
Clustering Behavior in Solar Flare Dynamics

Elmer C. Rivera1 , Jay R. Johnson1 , Jonathan Homan1, and Simon Wing2
1 Andrews University, Berrien Springs, MI, 49104-0660, USA; jrj@andrews.edu

2 Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723-6099, USA
Received 2022 June 17; revised 2022 August 21; accepted 2022 August 31; published 2022 September 20

Abstract

The solar magnetic activity cycle provides energy input that is released in intense bursts of radiation known as solar
flares. As such, the dynamics of the activity cycle is embedded in the sequence of times between the flare events.
Recent analysis shows that solar flares exhibit memory on different timescales. These previous studies showed that
the time ordering of flare events is not random, but rather there is dependence between successive flares. In the
present work, the clustering of flares is demonstrated through a straightforward nonparametric method where the
cumulative distribution function of successive flares is compared with the cumulative distribution function of
surrogate sequences of flares obtained by random permutation of flares. The random permutation is performed
within rate-variable Bayesian blocks during which the flare rate is assumed to be constant. Differences between the
cumulative distribution functions are substantial on a timescale around 3 hr, suggesting that flare recurrence on that
timescale is more likely than would be expected if the waiting time were drawn from a nonstationary Poisson
process.

Unified Astronomy Thesaurus concepts: Solar flares (1496)

1. Introduction

Substantial energy is released in the form of flares during the
magnetic activity cycle of the Sun. The statistics of these flares
provide valuable information about the underlying dynamics of
the cycle. Flares are driven by the dynamics of active regions,
which result when magnetic flux driven by the solar dynamo
emerges from the interior of the Sun (Wing et al. 2018;
Charbonneau 2020). As this flux emerges, the convective
motions that bring the flux to the surface twist and tangle the
magnetic field leading to the development of intense current
sheets, which are generally thought to release their energy
through magnetic reconnection and X-ray emissions from
electrons accelerated during this process (Toriumi &
Wang 2019, and references therein). The release of energy
for these flare events generally occurs on a timescale that is
short (about 20 minutes) compared with the typical time
between the events around 5 hr (Snelling et al. 2020). As such,
it is useful to consider flares as a sequence of discrete events,
which can be characterized by the time interval, Δj, between
the jth and the j+ 1th events.

Because of the close relationship between the flares and the
solar dynamo, it is expected that the flare sequence would have
information about the solar cycle. Indeed, because more solar
activity drives more flares, the rate of flares changes throughout
the solar cycle leading to a peak rate near solar maximum and a
minimum rate near solar minimum. Wheatland & Litvinenko
(2002) refer to this type of driving as “external” and explored
how these changes affect the statistics of flare waiting times.
On the other hand, the dynamics of individual flares occur on a
much shorter timescale and may well reflect only the local
dynamics of an active region. As such, it is expected that flares
from separate active regions are more likely to occur
independently and randomly. A number of studies have shown

that the statistical distribution of flares is consistent with these
concepts (e.g., Wheatland 2000b; Moon et al. 2001; Wheatland
& Litvinenko 2002; Aschwanden 2019). That is, the distribu-
tion of flares is consistent with a time variable Poisson process
where the probability of a flare occurring in a time Δt is simply
λ(t)Δt, where λ(t) is the average rate, which changes slowly as
a function of time. Similar processes are also manifested in the
statistics of floods and earthquakes (Hong & Guo 1995; Gilroy
& McCuen 2012).
The manner in which the rate changes as a function of time has

