesson of events satisfying 
the hard constraint requirements HC1-HC13 
below: 
 

HC1: The number of lessons that each teacher 
must give to each class must be met 
(Lesson Requirement Constraint). 

 

HC2: No two classes must be scheduled to the 
same teacher at the same period (Class 
Clashes Constraint). 

 
HC3: No two teachers must be scheduled to 

the same class at the same period 
(Teacher Clashes Constraint).  

 
HC4: A lesson cannot be scheduled to periods 

where the teacher is unavailable 
(Teachers’ Unavailability Constraint).  

 
HC5: A lesson cannot be scheduled to periods 

where the class is unavailable (Classes’ 
Unavailability constraint). 

 
HC6: Each class, for a given set of periods, 

must be involved in one lesson (One 
Class One Lesson Constraint). 

 
HC7: Every teacher may be assigned at most 

one subject and one class (class-
section) in a given period with the 
exception of indicated subjects that 
require more than one instructor 
(Uniqueness Constraint). 

 
HC8: All subjects in the curriculum of a class-

section should appear in the timetable 
for the required number of teaching 
periods (Completeness for Students 
Constraints). 

 

HC9: All subjects assigned to a given teacher 
should appear in the timetable for the 
required number of teaching periods 
(Completeness for Teachers constraint). 

 

HC10: The teaching periods assigned to a given 
subject over a whole week should add 
up to the weekly requirements for the 
specific subject (Completeness for 
Subjects Constraint). 



 
 
 
 

Odeniyi et al.; AJRCOS, 5(3): 21-38, 2020; Article no.AJRCOS.55744 
 
 

 
27 

 

HC11: Some pairs of lessons must be 
scheduled simultaneously (Simultaneity 
Constraint). 

 

HC12: Certain subjects to be taught in multi-
period slots at most once a day for a 
given class section must be followed 
(Consecutiveness constraint).  

 

HC13: The timetable of every class-section 
should not carry empty slots during the 
week (Compact Student Schedules 
Constraint).  

 

Besides feasibility regarding hard constraints,            
as many as possible of the soft 
requirements SC1-SC8 stated below should be 
satisfied: 
 
SC1: More lessons to the same class in the 

same day than the maximum specified 
for the pair teacher-class must be 
avoided (Classes’ maximum workload 
per day constraint).  

 
SC2: The specified maximum number of daily 

lessons of each teacher must be 
respected (Teachers’ maximum 
workload per day constraint).  

 
SC3: Assignment of teachers to periods in 

which teachers would prefer not to teach 
must be avoided (Teachers’ Preference 
or undesired Constraint).  

 
SC4: Avoid teachers’ idle periods. As much as 

possible, minimise the number of empty 
or holes periods between two 
consecutive periods where a teacher is 
assigned to a class. Breaks and free-
time periods are not considered as idle 
periods or holes (Teachers’ Idle Period 
Constraint).  

 
SC5: Teachers’ request for double lessons 

(lessons conducted in two consecutive 
periods) should be granted as often as 
possible (Double lesson per week 
constraint).  

 
SC6: Teachers’ request for parallelism of 

subjects (subjects scheduled for the 
same time periods) should be granted as 
often as possible (Parallelism of subjects 
Constraint).  

 

SC7: Lessons for any given subject must be 
scheduled for at most one teaching 

period per day of the week, unless it 
requires more teaching periods than the 
days of the week or there is a special 
request for multiple or consecutive 
hours, in which cases they are 
scheduled accordingly (Uniform 
distribution of subjects Constraint). 

 
SC8. Pre-assignments of certain subjects to 

specific time periods must be respected 
(Pre assignments of certain subjects 
Constraint).  

   
The notation used in the problem specification 
and the formulated model for NHSTP considering 
all the hard and soft constraints requirements 
listed above are presented as follows.  
 
Sets 
 
i ∈ D  days of week.  D = {1,2,...,|D|}. 
 
j ∈ P  periods of a day. P = {1,...,|P |}. 
 
P1   P without the last two periods of a day. 

P1 = {1,...,|P | −2}. 
 
k ∈ C set of classes.  
 
l ∈ T  set of teachers. 
 
m ∈ S set of subjects. 
 

e∈ E set of events. 
 

