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ABSTRACT 
 
The objective of this study was to calculate the optimum conditions for extraction of starch from 
fresh cassava tubers using response surface methodology (RSM). In this study, Box-Behnken 
response surface design (BBD) was used to optimize the extraction process conditions (3 
independent process factors at 3 levels with 17 runs) and to evaluate the main, linear and combined 
effects of cassava starch extraction conditions. The independent process variables selected in this 
study were sonication power (50, 75, 100 W), sonication time (10, 20, 30 min) and solid to solvent 
ratio (10, 20, 30 g/ml). The non-linear second order polynomial quadratic regression model was 
used for experimental data to determine the relationship between the independent process variables 
and response. Design Expert software (version 10.0.2.0) was used for regression analysis and 
Pareto analysis of variance (ANOVA). Ground cassava paste of 50 g was mixed with a proper 
quantity of distilled water. The suspension was directly placed in the bath sonicator (operating 
frequency of 33 ± 3 kHz, input voltage of 240 V and heating strength of 150 W), desired sonication 
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power (W), sonication time (min) and solid to solvent ratio (g/ml) were maintained by means of 
controller. The optimal conditions of the selected variables were obtained using derringer’s 
desirability function as sonication power of 63.32 W, sonication time of 15.59 min and solid to 
solvent ratio (SS) of 19.19 g/ml) with a desirability value of 0.76. The maximum experimental 
cassava starch yield was 83.20% which was 8.2% higher than that of conventional wet extraction 
method. Under the optimized extraction conditions, the selected variables were validated (n=3), a 
mean starch yield of 82.28 ± 1.12% was obtained with adjusted R

2
 value of 0.85. Compared with 

wet extraction technique, UAE required shorter extraction time and yielded higher percentage of 
extraction recovery. Thus, UAE could be very effective for increasing the percentage recovery of 
starch from fresh cassava tubers.  

 
 
Keywords: Ultrasound assisted extraction; cassava starch; response surface methodology; box-

behnken design; extraction. 
 

1. INTRODUCTION 
 
Cassava (Manihot esculenta Crantz), an 
important food security tuber crop and is widely 
cultivated in many tropical countries of the world. 
It is one of the richest sources of starch and 
considered as poor man’s crop in rural areas for 
the millions of people in tropical countries [1]. In 
India, it is cultivated about 0.20 million hectares 
with a total production of 8.13 million tonnes and 
a productivity of 22.3 metric tonnes per hectare 
[2]. The dried cassava tubers consists of about 
80 to 90% carbohydrate, out of which the most 
important is starch which ranges from 78 to 90% 
on dry basis. It is also considered as a good 
source for minerals such as calcium, iron, 
magnesium and phosphorus and is richer in 
calorific value compared to other tubers such as 
yam, potato and sweet potato. It has nearly the 
same calorific value as cereals viz., wheat, rice 
and maize [3]. The native cassava starch is used 
in the food industry for production of sausage, 
monosodium glutamate (MSG), glucose and 
bakery products, whereas modified cassava 
starch is used for textile, glue, paper, plywood 
and the pharmaceutical industry [4].  
  
In India, currently small scale cassava starch and 
sago industries are using conventional wet 
milling technique for extraction of starch, but 
there are many improved extraction techniques 
using saw type blade are being developed now 
days. The various unit operations involved in the 
mechanical wet extraction process is shown in 
Fig. 1. 
 

The traditional mechanical wet extraction applied 
at industrial level leads to native cassava starch 
recovery losses up to 20% [5]. Moreover, this 
method is highly energy intensive and requires 
large quantities of water for starch recovery. The 
maximum recovery of extractable starch from 

fresh cassava tubers (25% starch on fresh 
weight basis) as measured by chemical method 
was found as 22.80% and by mechanical wet 
extraction method using saw type rasper was 
found as 76-79% [6]. The highest cassava starch 
recovery of 83.39% which was equal to starch 
content of 18.98% was reported by [7] using 
blade type rasper. The treatment of pectinolytic 
and cellulose enzymes for 2 h for cassava starch 
extraction resulted to a starch recovery of 
21.49% compared with maximum extractable 
starch content of 80%, which was equivalent to 
the starch content of 18.20% by mechanical 
rasper [5]. In India, there are about 300 to 400 
small, medium and large scale starch factories 
are available and most of the starch factories 
wooden raspers are employed. Though this 
conventional rasping devices area inexpensive 
but relatively less efficient than saw and blade 
type rasper as the rasping sheet must often 
replaced on account of rapid water [4]. 
 
