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ABSTRACT 
 
Introduction: When it comes to the practice, and teaching, of statistics, the world has primarily 
focused on what is known as classical or frequentist methods, rather than Bayesian methods.  
Scope of the Study: This paper demonstrates some beneficial properties of Bayesian methods 
within the commonly practiced domain of inference by utilizing consultancy case studies, one 
concerning an unusual sample size question and one on the detection of mail items with high 
biosecurity risk material. 
Methods: We introduce through practical applications two more aspects of the Bayesian approach 
which we believe are invaluable to practitioners and instructors. Having in mind readers who may 
be less familiar with statistical software, we have added Excel instructions which are easy to 
translate for those who are familiar with any such software. 
Findings: These cases reflect two valuable aspects for both practitioners and instructors which are 
unique to the Bayesian paradigm. They are: 1. including prior information to improve inference and 
how to apply sensitivity analysis to this inclusion and 2. the effortless inference for functions of 
parameters, compared with frequentist approaches. These examples involving the binomial 
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parameter have not been considered from this perspective before, are of significant practical value 
and thus benefit students and instructors of courses teaching Bayesian techniques and 
endeavoring to include authentic learning experiences. 
 

 
Keywords: Functions of parameters; informative priors; sensitivity analysis. 
 

1. INTRODUCTION 
 
When it comes to the practice, and teaching, of 
statistics, the world has primarily focused on 
what is known as Classical or Frequentist 
methods. Increasingly, however, Bayesian 
methods have been included in University 
programs and utilized in practice to overcome 
frequentist-based deficits [1]. Further, these 
tertiary education programs are increasingly 
being modified to address future workforce 
needs with the inclusion of practical contexts, 
enabling students to engage with practitioner-
oriented aspects in preparation for their future 
workplace [2-4]. 
 
Many excellent introductions to the Bayesian 
approach to statistical inference exist, such as 
Berry [5]; however, in our experience, 
practitioners who are not also statisticians would 
typically not read such books, and instructors 
require authentic examples and applications. 
Recent articles have attempted to bridge the gap 
with a more concise and suitable introduction, 
such as Tuyl and Howley [6] who gave an 
introduction aimed at readers who are not 
statisticians, focusing on the attractive automatic 
treatment, and use, of known constraints within 
the estimation process to preclude impractical 
parameter estimates. The main example 
concerned variance components which, although 
known to be positive, may lead to negative 
estimates of such in the classical or frequentist 
estimation approach. Advantages of the 
Bayesian approach covered by Tuyl and Howley 
[6] are as follows: 
 

1. Bayesian inference is based on deriving 
posterior distributions (or simply posteriors) 
of quantities (‘parameters’) of interest, 
given the data and prior distributions (or 
simply priors). This resulting graphical 
representation of uncertainty is valuable 
and provides a more holistic view of the 
situation. 

2. As a description of uncertainty around 
point estimates of the parameters, intervals 
similar to classical confidence intervals 
(CIs) are calculated directly from the 
posterior, by simply taking a 95% (say) 

segment, and are referred to as credible 
intervals (CrIs). These credible intervals 
represent a probability statement of the 
parameter as opposed to the typical 
confidence statement associated with 
confidence intervals, the latter based on 
hypothetical repeated sampling and a 
source of confusion for many practitioners 
and non-statisticians. Further, these CrIs 
do not rely on Normal approximations, 
unlike CIs which so often do. 

3. A posterior distribution is calculated by 
combining a statistical model of the data 
with a prior distribution about the 
parameter(s) of interest. This means that 
prior information, something which is 
commonly available, is included and thus 
contributes to the analysis. Prior 
information may simply concern known 
constraints on parameters; in the classical 
approach it is typically not possible to take 
such information into consideration, which 
may lead to inferior inference, including 
estimates of parameters outside the 
possible range. Thus the posterior 
distributions of the aforementioned 
variance components allowed for positive 
values only. As shown by Tuyl and Howley 
[6], whenever frequentist approaches lead 
to a negative estimate for a particular data 
set, the corresponding posterior simply, 
and elegantly, has its mode at zero, with a 
tail to the right, allowing the easy 
calculation of, e.g., a 95% upper limit. 