B   set of quadrupes of the form (l1; k1; l2; k2) 
with l1 ≠ l2 and k1 ≠ k2 such that all 
lessons of teacher l1 to class k1 must be 
simultaneous to lessons of teacher l2 to 
class k2 

 
Skl =   {mS: m is a subject that teacher l 
teaches for class-section k} 
 
S*

kl = {mS: m is any regular subject that teacher 
l teaches for class-section k}, where the term 
“regular” refers to all subjects that do not require 
any special  type of   scheduling.    
  
Sl

Sim =   {(m, k, l*): mS is a subject that teacher  
lT teaches for a part of section k 
simultaneously with another subject  taught by 
the “basic” teacher l*} 

 
Sl

Col =   {(m, k, l*): mS is a subject that teacher 
lT teaches for section k in collaboration with 
the “basic” teacher l*} 
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Scons =  {(m, k, hm): mS is a subject of section 
k that needs to be scheduled in block(s) of hm 
consecutive periods} 
 

Sparal =  {[(ma, mb); (ka, kb); (la, lb)]: maS is a  
subject that teacher la teaches for section ka that 
needs to be scheduled always in parallel to mb a 
subject taught by teacher lb for section kb} 
 

Sexcl =  {[(ma, ka, la; mb, kb, lb; ...;mw, kw, lw) 
(la)]:ma, mb, ..., mwS are subjects that teachers 
la,lb,..., lw T teach to sections ka, kb, ..., kw, 
respectively, however no more than a certain 
number of them may be scheduled in the same 
day or time period} 
 

S
fix

 =  {(ia, ja, ma, ka, la): maS is a subject that 
teacher la teaches to section ka and should be 
scheduled on day ia and in period ja} 
 

Dl =  { iD : i is any day of the week for which 
teacher l is available for the school} 
 
Cl =   { kC : k is a class-section of the school to 
which teacher l teaches at least one subject}  
 
Parameters 
 
Rlk: The workload of an event (l,k), that is, the 
number of lessons that must be taught by the 
teacher l for the class k. 
 
λ: The maximum number of permitted lessons 
per day  
 

m : Is the number of the multi-period slots 
(double lessons) required for subject m every 
week. 
 

il ,
: The maximum number of double lessons 

requested by teacher l with class k. 
 

il, : The effective number of allocated double 
lessons. 
 

ilk ,, : The total number of lessons allocated for 
class k with teacher l on day i. 
 

lk ,
: The maximum number of permitted 

lessons per day. 
 

ijl ,,
: The total number of lessons allocated for 

teacher l on period j of day i. 

il, : The number of idle times at the agenda of 
teacher l on day i 
 
TTP: Total Time Periods. TTP indicates the total 
number of time periods to be scheduled in the 
timetable. 
 
WTLl: Weekly Teaching Load for teacher l. WTLl 

indicates the total number of time periods to be 
assigned to teacher l each week. 
 

DTLl: Average Daily Teaching Load for teacher l. 
DTLl indicates the daily average number of time 
periods assigned to teacher l. 
 

WTLkl: Weekly Teaching Load of teacher l for 
class-section k. WTLkl indicates the total number 
of time periods to be assigned to teacher l for 
class-section k each week. 
 

WTLklm: Weekly Teaching Load of teacher l for 
class-section k and subject m. WTLklm indicates 
the total number of time periods to be assigned 
to teacher l for subject m each week. 
 

TTPk: Total Time Periods for section k. TTPk 
indicates the total number of time periods over all 
subjects of class-section k to be assigned each 
week. 
 
Hk

max: Is a parameter that indicates the maximum 
number of teaching periods that section k may 
have during any day of the week. Hk

max may be 
set equal to J, the length of each day, however, 
in order to create more balanced timetables for 
the classes, it is preferable to set a different 
upper limit for each section of the school. 
Therefore, Hk

max equals to [TTPk/D]. In general, 
however, it holds that Hk

max  P, kC. 
 
Variables 
 
x i, j, k, l, m:   Binary variable that indicates whether 
subject m, taught by teacher l to the class section 
k, is scheduled for the j

th
 period of day i.  