A higher percentage recovery of starch from 
tropical tuber crops could be a better way to get 
higher economic yield for developing countries 
like India. Ultrasound-Assisted Extraction (UAE) 
is considered as an emerging green technique 
and found suitable alternative to conventional 
techniques, gaining notable attention in recent 
years because of reduction in solvent usage, low 
extraction time, increase in extraction yield and 
improve quality of extracts [8,9,10,11,12, 
13,14,15,16]. The technique can accelerate the 
extraction process at very low temperature, 
develops negligible damage to the functional and 
structural properties of extracts [17]. Ultrasound 
is a sound wave has frequency level above 20 
kHz passes in liquid medium creates cavitation. 
This mechanical action of cavitation with high 
velocity and shear force lead to high penetration 
in to cell membranes that causes cell disruption 
and increase mass transfer that results in higher 
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Fig. 1. Flow chart for extraction and isolation of wet cassava starch by mechanical method 
 
efficiency of extraction [18]. UAE found effective 
for increasing the recovery of extracts from 
cereals such as maize [19,20] and rice [21]. 

The response surface methodology (RSM), an 
efficient optimization technique and combination 
of statistical and mathematical calculations, 
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requires a less number of experimental runs for 
process optimization [22,23]. It is used as an 
important tool to analyze the interaction between 
variables and measure the effect of variables on 
responses [24,25,26]. The effect of ultrasound on 
extraction and isolation of native starch from 
cassava tubers has not been reported in any 
previous studies. Thus, the objectives of this 
study was to employ response surface 
methodology to examine the effect of 
independent process variables (sonication 
power, sonication time and solid to solvent ratio) 
on yield of native cassava starch from fresh 
cassava tubers and to optimize the extraction 
variables using bath type ultrasound-assisted 
extraction technique for native cassava starch 
yield.  
 
In this study, a three level Box-Behnken design 
with three factors (sonication power, sonication 
time and solid to solvent ratio) was used to 
predict and optimize the effect of process 
variables on cassava starch yield.  
 

2. MATERIALS AND METHODS 
 

2.1 Raw Materials 
 
Mulluvadi variety of cassava (Manihot esculenta) 
after 10 months of planting was procured without 
any physical damage from local farmer’s field 
near Thanjavur, Tamil Nadu, India as raw 
material for extraction of cassava starch. 
 
2.2 Sample Preparation  
 

Cassava tubers were rinsed thoroughly with tap 
water to remove impurities on the surface. Then 
skin as well as rind portion of the cassava tubers 
were removed manually with the help of peeler 
followed by cutting into small pieces. Then the 
peeled tubers were ground into a homogeneous 
paste using a blender (Preethi Blue Leaf 
Platinum, 750 Watts) without any addition of 
water. This was immediately used for UAE 
extraction process. 
 

2.3 UAE Method of Cassava Starch 
 

Ultrasound-assisted extraction (UAE) of  cassava 
starch was conducted as per the method 
reported by ying et al. (2011), using a bath type 
ultrasonicator (Life-Care, Model: MT 6) operating 
frequency of 33 ± 3 kHz, input voltage of 240 V 
and heating strength of 150 W, attached with 

digital timer and heater. The volumetric capacity 
of the bath ultrasonicator was 6.5 litres.   
 
Ground cassava paste of 50 g was mixed with a 
proper quantity of distilled water. The suspension 
was directly placed inside the bath sonicator, 
desired sonication power (W), sonication time 
(min) and solid to solvent ratio (g/ml) were 
maintained by means of controller. In order to 
reduce the variability in conducting the 
experiment, a randomized order was followed. 
The coded levels and the corresponding 
experimental values of independent variables 
(sonication power, sonication time and solid to 
solvent ratio) are shown in Table 1. Experiments 
were carried out twice and the arithmetic mean 
was considered for estimation of starch yield as 
per the Table 2. 
 

2.4 Determination of Cassava Starch 
Yield 

 
After UAE extraction, the starch suspension was 
centrifuged at 2200 x g for 20 min (Remi R-24 
centrifuge, India) and passed through a fine 
mesh muslin cloth to separate the starch and the 
pulp. Starch in the filtrate was kept overnight to 
sediment and then the liquid was decanted. The 
wet cassava starch was then again washed three 
times thoroughly for white colour and dried at 
50ºC for 12 h to obtain a moisture content of 
starch sample about 11-12% w.b. It was sieved 
through standard 72 mesh size BSS sieve and 
ground into powder using pestle and mortar. The 
yield of cassava starch (%) was calculated using 
eq. (1). 
 