 
We introduce through practical applications two 
more aspects of the Bayesian approach which 
we believe are invaluable to practitioners and 
instructors. Having in mind readers who may be 
less familiar with statistical software, we have 
added Excel instructions which are easy to 
translate for those who are familiar with any such 
software. The appendices contain examples of 
the power of statistical software. Note that the 
popular, but much more involved, technique of 
Markov chain Monte Carlo simulation (e.g., [7]) is 
not required here. 

 
1. While the possible incorporation of 

‘subjective’ prior information is arguably a 
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desirable feature, we recommend to 
always perform the analysis based on so-
called noninformative or objective priors as 
well - aimed at ‘letting the data speak for 
themselves’ (Bernardo and Smith, sec. 
5.6.2) [8], while permitting the additional 
value from Bayesian over classical 
methods. Comparing inference based on a 
subjective prior with inference based on an 
objective prior then provides a useful type 
of sensitivity analysis. 

2. Bayesian-based inference for functions of 
parameters tends to be simple, compared 
with the classical approach. A common 
example of such functions is the ratio of 
two proportions, or relative risk. 

 

2. TWO BINOMIAL EXAMPLES 
 
The origin and importance of the binomial 
distribution was described by Tuyl and Howley 
[6], and is here extended, providing some key 
mathematical aspects and the use of Excel and 
R. Because the Normal approximation-based 
confidence interval for the binomial parameter θ 
(population proportion) is known to be poor for x 
close to 0 or close to n, where x represents the 
count of the events of interest and n the sample 
size, some introductory statistics books have 
added Agresti and Coull’s [9] ‘Plus Four’ method 
(e.g., [10]). This interval is based on adding two 
successes and two failures to the sample on 
hand, before applying the Normal approximation. 
This interval and the Score interval it is based 
upon (recommended by Brown et al. [11]) appear 
to be primitive approximations of the Bayesian 
method described below, since they address 
skewness of the likelihood function in an ad hoc 
manner. Tuyl et al. [12] showed that these 
intervals are still inadequate for x = 0 or x = n.) 
As Tuyl and Howley [6] described, the likelihood 
function follows from viewing a model such as 
the binomial distribution, i.e., 
 

,,...,1,0,)1()|( nx
x

n
xp xnx 








          (1) 

 
as a function of θ instead of x, for a particular 
value of x – the situation within which 
practitioners find themselves. When viewing (1) 
in this manner, it can be seen to be proportional 
to a beta(x+1,n-x+1) distribution, which is 
continuous between 0 and 1. (See Berry Ch. 6 
[5] for a non-mathematical introduction to this 
distribution.) This formulation is due to a 
beta(a,b) distribution being defined as 

proportional to 
11 )1(   ba  . It follows that 

when combining a beta(a,b) prior distribution with 
the aforementioned likelihood using Bayes’ 
theorem, the posterior distribution is 
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which is a beta(x+a,n-x+b) distribution. (Here B() 
is the so-called beta function, consisting of 
factorials similar to the ones occurring in (1), but 
allowing for non-integer values if necessary.) As 
Gelman et al. [7] pointed out, the beta(a,b) prior 
may thus be seen as representing a-1 prior 
successes and b-1 prior failures. This concept 
may be helpful when formulating informative 
priors, but it is typically easier to think about a 
prior mode and a quantile to derive reasonable 
values of a and b. See Chun-Lung’s BetaBuster 
software as a user-friendly method of setting an 
informative prior 
(http://betabuster.software.informer.com/ 
download). It also follows from the above 
beta(a,b) definition that the beta(1,1) or uniform 
prior is the recommended noninformative prior, 
representing zero prior successes and failures. 
This was adopted by Bayes [13], but other 
candidate priors have been suggested as well, 
arguably unnecessarily [14]. 
 
Most importantly, for extreme values of x, the 
beta posterior may be quite skewed. Significant 
skewness is present in the posterior distributions 
derived in the examples below. In such situations 
highest posterior density (HPD)-based intervals 
would seem preferable to central intervals. HPD 
intervals are the shortest of the many potential 
Bayesian credible intervals [15]). Such intervals 
are fairly easily implemented in e.g. Excel (using 
its BETA.DIST function and its Solver utility), and 
a useful reference is M'Lan et al. [16]. 
(Alternatively, see the second example and the 
Appendices for using simulation to obtain HPD 
intervals, and central intervals as well.) In the first 
example below, the HPD interval is additionally 
one-sided, so that the Solver utility is not 
required. Generally, given a required confidence 
level, both central and one-sided limits may be 
found directly by the Excel BETA.INV function. 
 