 

mlkjix ,,,, :   Complement of the binary variable x i, 

j, k, l, m, that is, x i, j, k, l, m = 0 if  mlkjix ,,,, = 1 and 
vice versa. 
 

mhkti mm
y ,,,, :  Binary variable that indicates 

whether subject m, is scheduled for hm 
consecutive periods on day i for class-section k, 
with tm being the 1

st
 period for  this assignment. 
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Tij:  binary variable that indicates whether 
teacher l is available to teach class k subject m 
scheduled for jth period of day i. 
 
Ckj : binary variable that indicates whether 
class k is available to be taught by teacher l 
subject m scheduled for j

th
 period of day i. 

 
Zkj : binary matrix that indicates whether 
class k must be taught a subject m by teacher l 
at j

th
 period of day i,  

 

jill ,, :  binary variable that indicates whether 
teacher l has been scheduled to teach at an 
undesired period j on day i. 
 

X = An arbitrary matrix (x i, j, k, l, m) is called a 
timetable. X ∈ {0, 1} 
 
The objective function is to minimise the 
constraints (soft) violation that is formulated as 
solution cost function Cf(s), which associates a 
cost value to a given solution. Such value was 
used to compare the goodness of different 
solutions. This function was defined as follows: 
Let S be the search space; sS, a solution; n, 
the number of type of problem constraints 
considered, wi, the penalty weighting associated 
with each constraint type i and vi(s), represents 
the number of constraint violations of type i in a 
solution s, vi(s) = 0 if constraint type i is satisfied 
and vi(s) = 1 if constraint type i is violated. 

Therefore, the solution cost function Cf(s) is given as: 

. Cf(s) = )(
1

svw i

n

i
i



                     (1a) 

Minimise )(
1

svw i

n

i
i



                     (1b) 

 
Subject to 

             P 
 ∑   xi,j,k,l,m = Rlk       PjDi   ,  CkTl   ,                                  (2) 

j=1 
 

C 
∑   xi,j,k,l,m ≤  1     PjDi   ,  SmTl   ,                                (3) 

k=1 
 

T 
∑  xi,j,k,l,m  ≤  1     PjDi   ,  SmCk   ,                                            (4) 

l=1 
 

C 
∑   xi,j,k,l,m  ≤ Tij  PjDi   ,  SmTl   ,                                                        (5) 

k=1 
 

T 
∑  xi,j,k,l,m  ≤  Ckj  PjDi   ,  SmCk   ,                                                        (6) 

l=1 
 

T 
∑   xi,j,k,l,m ≥ Zkj  PjDi   ,  SmCk   ,                                            (7) 

l=1 
 

   lmlkjiSSlkm
mlkji

SmCk
DiPjTlxx

col
l

sim
lkll



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

,,,1
,,,,,,

,,,, *
**

                             (8) 
 

 
CkTTPxx kmlkjiPjDiSSlkmTl

mlkji
PjDiSmTl l

col
l

sim
lklklk






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 
TlCkWLTxx klmlkjiPjDiSSlkm

mlkji
SmPjDi l

col
l

sim
lkl



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l
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xx
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 
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,,,,,,
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                      (14a) 

  

 
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SSlkm
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 
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
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

  ≤   
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mlkji
PjDiTl
x
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,,,,



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il
DiTl

,



 ≤ 1 DiTl   ,                                 (18) 
 

il ,  ≤ 
 ililil

DiTl
DiTl ,,, ,,, 




                              (19) 
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klkmlkji
Pj

SmTlCkDix 


 ,,,,1,,,,
                              (21) 