been shown to affect the asymptotic power-law exponent of the
distribution (Aschwanden & McTiernan 2010; Aschwanden
et al. 2021). Recently, from a parameterization of the time
intervals with coherent growth in the rate of events (time
structures) it was found that the power law changes when
considering different timescales, revealing the dynamics of the
solar dynamo, partial occultation of flare events, and clustering of
flares. The power-law exponent is also believed to demonstrate
the memory over timescales of a few hours to several
decades, which can be attributed to clustering of solar flares
and a dynamo-driven solar cycle, respectively (Aschwanden &
Johnson 2021). Cyclical changes of rate lead to a theoretical
power law P(Δ)∝Δ−2.5 that is consistent with the observed
power law of flares (Nurhan et al. 2021). Clustering of flares has
also been associated with an overabundance of short waiting
times (10 s–10minutes) compared with simulated distributions
(Wheatland et al. 1998). Other studies revealed the existence of
memory in the flare production in the whole solar disk (Lepreti
et al. 2001) and also in an individual solar active region (Lei et al.
2020) from the evidence that the stable distribution and the
power-law-tail Lévy function fit well with the waiting time
distribution of the solar flares. Under the same distinctive
criterion of memory capability, Li et al. (2018) found that the
waiting time distribution of the weaker solar flares is a process
with memory that can be described with the Weibull distribution.
While characteristics of the statistical distribution of waiting

times suggest memory in flares, they may not be the best
method to identify memory because such studies do not
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consider the relationship between pairs or groups of flares. A
more direct measure of dependence can be found in the
approach of Snelling et al. (2020), who examined the mutual
information between successive flares. In that study the mutual
information ,n n p( )D D + was considered as a function of
“lookahead,” p, which examined how much information is
common between a flare waiting time and another flare waiting
time; p steps ahead in the sequence of waiting times. The
results of this analysis were compared with an identical
analysis of surrogate sequences of flares constructed using
Bayesian blocks (Scargle 1998; Wheatland & Litvinenko 2002).
The surrogates were consistent with a nonstationary Poisson
process. The analysis revealed that flares up to about p= 6 tend
to have some relationship, but it was not possible to distinguish
flares with longer “lookahead” from a nonstationary Poisson
process. The p=6 lookahead corresponds to a timescale of
approximately 1 day. Overall, this analysis showed fairly
clearly that a short-term memory exists for flares and it
provided a timescale.

Mutual information as a discriminating statistic is particularly
useful because it provides a single statistic that characterizes linear
and nonlinear relationships between random variables, and it has
been widely applied to study nonlinear dependence in solar and
magnetospheric systems (Johnson & Wing 2005, 2014; Wing
et al. 2016, 2018, 2020, 2022; Johnson et al. 2018; Wing &
Johnson 2019). However, it is even more interesting to explore the
joint statistical distributions of flares to see the origin of the
relationship that was detected. In particular, by looking at the joint
distribution, we can see how subsequent flares are related to each
other, and we can identify evidence of flare clustering. Moreover,
by comparing the distribution with extreme cases (where all the
flares are exactly correlated or none of the flares are correlated) we
can determine the fraction of clustered flare events. In addition by
varying the lookahead with higher dimensions, we can get some
estimate of the size of the clusters. In all cases, features of the
distribution functions are compared with surrogate data sets
constructed using Bayesian block (BB) decomposition, and the
significance of features is based on differences from ensemble
averages obtained from multiple realizations of the surrogates.

2. Data Set and Methodology

The flare waiting time data used in our analysis are the same
as that used in Snelling et al. (2020). We obtained the solar
flare data from the geostationary operational environmental
satellite (GOES) catalog of flares from 1975 to 2017, available
from https://www.ngdc.noaa.gov/stp/solar/solarflares.html.
We considered only flares of class C or higher with a peak
flux greater than 1.4× 10−6 Wm−2 because of the difficulty of
detecting flares with fluxes below class C (Snelling et al. 2020).
Event times were taken to be the time of maximum flux during
bursts that fit the above criteria. From the sequence of flaring
event times t t t t, , , , ,j N1 2 flare( )¼ ¼ , we constructed a sequence of
71,587 waiting times (Δ1, Δ2,...,Δj,...,ΔN−1), where Δj=
tj+1− tj. That is, the waiting time is defined as the time interval
between two successive events.