Starch yield (%) =
��

��
× 100                             (1) 

 
Where, W1 was initial starch content in the 
material (%) and W2 was the content of starch 
released after the ultrasonic treatment  
 

2.5 Experimental Design 
 
A four factor three levels completely randomized 
factorial design (CRFD) was adopted in this 
present study to examine the effect of  ultrasonic 
treatment on the yield of cassava starch was 
studied. The factors were sonication power of  
50-100 W, sonication time of 10 to 20 min and 
solid to solvent ratio of 1:10 to 1:30 g/ml) on the 
extraction yield of starch from cassava tubers. 
From the preliminary experiments on single 
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Table 1. Coded levels and the corresponding experimental values of independent variables 
used in Box Behnken Design 

 

Coded levels Independent variables 

Sonication power (W) Sonication time (min) Solid-solvent ratio (g/ml) 

-1 50 10 10 

0 75 15 20 

1 100 20 30 

 
factor test, levels for independent experimental 
process variables were selected. It consisted of 
17 experiments with 5 central points for 
estimating experimental error. The total number 
of experiments (N) for this study was measured 
using the eq. (2). 
 

N = 2F(F − 1) + P�                                                    (2) 
 

Where, F is number of variables; P1 is the 
replicate number of centre points.  
 
For statistical measurements, the process 
independent variables were coded with three 
levels between -1, 0 and +1 and the coding was 
performed by using the eq. (3).  
 

Y� �  
��� ��

∆��
   i= 1,2,3 ,… … … … … … .k             (3) 

 
The percentage recovery of cassava starch yield 
(%) was measured using second order 
polynomial quadratic response model. The 
generalized form of the non-linear quadratic 
second order polynomial response model is 
presented in the eq. (4). 
 

ResponseY) = β
�

+ ∑ β
�
X�+ ∑ β

��
�
�� �

�
�� � X�

� +

∑ ∑ β
��

�
� �� �� X�X�                             (4) 

 

Where Y indicates starch yield; Xi and Xj denotes 
process independent variables (i and j range 
from 1 to k) and β0 represents interception 
coefficient of regression model; βj, βjj, βij are 
linear, quadratic and interaction coefficients; k 
indicates the number of independent process 
variables (k =3). 
 

2.6 Determination of Desirability and 
Validation of Optimized Conditions 

 
Optimization of multiple responses for various 
independent process variables is performed by 
derringer desirability function [27]. This is one of 
the most widely used techniques for multi 
response optimization. In this technique, the 
predicted response (starch yield) is transformed 

into a dimensionless partial desirability function 
(gi), which varies from 0 to 1. The required goals 
of response and independent process variables 
were chosen. For maximizing the response, the 
independent process variables were kept within 
range, where the response was maximized with 
the help of desirability function (D). 
 

D = (g� × g� × g� × … … … … ..× g�)

�

�           (5) 
 

Where, gi is desirability of response; n is number 
of responses. If any one of the variable response 
is outside the desirability, the total function will be 
converted into 0. gi ranges between completely 
undesired response to fully desired response (0 
to 1). The maximization and transformation of 
response into a multi-response dimensionless 
desirability (Ti ) was done using the eq. (6).  
 

T� =
�������

���������
                                              (6) 

 

Where, Zmin is the minimum value of response; 
Zmax is the maximum value of response;               
Zi is the weight of individual response.  
 

Triplicate processing experiments were 
conducted to confirm the results under the 
optimal conditions and its mean values were 
compared with the predicted values at the same 
conditions to validate the developed regression 
model.  
 

2.7 Statistical Analysis 
 

Experimental data were analyzed by least square 
method of multiple regression analysis.  Pareto 
analysis of variance (ANOVA) at 95 % level of 
confidence (p<0.05) was applied to calculate 
linear, quadratic and interaction coefficients of 
regression model so as to measure the 
significance of process variables. F-value, 
predicted error sum of squares (PRESS) and 
predicted R2 was considered to check model 
adequacy. RSM was applied using a Design 
Expert statistical package version 10.0.2.0 (Stat 
Ease Inc., Minneapolis, MN, USA) to determine 
the optimal response (starch yield). 
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Table 2. Box-Behnken response surface design (BBD) with the experimental and predicted values on starch yield 
 