 

  fixmlkji
Smlkjix ,,,,,1

,,,,


                                (22) 
 

xi,j,k,l,m  = 0 or 1   CkPjDi   ,, SmTl   ,                                          (23) 
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Constraint set (2) ensures that the number of 
lessons that each teacher must give to each 
class is fully scheduled. Constraint set (3) 
ensures that no two classes are scheduled to the 
same teacher at the same period. Constraint set 
(4) ensures that no two teachers are scheduled 
to the same class at the same period. Constraint 
set (5) ensures that a lesson cannot be 
scheduled to periods where the teacher is 
unavailable. Constraint set (6) ensures that a 
lesson cannot be scheduled to periods where the 
class is unavailable. Constraint set (7) ensures 
that each class, for a given set of periods, are 
scheduled to only one lesson at a time. 
Constraint set (8) ensures that every teacher is 
assigned at most one subject and one class 
(class-section) in a given period with the 
exception of indicated subjects that require more 
than one instructor. Constraint set (9) ensures 
that all subjects in the curriculum of a class-
section appeared in the timetable for the required 
number of teaching periods. Constraint set (10) 
ensures that all subjects assigned to a given 
teacher appeared in the timetable for the 
required number of teaching periods.  
 
Constraint set (11) ensures that the teaching 
periods assigned to a given subject over a whole 
week added up to the weekly requirements for 
the specific subject. Constraint set (12) ensures 
that some pairs of lessons are scheduled 
simultaneously. Constraint set (13) ensures that 
certain subjects to be taught in multi-period slots 
at most once a day for a given class section are 
followed. Constraint (13a) forces hm basic 
variables xi,j,k,l,m that refer to consecutive time 
periods to take the value of 1, while constraint 
(13b) ensures that only one block of consecutive 
periods may be assigned in any given day and 
constraint (13c) indicates that there should be 

exactly m  of these blocks for the whole week. 
Constraint set (14) ensures that the timetable of 
every class-section did not carry empty slots 
during the week. Basically Constraint set (14a) 
and (14b) ensure that for each class-section 
there is exactly one subject scheduled for any 
given period (except may be the last one) of any 
day, while Constraint  (14c) on the other hand, 
checks whether all subjects of class-section k are 
scheduled within the maximum stretch allowed 
for the class-section.  
 
Constraint set (15) ensures that the limit set on 
the maximum number of lessons a class may 
have per day is met. Constraint set (16) ensures 
that the specified maximum number of daily 

lessons of each teacher is respected. Constraint 
set (17) ensures the assignment of teachers to 
periods in which teachers would prefer not to 
teach is avoided. Constraint set (18) determines 
the number of teachers’ idle periods in a solution. 
Constraint set (19) ensures that teachers’ 
request for double lessons is granted. Constraint 
set (20) ensures that teachers’ request for 
parallelism of subjects is granted. Constraint set 
(21) ensures that uniform distribution of subjects 
is met. Constraint set (22) ensures pre-
assignments of certain subjects to specific time 
periods are respected while Constraint set (23) is 
required to ensure the integrality of the solution. 
 
In this work each hard constraint was assigned a 
weight of 20 to stipulate their higher priority than 
the soft constraints and to allow the proposed 
solution leads the search process towards valid 
solutions in accordance to the literature [59]. The 
weight assigned to each of the soft constraints 
(preferences) varies to indicate the relative 
importance of each preferences compared to 
others such that a weight of 6 was assigned to 
SC1, SC2, SC5 and SC6; a weight of 4 was 
assigned to SC7 and SC8; a weight of 3 was 
assigned to SC3 and finally a weight of 1 was 
assigned to SC4.  
 
These weight set was informed by the literature 
which stated that weighted penalty based 
evaluation function should be used for 
timetabling problems where an abundance of 
different constraint combinations is encountered 
[60,61,62] and thus allows for some constraints 
to have a higher priority than others. It must be 
noted that (i) the lower the value of Cf(s) for a 
given solution s, the more the quality of s, (ii) 
both the distance to feasibility and the goodness 
of the solution was measured. 
 
2.2 Formulation of Enhanced Simulated 

Annealing (ESA) Algorithm 
 
The simulated annealing (SA) algorithm was 
enhanced to form Enhanced Simulated 
Annealing (ESA) Algorithm through the following 
three stages: 
 

(1) Modification of Simulated Annealing (SA) 
in terms of the temperature reduction 
parameter in order to improve its 
efficiency in terms of convergence speed 
and solution cost, by introducing a 
parabolic reduction parameter  (α = 
(1/log(1+t+t

2
)) as suggested by [2]. This is 

due to the fact that the efficiency of SA 
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often depends on cooling schedule and by 
carefully controlling the rate of cooling the 
temperature; SA can find the global 
optimum exponential faster [63,64].  