The data are analyzed by constructing cumulative distribu-
tion functions (CDFs) of flares’ waiting times. The CDFs are
constructed using standard n-dimensional histogram algorithms
developed for MATLAB (histcnd). Given the somewhat
exponential distribution of data points, the data is binned in
logarithmic bins to maintain a roughly equivalent number of
data points in each bin. Different methods have been proposed

to estimate the bin size, such as the use of Doane’s rule
(Doane 1976) based on the Sturges method.
Ideally, there should generally be at least five data points per

bin to maintain reasonable statistics. While empty bins do not
affect discriminating statistics such as mutual information, too
many singly occupied bins lead to inaccuracies in the mutual
information. Therefore, bins are selected to be large enough to
minimize the number of singly occupied bins, and bin selection
is optimized as discussed in Snelling et al. (2020).
The CDF obtained from the data is obtained for the occurrence

of multiple flares. The CDF of one variable measures the
likelihood that a random point in the data set is less than the value
of the variable. For example, the highest value in the data set will
have a CDF of one (all points will be less than the highest value)
and the lowest value will have a CDF of zero (no points in the
data set will be less than the lowest value). Given two values from
two data sets, their CDF gives the probability that any two given
points from the data sets will be less than the respective given
values. For example, if we consider two random variables X and Y
where X is the waiting time of the nth flare in the sequence and Y is
the waiting time of the n+ pth flare in the sequence then we obtain
CDF(X, Y), which will measure the fraction of flares with Δn<X
and Δn+p< Y. We also obtain CDF(X, Y, Z), which measures the
fraction of flares with Δn<X, Δn+p< Y, and Δn+q< Z.
Clustering of flares can be recognized when there is an elevation
in the number of flares compared with the situation where the flare
sequence is drawn from a nonstationary Poisson process.
For comparison with the CDF of the data, we construct

ensembles of surrogates that satisfy the null hypothesis of a
nonstationary Poisson process. The CDF of the original data is
compared with the CDF of the surrogate data by taking the
difference. This difference indicates where the distribution of
waiting times has a higher probability of occurring as a
grouped sequence than would be expected if the data were
random. In essence, when this difference is large and positive,
it means that there is a cluster of flares that occur in a well-
ordered sequence. Negative values correspond to a reduced
probability of flares occurring together compared with a
nonstationary Poisson process. To check that the results are
meaningful, we also provide the significance S obtained from

S
CDF data CDF surrogates

.
CDF surrogates

∣ ( ) ⟨ ( )⟩∣
( )s

=
-

3. Creating Nonstationary Poisson Surrogates Using
Bayesian Block Decomposition

The surrogate data may be constructed in multiple ways giving
similar results. Moon et al. (2001) created surrogates based on a
time variable rate obtained by averaging the flare rate over a
sliding time window of a few days. The BB algorithm
(Wheatland 2000a) is a nonparametric method that can also be
used to find an optimal binning for a set of values without
imposing a uniform bin width. A nonstationary Poisson process
may be subdivided into time intervals where the observed event
occurrence is consistent with a (constant rate) Poisson process.
This time-dependent process consists of piecewise stationary
processes and can be characterized with Bayesian statistics. Thus,
these time intervals are characterized by a rate (stationary) and a
duration and are called Bayesian blocks. This paper uses the same
method developed by Scargle (1998) and used in Snelling et al.
(2020) to perform a BB decomposition. Surrogate waiting time
sequences are obtained by randomizing the data within each
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Bayesian block. When considering the joint CDFs, the number of
sequences required for good statistics generally depend on the
amount of data available for each histogram cell of the CDF. In
general, where differences are large there are plenty of data and 50
surrogates are adequate, while for sparsely occupied cells 1000
surrogates are adequate. It is to be noted that the sparsely occupied
cells at long waiting times all have CDFs very close to 1, so
differences between the distributions are negligible where the
significance is low. In our analysis, we generally use 50 surrogates
when comparing CDFs, but for verifying significance we use
1000 surrogates.

4. Results and Discussions

We first analyze the difference in the joint probability of two
waiting times δCDF= CDF(data)− 〈CDF(surrogates)〉, where
〈A〉 is an ensemble average of property A over the surrogates.