Run order  Sonication 
power (W) X1 

Sonication time 
(min) X2 

Solid –solvent 
ratio (g/ml) X3 

Starch yield (%) Residual error % Error Absolute 
error Experimental Predicted 

1 75 70 15 79.03 79.82 -0.79 -0.99 0.79 

2 75 50 20 81.15 81.68 -0.53 -0.65 0.53 

3 100 90 15 80.69 80.16 0.53 0.65 0.53 

4 100 70 20 83.23 82.44 0.79 0.94 0.79 

5 100 70 10 80.03 80.08 -0.045 -0.05 0.04 

6 75 70 15 82.38 82.68 -0.30 -0.36 0.30 

7 75 70 15 80.32 80.02 0.30 0.37 0.30 

8 50 70 20 81.59 81.55 0.045 0.05 0.04 

9 50 70 10 82.88 82.04 0.84 1.01 0.84 

10 75 90 20 81.18 81.67 -0.49 -0.60 -0.49 

11 75 70 15 81.01 80.52 0.49 0.60 0.49 

12 100 50 15 81.15 81.99 -0.84 -1.03 -0.84 

13 75 90 10 82.98 83.06 -0.082 -0.09 0.08 

14 50 50 15 82.96 83.06 -0.10 -0.12 0.10 

15 75 50 10 83.18 83.06 0.12 0.14 0.12 

16 50 90 15 82.99 83.06 -0.072 -0.08 0.07 

17 75 70 15 83.20 83.06 0.14 0.16 0.14 
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3. RESULTS AND DISCUSSION 
 

3.1 Experimental Data Analysis Using 
BBD 

 

Experiments were conducted so as to study the 
linear, cubic, quadratic and interaction effect of 
independent process variables (sonication 
power, sonication time and solid to solvent ratio) 
and optimize the response (starch yield) and the 
results are listed in Table 2. 
 

The experimental data were fitted to various 
polynomial models viz., linear, interactive (2FI), 
quadratic and cubic models. Different statistical 
tests performed to calculate the suitability models 
for higher response (starch yield) were viz., 
sequential model sum of squares, lack of fit tests 
and model summary. The analyzed parameters 
are presented in Table 3. 
 

The results showed that quadratic model was 
statistically highly significant and showed higher 
value of R

2
, adjusted R

2
 and predicted R

2
 and 

also exhibited a low p-value (Table 3). Thus, the 
developed quadratic model found to be best 
suitable for higher starch recovery from fresh 
cassava tubers.  

3.2 Statistical Analysis 

 
Pareto analysis of variance (ANOVA) and the 
model regression coefficients for the 
experimental data were compared by their 
corresponding p-values mentioned in the Table 
4. By comparing the p values, it could be 
mentioned that linear coefficient (X1) was found 
to be highly significant. The adequate precision 
(F-value) of the model was 24.70, which 
indicated the model was significant at p<0.0016. 
The goodness of fit of the developed model was 
estimated by regression coefficient (R2=0.9355) 
and adjusted regression coefficient (��

�= 0.8527) 
and coefficient of variance (CV= 0.66 %). This 
CV value shows the difference between the 
predicted and experimental values. The 
developed quadratic model showed a high 
degree of accuracy with good deal of 
adoptability. The adequate precision of model 
compares the range of predicted values to the 
mean prediction error at the design points. In 
general, F value greater than 4 is acceptable and 
the present model got F value of 16.09, which 
shows that this model is significant for higher 
starch recovery from cassava tubers.  

 
Table 3. Sequential model fitting for cassava starch yield 

 

Source Sum of square Mean 
square 

DF F value Prob>F Remarks 

Sequential sum of squares 

Mean 82895.89 82895.89 1    

Linear 7.09 2.36 3 1.96 0.1702  

2FI 0.35 0.12 3 0.077 0.9713  

Quadratic 13.88 4.63 3 22.04 0.0006 Suggested 

Cubic 1.43 0.48 3 48.49 0.0013 Aliased 

Residual 0.039 0.0098 4    

Total 82918.68 4877.57 17    

Lack of fit tests 

Linear 15.66 1.74 9 177.01 <0.0001  

2FI 15.31 2.55 6 259.54 <0.0001  

Quadratic 1.43 0.48 3 48.49  0.0013 Suggested  

Cubic 0.000 0    Aliased 

Pure error 0.039 0.0098 4    

Model summary statistics 

Source SD R
2
 Adjusted 

R2  
Predicted 
R2 

Press  

Linear 1.10 0.31 0.81 0.15 24.60  

2FI 1.24 0.32 -0.07 -0.95 44.50  

Quadratic 0.46 0.93 0.85 -0.00 22.94 Suggesetd 

Cubic 0.09 0.99 0.99 - + Aliased 
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Table 4. Analysis of variance of the regression coefficients of the fitted polynomial quadratic 
model of starch yield 