(2) Integration with Genetic Algorithm (GA) in 
order to: (i) further improve the 
performance of SA in terms of speed and 
quality of solution as suggested by [65]; (ii) 
find a good balance between the 
exploitation of found-so-far elements and 
the exploration of the search space in 
order to find global optimal solution as 
suggested by [66] and (iii) improve its local 
search ability as suggested by [67]. By this 
enhancement (integration), the genetic 
operators of GA were applied to observe 
the behaviour of Simulated Annealing 
which resulted into less parameter to 
control. In tune with the principle of the 
integration, new individuals were produced 
with Genetic Algorithm (GA) after which 
these individuals were processed with SA 
while the corresponding results were 
further used as the new individuals of the 
next generation.  

(3) Reordering the sequence of evolutionary 
operations to become (mutation, selection 
and crossover) instead of (selection, 
crossover and mutation) in order to further 
reduce the convergence time and as well 
as to generally improve its computational 
efficiency as reported by [68,69].  

 

The above sequence of processes resulted into 
Enhanced Simulated Annealing (ESA) algorithm. 
The algorithmic structure of ESA algorithm that 
was coded using the MATLAB Laboratory 8.6 
software is as presented as follows: 
 

Step 1: Initialize the temperature parameter T, 
that is, set T = T0, in which T0 is a large positive 
number, set the exponential temperature 
reduction factor as α = (1/log(1+t+t

2
)), and final 

temperature as Tt+1 = αTt 
 

Step 2: Produce the initial population made up of 
n individuals. 
 

Step 3: Compute the fitness of each individual in 
the initial population. 
 

Step 4: Repeat: 
 
Step 4.1: Carry out evolutionary operations, that 
is, mutation, selection and crossover, for 
individuals in the current solution population. 
 
Step 4.2: Let Cj be the child individual produced 
by a parent individual Pj, j = 1, …, n. 

Step 4.3: Compute the fitness E(Cj) of new 
individual Cj, j = 1, …, n. 
 
Step 4.4: For j = 1, …, n, compute ∆E = E(Cj)-
E(Pj), where E(Pj) is the fitness of parent 
individual Pj. If ∆E ≥ 0, then produce a number r 
with uniform    distribution in interval [0,1]. If exp 
(-∆E/T) > r, then replace individual Pj by child 
individual Cj. If ∆E < 0, then discard the child 
individual Cj. 
 
Step 4.5: If the termination condition is satisfied, 
then the whole procedure is stopped, else the 
value of temperature T is decreased. 
 
The algorithmic structure of SA algorithm that 
was coded using the MATLAB Laboratory 8.6 
software is as presented as follows: 
 
Step 1: Generate an initial schedule S. 
 
Step 2: Set the initial best schedule S* = S. 
 
Step 3: Compute cost of S: C(S). 
 
Step 4: Compute initial temperature T0. 
 
Step 5: Set the Initial Temperature T = T0, set 

Parabolic Temperature reduction factor 
as α = (1/log(1+t)), and Final 
Temperature as Tt+1 = αTt 

 
Step 6: While stop criterion is not satisfied do. 
 
(a) Repeat Markov Chain Length (M) times: 
        i. Select a random neighbor S

1
 to the    

             current schedule, (S
1
  NS). 

        ii. Set ∆ (C) = C(S1) – C(S). 
        iii. If (∆ (C) ≤ 0 {downhill move}). 
                •  Set S = S1  
                •  If C(S) < C(S*) then set S* = S 
        iv.  If (∆ (C) > 0 {uphill move}). 
                • Choose a random number r uniformly   
                   from [0, 1] 
                • If r < e- ∆(C)/T then set S = S1  
(b) Reduce (or update) temperature T. 
 
Step 7: Return the Schedule S* 

 
3. RESULTS AND DISCUSSION 
 
The Simulated Annealing (SA) algorithm and the 
developed Enhanced Simulated Annealing (ESA) 
algorithm were tested with the highly constrained 
school timetabling dataset provided by a Nigerian 
high school. The algorithms were tested under 
several optimization runs. The results of 
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performance evaluation of both algorithms (SA 
and ESA) are as shown in Table 1. 
  