The two binomial-based examples are as follows: 
 

1. An actual case study based on x = 0 
‘successes’ in n observations, which 
demonstrates how prior information may 
be incorporated quite naturally and how 
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straightforward it is to check the effect of 
this prior information on resulting inference 
about the true proportion θ, compared with 
not including prior information. 

2. An example of a function of two binomial 
parameters, where classical inference 
appears mostly limited to using Normal 
approximations, but Bayesian inference 
follows directly from the posterior 
distributions of the two parameters. 

 

2.1 Prior Information and Sensitivity 
Analysis 

 
A consultation to an environmental engineering 
firm concerned a sample size determination, 
where the population proportion of ground 
samples having a certain property (presence of 
traces of a certain chemical) was known to be 
small. This confirmatory sample size was 
required to be such that various parties involved 
could be 95% confident that the true proportion 
of samples with traces of the chemical was below 
0.05, i.e., Pr(θ < 0.05 | x, n) = 0.95. The 
engineers expected it to be smaller, but the other 
parties were satisfied with the aforementioned 
outcome from the confirmatory sample. The 
engineers knew about the relationship between 
sample size and confidence interval calculations 
and realized that an estimated proportion close 
to 0 caused a problem with their ‘text book’ 
(Normal approximation) formula – which is why 
they sought our assistance. They requested a 
sample size based on an anticipated x = 0 and 
understood that if in fact x > 0 were to eventuate, 
the resulting confidence interval would not satisfy 
the original requirement. 
 
As mentioned, the true proportion was known to 
be small; it was conservatively stated to be below 
0.1 with 90% confidence, as agreed upon by the 
multiple interested parties. It appears impossible 
to include this type of prior information in a 
classical analysis. In the Bayesian context of 
small proportions, informative priors are typically 
chosen from the beta(1,b) family [14], and here 
the above prior information could be well-
represented by a beta(1,22) distribution: it may 
be found by quick trial and error that Excel’s 
BETA.DIST(0.1,1,22,1) equals 0.9, where the 1 
in the 4th field requests the ‘cumulative’ beta 
distribution, thus corresponding to Pr(θ < 0.1 | a 
= 1, b = 22). The corresponding graph (Fig. 1) of 
this particular beta distribution for the prior was 
confirmed as reasonable, i.e., conservative, by 
the engineers. They liked the idea of this prior 
representing 21 prior samples without traces, 

and understood that the sample size needed to 
be such that the probability the true proportion 
was below 0.05 would be lifted from 68% (i.e., 
Pr(θ < 0.05 | a = 1, b = 22) = 0.68), under this 
prior, to at least 95%, based on x = 0. As 
mentioned, the one-sided intervals studied   
here, in the context of x = 0, are in fact HPD 
intervals, with the lower limit at zero, similar to 
the variance components example in Tuyl and 
Howley [6]. 
 
A similar trial and error calculation, assuming x = 
0, resulted in a posterior beta(1,59), also shown 
in Fig. 1, that just satisfies this post-data 
collection requirement (i.e., Pr(θ < 0.05 | x+a = 1, 
n–x+b = 59) = BETA.DIST(0.05,1,59,1) = 0.95). 
This implied that the parties could use a sample 
size of n = 59 - 22 = 37. Compared with a 
noninformative uniform (beta(1,1)) prior this was 
a saving of 21 samples, which was a substantial 
amount of money and time!  
 
As expected, the actual number of samples with 
traces was zero. Everyone understood very well 
that, based on the stated prior information, the 
requirement had been satisfied with 95% 
probability. The sensitivity analysis referred to in 
the Introduction works as follows: the probability 
that θ < 0.05, given the data x = 0, n = 37, 
without using any prior information (with the aim 
of letting the data speak for themselves), is given 
by the same calculation as before, but with a = b 
= 1 instead.  It follows that Pr(θ < 0.05 | x+a = 1, 
n–x+b = 38) = BETA.DIST(0.05,1,38,1) = 0.86, 
i.e., 86% instead of 95%, based on using the 
noninformative beta(1,1) prior instead of the 
informative beta(1,22). This result (known before 
collection of the 37 samples) was considered 
acceptable, where a noninformative prior-based 
probability of, say, 40% (instead of 86%) would 
have been less so. 
 