 
Source Coefficient 

estimate 
Sum of 
squares 

Degree of 
freedom 

Standard 
error 

Mean 
square 

F value p-Value 

Model 71.14 21.32 9 0.20 2.37 11.29 0.0021 
X1 0.81 5.18 1 0.16 5.18 24.70 0.0016 
X2 -0.46 1.71 1 0.16 1.71 8.15 0.0246 
X3 0.16 0.20 1 0.16 0.20 0.95 0.3633 
Residual  1.47 7  0.21   
Lack of fit  1.43 3  0.48 48.49  0.0013 
Pure error  0.039 4  0.0098   
Cor total  20.58 16     
Std. dev. 0.46   R2  0.9355  
Mean 69.83   Adj- R

2
  0.8527  

C.V. % 0.66   Pre- R2  0.7201  
Press 22.94   Adequate Precision 16.098  

 

3.3 Fitting of Non-linear Quadratic 
Polynomial Model to the Uniformity 
Response 

 
The purpose of optimizing the process using 
various independent process variables is to 
increase the response. The suitability of model 
for estimating the optimal response (starch yield) 
was tested under optimal conditions. The effects 
of sonication power, sonication time and solid to 
solvent ratio on the starch yield were studied. 
The experimental data obtained were assessed 
by design expert software and fitted to quadratic 
regression model for response (starch yield) in 
terms of actual factors. The predicted second 
order non- linear quadratic model in terms of 
coded factors is shown in the eq. (7).  
 
�����ℎ ����� (%)  

= 83.06 + 1.04 �� +  0.27 �� − 0.37 ��

+  0.11 ���� − 0.27 ����

+ 0.46 ���� 
−1.26 ��

� − 0.78 ��
� − 0.73 ��

�                                  (7) 

 
3.4 Adequacy of the Developed Quadratic 

Model  
 
Checking of model adequacy is to calculate 
whether the developed regression model is 
adequate or not and how best the developed 
model predicts the response. Analysis of 
variance was used to check the adequacy of the 
developed polynomial quadratic model. The 
diagnostic residual analysis for validating the 
model is presented in the Fig. 2. The predicted 
and the experimental data points were close 
enough and showed a straight line relationship, 
which confirms the good agreement between the 

experimental independent process variables and 
the response (Fig. 2A). This clearly depicts that 
the developed model is successful to capture the 
correlation between the independent process 
variables on the response (starch yield). The 
normal probability/test plot is a graphical tool 
suitable to determine residuals normality. The 
goodness of fit model is a component of 
regression analysis and calculated using the 
values of internally studentized residuals and 
normal % probability. In this present study, all the 
data points were within acceptable limits as they 
lie on a straight line. This confirms that 
experimental data are normally distributed. Since 
all the leverage values of the model falls below 1, 
there were no unexpected errors occurred (Fig. 
2C). However, Fig. 2D shows that no excessive 
deviation or influence in the experimental data 
based on the beta values plot. 
 

3.5 Effect of Experimental Process 
Independent Variables on Response  

 
The various process variables (sonication power, 
sonication time and solid to solvent ratio) were 
studied on the response (starch yield). A BBD 
design under three variables at three levels was 
performed to assess the effects of experimental 
process variables on starch yield. To understand 
the interaction between the process variables 
and the response, a three-dimensional (3D) 
response surface and contour graphs were 
drawn by keeping the third variable constant at 
the “0” level and adjusting the other two 
variables. This is variably used to find out the 
optimal conditions. The response surface plot 
estimating the starch yield against independent 
process variables are presented in Fig. 3.  
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Fig. 2. Diagnostic residual plots for the response surface model 
 
3.5.1 Effect of sonication power 
 
In this study, the potential effect of different 
sonication power (50-100 W) on the response 
(starch yield) was studied. The cassava starch 
yield was increased with increase in sonication 
power up to 87.5 W and then decreases with 
higher sonication time and solid to solvent ratio 
(Fig. 3A, 3B). As larger ultrasound wave passed 
over the liquid medium, harsh shock waves and 
high speed jets were developed by ultrasonic 
waves, stimulates the swelling of matrix and 
increase of micro bubbles in the matrix, which 
permits higher diffusivity in the cassava mash 
and increase the starch extraction yield 
[28,29,30]. Sonication power has a greater 
influence on cavitational effect. Furthermore, 

beyond sonication power of 87.5W could affect 
the increase of number of bubble formation in 
solvent (water) during cavitation, which might 
diminish the working potential of ultrasound 
power transferred into the liquid medium and 
reduced the extraction yield of cassava starch 
[31]. Based on the present study, the optimum 
sonication power for higher starch yield was 
63.32 W.  
 