As depicted in Table 1, both the average 
simulation time and solution cost to generate a 
high quality timetable in SA algorithm is higher 
than that to generate an optimal timetable in the 
developed ESA algorithm. The higher simulation 
time and solution cost of SA algorithm can be 
attributed to the slow convergence speed and 
exponential cooling schedule inherent in SA 
algorithm. The modified annealing schedule 
(slow cooling schedule - parabolic), improved 
local search ability and the reordered 
evolutionary operation sequence in the 
developed ESA algorithm helped to improve the 
convergence speed which in turns reduced the 
average simulation time and solution cost to 
generate an optimal timetable in the developed 
ESA algorithm.  
 
This result confirmed the previous literatures that 
indicated that: high quality solutions can only be 
obtained if SA’s parameters (cooling schedule, 
update moves, initial solution, among others) are 
well tuned and that (i) the efficiency of SA 
algorithm depend on cooling schedule and by 
carefully controlling the rate of cooling the 
temperature SA can find the global optimum 
exponential faster [63,64]; (ii) the performance of 
SA in terms of speed, quality of solution (global 
optimal solution) and local search ability can be 
improved by integrating it with GA [65,66,67]; 
and (iii) the convergence time and computational 
efficiency of GA-based algorithm can be 
improved by reordering the sequence of 
evolutionary operations to become (mutation, 
selection and crossover) instead of (selection, 
crossover and mutation) [68,69]. 
 

The following section gives the detailed result of 
the performance evaluation of the two solution 
approaches (SA and the developed ESA): 
 

(i) Constraints violation: Constraints violation is 
the metric that measures the feasibility and 
optimality of the solution produced by an 
algorithm. An algorithm that satisfies the 
problem’s all hard constraints is said to               
produce a feasible solution. The optimality 
(goodness/quality) of an algorithm’s solution is 
indicated by how much soft constraints an 
algorithm satisfied. As depicted in Table 1, SA 
algorithm produced high quality timetable as a 
result of violation of one of the soft constraints 
while the developed ESA algorithm produced 
optimal solution as it satisfied all the specified 
constraints (hard and soft). 
 
(ii) Simulation Time: Simulation time is the 
parameter which measures the time utilized by is 
an algorithm to run until the result is produced. It 
otherwise known as computation, execution or 
run time. As advocated by [73], simulation time 
should be considered first when dealing with the 
performance evaluation of optimization 
algorithms for combinatorial problems. It should 
be a key element of any such evaluation [74]. 
Indicated that one of the most important factors 
considered before choosing the winner during 
the second international timetabling competition 
(ITC-2007) was the simulation time.  
 
Table 1 showed the obtained values of the 
simulation time of both SA algorithm and the 
developed ESA algorithm for JSS and SSS 
respectively. The simulation time of the SA 
algorithm and the developed ESA algorithm are 
40.90 and 37.91 seconds respectively for JSS 
and 45.82 and 42.16 seconds respectively for 
SSS. This is clear evidence that the developed 
ESA algorithm utilized less time and converges 
faster than the SA algorithm to produce an 
optimal timetable as a result of its enhanced 
features (slow cooling schedule - parabolic, 
improved local search ability and the reordered 
evolutionary operation sequence).  

Table 1. Constraints violation, simulation time and solution cost evaluation result 
 
Parameters SA ESA 
Junior Secondary School 
Number of Hard Constraint Violated   0 0 
Number of Soft Constraint Violated 1 0 
Average Simulation time (Seconds) 40.90 37.91 
Average Solution Cost 20.88 17.03 
Senior Secondary School 
Number of Hard Constraint Violated   0 0 
Number of Soft Constraint Violated 1 0 
Average Simulation time (Seconds) 45.82 42.16 
Average Solution Cost 23.43 18.99 
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It was observed that the developed ESA yielded 
high convergence speed which resulted into the 
lower average simulation time in producing 
optimal solution, but utilised more time to 
compute the timetables for SSS classes than 
JSS classes because of the different subject 
groups that exist in SSS, such as Science group, 
Commercial group and Art group.. This result 
confirmed the literatures that by carefully 
controlling the rate of cooling the temperature, 
SA can find the global optimum exponential 
faster since slow cooling schedules are  
generally more effective [63] and that the 
performance of SA in terms of speed and quality 
of solution can be improved by integrating it with 
GA [65,67]. 