2.2 Functions of Parameters 
 
Decrouez and Robinson [17] were interested in 
the weighted sum of two proportions, in the 
context of developing performance indicators in 
the operation of quarantine inspection, with a 
view to detecting mail items with high biosecurity 
risk material. The observed numbers of 

‘successes’ are represented by 1x  and 2x , with 

respective sample sizes 1n , the number of mail 

items inspected by x-ray or detector dogs, and 

2n , the number of manually inspected items 

selected from all non-intercepted items. 
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Fig. 1. Informative beta(1,22) prior and beta(1,59) posterior, based on x = 0 and n = 37 
 

The function of interest is 21  ba   (the 

“pathway-level leakage rate”, based on two 
streams of leaked items), where a and b are 
known constants. Decrouez and Robinson [17] 
considered various Normal approximation-based 
intervals, some requiring quite lengthy 
calculations, but all ad hoc and unnecessary, 
from a Bayesian perspective. [Note that the 
frequentist approach typically requires sampling 
distributions of statistics corresponding to 
parameters of interest. If the parameters, or 
functions of interest thereof, are complex, Normal 
approximations are usually applied to proceed, 
which is arguably inadequate when the 
underlying likelihood function is skewed, for 
example.] The calculation required to move from 

),|,( 2121 xxp   to ),|( 21 xxp   may be 

difficult mathematically, but is addressed through 
simple Monte Carlo simulation: when sampling 
from a given posterior, or posteriors, at the same 

time samples of any function ),( 21  g  can 

be calculated, and collected for the purpose of a 
histogram. See Hashemi et al. [18] for the 
mathematics required for the usual quantities 
resulting from a 2×2 contingency table, i.e., 

absolute risk 21   , relative risk 21 /  and 

odds ratio 
)1/(

)1/(

22

11







 . Again, practitioners may 

obtain intervals for these quantities more easily 
by simulation, as shown for the current weighted 
sum example; Hashemi et al.’s [18] methods are 
useful (faster) when calculation of many 
thousands of intervals is required, for theoretical 
purposes. 
 
Decrouez and Robinson’s [17] Table 3 shows 
inference for four data sets. Their statement that, 
due to the large sample sizes involved, “the 
normal approximation is very accurate” (p.292) is 

contentious: all four values for 2x  are relatively 

small, so such an approximation is not expected 
to work well necessarily. In the Bayesian context, 
however, no such assumptions are needed. For 
illustration purposes, the data set with 

,7485591 n ,1391 x ,41622 n 22 x  

is chosen; details are given in Appendix A, which 

show that the uncertainty of 21 bθaθ  , with 

114.0a  and 995.0b , is almost entirely 

due to 2 , such that 2x  being so close to zero 

seems all the more relevant to consideration of 
the appropriateness of Normal approximations. 
 
The histogram for φ resulting from the simple 
simulation is shown in Fig. 2. With the point 
estimate at 0.0499%, the Normal approximation 
seems to have overshot the lower limit: the
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Fig. 2. Posterior distribution of the weighted sum of two binomial proportions, based on an 
example by Decrouez and Robinson [17] 

 
interval given by Decrouez and Robinson [17] is 
(0.0000%, 0.1749%). Instead, the 95% central 
CrI (with 2.5% in each tail) is (0.0169%, 
0.1747%), which effectively has the same upper 
limit but a more realistic and useful nonzero 
lower limit. Although a correct 95% probability 
interval, the disadvantage of this central interval 
is that arguably the lower limit is too large, in the 
sense that it sacrifices small values of φ with 
relatively high density for large values of φ with 
lower density (that are inside the interval). As 
stated earlier, the common approach to take into 
account such skewness of a posterior is to 
calculate the HPD interval, which is (0.0094%, 
0.1551%) in this case. Note that with nonlinear 

transformations of 1  and 2 , such as the 

relative risk 1 / 2 , more care must be taken 

with how to choose an ‘appropriate’ 95% CrI 
[19,20], which is beyond the scope of this 
article’s aims. The important point here is that the 
HPD interval easily sits inside the confidence 
interval, i.e., is less conservative, with a more 
useful positive lower limit. This interval also 
appears to be an improvement on the central CrI, 
by redistributing the probability in the latter’s tails, 
each of 2.5%. In fact, it may be checked that the 
HPD interval’s tails are approximately 0.4% and 
4.6%, respectively. 
 