3.5.2 Effect of sonication time  
 
Sonication time is an important and highly 
influencing variable for extraction of the cassava 
starch. The influence of sonication time on 
cassava starch yield was studied and the results 
are presented in the Fig. 3. The starch yield was 
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gradually increased with increase in time up to 
17.50 min due to swelling and hydration of starch 
was initiated simultaneously by cavitational effect 
of ultrasonic waves [32] and then slowly 
decreases with higher solid to solvent ratio            
(Fig. 3A, 3C). The diffusion of ultrasonic waves 
improves the leaching of starch from cassava 
mash into the surrounding solvent and enhances 
the extraction yield [33]. Nevertheless, the 
penetration and heating effect of ultrasonic 
treatment for longer duration might cause the 
structural changes of starch that reduces the 
recovery of cassava starch due to frequent 
asymmetric collapse of micro-bubbles. Therefore 
based on the results the sonication time of 15.59 
min was found to be optimum for higher starch 
yield.  
 

3.5.3 Effect of solid to solvent (SS) ratio 
 
The SS ratio is also one of the important factors 
responsible for enhancing the starch yield. In this 
study, a different SS ratio ranged from 1:10 to 
1:30 g/ml was studied and showed that the 
starch yield was highly influenced by SS ratio. 
The higher ratio of solid to solvent means higher 
concentration difference which in turn facilitates 
the mass transfer rate results and yield higher 
starch recovery [34]. However, the high ratio of 
raw material to water beyond the required level 
would not change much of driving force (diffusion 
rate) furthermore as transfer of mass is mostly 
confined towards interior solid tissues [35]. 
Further, this is associated with the cavitation 
formation which invariably requires negative 

 

 
 

Fig. 3. Response surface plot for interaction effects of independent process variables on 

starch yield 
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Fig. 4. Desirability ramp for numerically optimized process conditions 
 

pressure in the rarefaction cycle to overcome the 
natural cohesive forces [36]. In consideration of 
the optimum conditions of other two independent 
process variables (sonication power of 63.32 W 
and sonication time of 15.52 min), a solid to 
solvent ratio of 1:19 g/ml was selected an 
optimum for higher cassava starch yield. 
 

3.6 Determination and Validation of 
Optimized Extraction Process 
Conditions  

 

To achieve a maximum starch yield from fresh 
cassava tubers, a multivariate regression model 
(Eq. (4)) was employed. To optimize the process 
conditions, derringer’s desired methodology was 
adopted and as follows:  sonication power of 
63.32 W, solid to solvent ratio of 19.19 g/ml, and 
sonication time of 15.59 min. Under these 
optimum conditions, the predicted cassava 
starch yield was 82.32% with desirability value of 
0.759. For validating the optimum extraction 
process conditions, confirmatory experiment in 
triplicates (n=3) was successfully performed 
under the optimal conditions. The mean starch 
yield from the confirmatory trial was found to be 
82.28±1.12%.  The experimental results obtained 
were closely associated to the data obtained 
from the optimized conditions of the model. The 
desirability ramp for optimal points was 
generated by numerical optimization technique 
(Fig. 4).  
 

4. CONCLUSIONS 
 

In this present study, a three level Box-Behnken 
design (BBD) with three factors was successfully 
applied to optimize the independent process 

variables (sonication power sonication time and 
solid to solvent ratio) for extraction of cassava 
starch. The design of experiments, second order 
polynomial nonlinear regression models and 
numerical optimization were performed using 
commercial statistical software (Design-
Expert®). A maximum determination coefficient 
(R2) of 0.935 was obtained for second order 
polynomial quadratic model from ANOVA and 
confirmed the developed model was in best fit 
with the experimental runs. Based on the 
derringer’s desired function, the optimal 
conditions were found to be, sonication power of 
63.32 W, solid to solvent ratio of 19.19% and 
sonication time of 15.59 min resulted in 
maximum starch recovery percentage of 82.32%. 
Under these optimized conditions, the 
experimental results (83.20%) were in close 
relationship with the predicted results of starch 
yield (82.32%). Thus, the extraction of starch 
from fresh cassava tubers for various industrial 
applications could be successfully extracted 
through bath type UAE system.  
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