 
(iii) Solution cost: The quality of a timetable is 
defined by a solution cost, otherwise known as 
fitness value or solution quality function. The 
fitness function calculates the number of 
constraint breaches (usually with a weighted 
value) for different constraints. This value is used 
as measurement for quality of the timetable 
generated by the algorithms. It is used to 
compare the goodness of different solutions as 
better timetables are produced the better fitness 
values emerges. It is implicitly defined through 
the school timetabling problem specification and 
constraints as given in Equation 1a. The lower 
the value of solution cost for a given solution the 
more the quality of the solution [70]. 

 
Table 1 showed the measured values of the 
solution cost of the two algorithms (SA and the 
developed ESA) for Junior Secondary School 
(JSS) and Senior Secondary School (SSS) 
respectively. The average solution cost values of 
SA algorithm and the developed ESA algorithm 
were 20.88 and 17.03 respectively for JSS, and 
23.43 and 18.99 respectively for SSS. This is 
clear evidence that the developed ESA returned 
the best optimal solution (with lower solution cost 
value), but with higher value for SSS because of 
the somewhat more complicated structure of 
student groups and the demand for compact 
scheduling in SSS than JSS. This is attributed to 
the slow temperature reduction component 
(parabolic cooling rate of the developed ESA 
algorithm) since the solution cost is generally 
improved with slow cooling rate. This result 
confirmed the literatures that the choice of the 
cooling schedule influences the quality of 
solution obtained with SA [71,72] and that that 
slow cooling schedules are generally more 
effective, and also that the solution cost generally 
improves with slower cooling rates [63]. 

4. CONCLUSION 
 
The high school timetabling is a classical 
combinatorial optimization problem that takes a 
large number of variables and constraints into 
account. Due to its combinatorial nature, solving 
medium and large instances to optimality is a 
challenging task. Specifically, school timetabling 
problem is perhaps the most difficult problem 
which high schools face in Nigeria. In this paper, 
we presented a novel solution approach for 
solving a highly constrained school timetabling 
problem which characterizes the problem-setting 
in the timetabling problem of the high school 
system in Nigeria which has not been completely 
addressed in the literature. We presented a new 
mathematical programming model of timetabling 
for high schools in Nigeria using mixed integer 
linear programming formulation for which the 
current timetable is considerably improved. In 
addition, we presented a meta-heuristic method, 
an Enhanced Simulated Annealing (ESA) 
algorithm that incorporates specific features of 
Simulated Annealing and Genetic Algorithms for 
solving the problem. Results show that our 
approach provides high quality solutions (optimal 
timetables) in smaller computational time and 
solution cost when compared with results 
obtained with SA approach.  

 
The results of this work confirmed previous 
research reports that high quality solutions can 
be obtained if SA’s parameters are well tuned as 
the analysis of the results showed that though 
both the SA algorithm and developed ESA 
algorithm yielded better quality solutions when 
compares to manual allocation procedures but 
the developed ESA algorithm yielded higher 
quality solutions. The observed high quality 
solutions provided by the developed ESA 
algorithm resulted from its tuned parameters - 
modified annealing schedule (slow cooling 
schedule - parabolic), improved local search 
ability and the reordered evolutionary operation 
sequence. Furthermore, the result shows that the 
developed solution method (ESA algorithm) is 
very promising to solve the school timetabling 
problem, motivating its use to variants of this 
problem, as well as to other general 
combinatorial optimization problems. 

 
A possible future research area is to develop 
other solution methods that might solve the 
problem more efficiently. For example, the 
efficiency of the developed solution method can 
be improved by incorporating it within an 
evolutionary algorithm or a cultural algorithm.. 
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Another future research area is to incorporate 
additional requirements that might be required by 
other high schools and then solve the resulting 
problem using the developed solution method. It 
is also possible to consider extending the 
developed solution method to solve other types 
of timetabling problems. 
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