In short, in contrast with confidence intervals, this 
credible interval is not based on hypothetical 
repeated sampling, or on assumptions of 
Normality, and allows the more natural statement 

that there is a 95% probability that the pathway-
level leakage rate is between 0.0094% and 
0.1551%, based on the two sample proportions 
in question. It appears that the approximate 95% 
confidence interval (0.0000%, 0.1749%) quoted 
by Decrouez and Robinson [17] is too 
conservative, and arguably reflects a probability 
of approximately 97.5% of containing the true 
rate. Frequentist coverage calculations (work in 
progress), such as performed by Agresti and Min 
[19], appear to confirm the above claims, but are 
beyond the scope of this article. 
 
3. CONCLUSION 
 
The importance of an increased toolkit of 
methods for the practitioner is becoming 
increasingly acknowledged in the literature, as 
part of a growing focus on statistical or data 
science techniques to best utilize and interrogate 
data sets. There is also a great need to provide 
examples of such to practitioners who may 
otherwise not be aware, and to tertiary education 
instructors to enable students to be better 
prepared for the practical rigours of the 
workforce. To this end, focus has been on 
exemplifying accessible Bayesian techniques we 
consider significant for practitioners, and for 
instructors who may also utilize these in their 
courses, and in a manner not usually considered. 
The Bayesian view is important for our first 
example from practice, which solved an 
important problem for an engineering firm by 
incorporating prior information in a statistical 
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analysis (followed by a sensitivity analysis of the 
use of this information). We also give an example 
of the ease with which seemingly difficult 
quantities of interest may be analysed by Monte 
Carlo simulation, and illustrate the additional 
visual benefits arising from the posterior 
distributions inherent to Bayesian methods, for 
both examples. 
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Appendix A 
 
R code [21] to produce the histogram in Fig. 2 follows below, with comments. After setting data 
values, posteriors of the two proportions are derived as follows: 
 
n1=748559; x1=139; n2=4162; x2=2; k=1000000 
theta1=rbeta(k,x1+1,n1-x1+1); theta2=rbeta(k,x2+1,n2-x2+1) 
 

Here 1n  is the number of mail items inspected by x-ray or detector dogs, 2n  is the number of 

manually inspected items selected from all non-intercepted items, and 1x  and 2x  are items 

intercepted as having high biosecurity risk material. The rbeta function is then used for single 
statement Monte Carlo simulations, to create large vectors (size k) of samples from the posteriors 

(normalized likelihood functions) of 1  and 2 . After setting the total number of mail items N, and a 

and b as defined by Decrouez and Robinson [17], only one more line of code is required: 
 
N=845007; a=1-n1/N; b=1-n2/N 
phi = a*theta1 + b*theta2 
 
The beautiful simplicity is that a vector of samples from the posterior of φ may be obtained in this 
manner. Code for the histogram in Fig. 2 (with φ as a percentage), and the central and HPD intervals 
(see Appendix B) mentioned in the text, follows below. 
 
phi = 100*phi; hist(phi) 
Central = quantile(phi,c(.025,.975)) 
HPD = HPDsample(phi,.95) 
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Appendix B 
 
The R code [21] below describes a function that produces a highest posterior density (HPD) interval, 
from a large number of samples from a posterior distribution. The first argument of the function 
contains the vector of samples, the second the required confidence level. Appendix A contains an 
example of how this function is called. Calling this function for multiple simulations is recommended, 
to check the number of correct decimal places. 
 
The function is based on the simple idea that a, say, 95% HPD interval is such that it contains 95% of 
ordered samples with minimum difference between the smallest and largest values. That is, having 
approximately equal posterior height at the lower and upper limits, the HPD interval is by definition the 
shortest interval. 
 
HPDsample = function(y,conflev) 
{ 
m=length(y) 
lag=conflev*m 
x=sort(y,decreasing=FALSE) 
length=diff(x,lag-1) 
k=which.min(length) 
hpd=array(0,2) 
hpd[1]=x[k] 
hpd[2]=x[k+lag-1] 
return(hpd) 
} 
_________________________________________________________________________________ 
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