The results of this analysis are shown in Figure 1 when
comparing flares with lookahead p= 1. Panel (a) shows δCDF
and panel (b) shows the statistical significance of δCDF. It is
apparent from panel (a) that there is a higher probability of two
subsequent flares each having a waiting time of around 3 hr
than would be expected if the flares occurred randomly
(considering a slowly changing flare rate). The black contour
shows where the probability drops to half the maximum value;

0.5 maxCDF CDF( )d d= . This elevated probability is clear
evidence that flares are clustered with a short-term memory.
For our purposes, we will describe a cluster as a group of flare
events in the sequence having a similar waiting time. For
comparison, the mean waiting time of the data set (4.8 hr) is
plotted as a dashed white line showing that the clustered flares

Figure 1. (a) Difference in the joint probability of two waiting times δCDF = CDF(data) − 〈CDF(surrogates)〉 when comparing flares with lookahead p = 1 (〈A〉 is an
ensemble average of property A over the surrogates). The black contour shows 0.5 maxCDF CDF( )d d= , and the white dashed lines show the mean waiting time.
(b) Statistical significance of δCDF.

Figure 2. Fraction F p p pmax max 0CDF CDF( ) ( ( )) ( ( ))d d= = as a function of
lookahead p (when p = 0 all data are completely correlated).

Figure 3. δCDF of three sequential waiting times. The data show an enhancement
in the number of triplet events with similar waiting times around 3 hr.
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occur with a higher frequency than the mean flaring rate. That
is, the clusters identified are quasi-periodic bursts of flares.

The significance shown in panel (b) shows that the peak of
panel (a) has a high significance (clearly differentiated from the
surrogate data). The only regions of the plot where the
significance is small is in regions where we cannot tell any
difference between the actual data and the surrogate data.
Therefore, we can generally say that all the features seen in
panel (a) are a good representation of the difference between
the CDF of the actual data and surrogates.

It should be noted that the timescale of the related pairs of
flare waiting times in our study differs substantially from the
clusters identified by Wheatland et al. (1998), which had
timescales ranging from 10 s–10 minutes. Those clusters were
identified based on an overabundance of short waiting times
compared with a simulated time variable Poisson process. In
our analysis, the surrogate data always has an identical
distribution of waiting times as the original data, so differences
in the distributions can only be related to time ordering of the
waiting times. Our analysis shows that while there may be an
abundance of short waiting times (less than 10 minutes) those
waiting times apparently do not have a stronger tendency to

occur in sequence than waiting times drawn from the same
Bayesian blocks.
While the significance measures how different CDF(data) is

from CDF(surrogates), it is also of interest to determine how
the peak CDF(data) differs from the CDF if the data were
perfectly correlated. For comparison, if p= 0 we obtain the
CDF when all data are completely correlated. In Figure 2 we
show the fraction F p p pmax max 0CDF CDF( ) ( ( )) ( ( ))d d= =
as a function of lookahead p. What this plot shows is that at
p= 1, about 12% of the waiting times at around 3 hr appear to
be related to each other and that fraction drops substantially as
a function of lookahead. It should be noted that this behavior is
very similar to the behavior of the mutual information as a
function of lookahead obtained by Snelling et al. (2020).
In Figure 3 we examine the CDF of three waiting times that

occur in sequence. This figure shows three interesting
features. First, there is a peak in the distribution around 3 hr
suggesting that, in fact, not only is there is a higher
probability of two sequential waiting times having values
around 3 hr, but actually there is also an elevated probability
that there is a sequence of three waiting times having values
around 3 hr compared with what would be expected if the
waiting times were randomly distributed. This result goes

Figure 4. Changes in δCDF with lookahead p equal (a) 1, (b) 3, (c) 6, and (d) 10 for the flare sequence of three waiting times.
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beyond the analysis of Snelling et al. (2020), which only
considered the relationship between pairs of flares and not
triads. A second feature of the distribution are columns of
probability emanating from the central peak. These columns
represent data where two of the random variables are related,
but the third variable is independent. So, the column that runs
vertically along the Δn+2 axis represents data where Δn and
Δn+1 are related, but independent of Δn+2. In other words,
those represent clusters of two similar flare waiting times
close to 3 hr followed by a random waiting time. Not
surprisingly a similar column is seen along the Δn axis also
representing a random flare followed by two flares having
waiting times close to 3 hr. So the columns represent clusters
of length two and the central peak represents clusters of at
least length three. Finally, the third column along Δn+1

appears weaker than the other two columns. That column
corresponds to a flare having a waiting time about 3 hr
followed by a random waiting time followed by another flare
having a waiting time around 3 hr. The difference between
this column and the other two columns is further evidence of
clustering because the two stronger columns detect the edges
of the clusters (contributing for every cluster) while the
weaker column only detects the density of clusters.

We can get some idea about the extent of the clusters by
looking at how the three point CDF varies with lookahead p.
Clusters will be characterized by edge events (where the cluster
starts and ends) and central events that occur between the edge
events. For example if there are clusters of length five, we
would expect groups of five events to have similar waiting
times. As an example, the sequence of events {Δ5,Δ6,Δ7,Δ8,
Δ9} may have similar waiting times. Here we refer to Δ5 and
Δ9 as edge events and Δ6, Δ7, and Δ8 as central events. To
explore the size of the clusters, we can look at how CDF(Δn,
Δn+p, Δn+2p) changes as p increases. When there are clusters
of length five as in the example, we would expect that for p= 1
we would have a contribution from {Δ5, Δ6, Δ7}, {Δ6, Δ7,
Δ8}, {Δ7, Δ8, Δ9} to a strong peak in δCDF. For p= 2 we
would expect that {Δ5, Δ7, Δ9} still contribute to a central
peak. For p= 3 we would not expect to see a central peak, but
we would expect to see the two columns from the edges {Δ5,
Δ8} and {Δ6, Δ9}. Figure 4 shows how δCDF changes with p
for the flare sequence. A strong central peak is seen for p= 1
and a reasonably elevated peak is seen at p= 3 suggestive that
many events are related having a lookahead up to three.

The central peak is lost around p= 6 and only the two edge
columns are seen, suggestive that only the edges of the clusters
can be detected at this lookahead as in the example above. We
can conclude that clusters tend to occur in groups of length six.
Figure 5 compares the maximum δCDF as a function of p
confirming a substantial reduction up to p= 6.

5. Summary

Overall our analysis supports the idea that flares have a
short-term memory, which couples to some extent, the
dynamics of groups mostly of lengths ranging up to six
subsequent flares. By looking at the differences in the joint
CDF of two and three flares we were able to identify how these
flares are related and understand better why the mutual
information between successive flares was elevated (Snelling
et al. 2020). We determined that the occurrence of sequences of
two or three flares having waiting times in the range of 2–6 hr
is elevated well beyond what would be expected if the flare

waiting times were drawn from a nonstationary Poisson
process. While the fraction of the flare data participating in
the short-term memory is small, it is not negligible and
corresponds to about 12% of flares at these timescales. From
the joint CDF of three flares, we also were able to determine
that the extent of the clusters of related flares are typically
found in groups of six flares. These results are consistent with
prior work suggesting short-term memory of solar flares
(Snelling et al. 2020; Aschwanden & Johnson 2021). These
findings could be further explored in the context of other
statistical methods (Feigelson et al. 2022) and may be useful in
developing predictive models for flare events.
Three-dimensional MHD simulations of the upper convec-

tion zone and photosphere/chromosphere modeling flux
emergence suggest that current layers develop and ejection of
plasmoids out of the current layers leads to patchy reconnection
and the spontaneous formation of clusters of microflares
(Archontis & Hansteen 2014). Although the flares identified in
our analysis are generally much stronger (C class and larger),
the general notion that recurrent quasi-periodic flare emissions
can result from dynamically driven interconnected networks of
magnetic flux that could lead to flare sympathy (Wheatland &
Craig 2006), should be further explored.

This work is supported by NASA grants NNX16AQ87G,
80NSSC21K1678, 80NSSC20K0355, 80NSSC20K0704,
80NSSC22K0515, and NSF AGS grant 2131013.
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