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Abstract 
The propagation of TM-polarized electromagnetic waves in a dielectric layer filled with lossless, nonmag-
netic, and isotropic medium is considered. The permittivity in the layer defines by Kerr law. We look for ei-
genvalues of the problem and reduce the issue to the analysis of the corresponding dispersion equation. The 
equivalence of the boundary eigenvalue problem and the dispersion equation is proved. We show that the 
solution of the problem exists and from dispersion equation it can be numerically obtained. Using this solu-
tion the components of electromagnetic field in the layer can be numerically obtained as well. Transition to 
the limit in the case of a linear medium in the layer is proved. Some numerical results are presented also. 
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1. Introduction 
 
Problems of electromagnetic waves propagation in a 
nonlinear media are actually important so as these phe-
nomena are widely used in plasma physics, in modern 
microelectronics, in optics, in laser technology. Mathe-
matical models for some of these problems and certain 
results are presented in [1-4]. These models yield boun-
dary eigenvalue problems for systems of differential eq-
uations. These boundary eigenvalue problems depend on 
a spectral parameter nonlinearly. Analysis of these prob-
lems is very difficult for the reason that it is not possible 
to apply well-known methods of investigation of spectral 
problems. 

It is necessary to note that such problems are exactly 
boundary eigenvalue problems. This is due to the fact 
that the main interest in the problems is finding that val-
ues of spectral parameter (eigenvalues) when the wave is 
propagating in the waveguide. Thus, in such problems it 
is necessary to pay attention on finding dispersion equa-
tions. When we have eigenvalues, the solutions of diffe-
rential equations can be numerically obtained. With a 
mathematical view, a dispersion equation is an equation 
with respect to a spectral parameter, analyzing the equa-
tion we can deduce conclusion about existence of solu-
tions of these boundary eigenvalue problems. 

The phenomena of propagation of TE-waves were 
studied rather completely. Results of propagation TE 
waves in a nonlinear dielectric layer were presented in 
articles of H.-W. Shurmann, V. S. Serov and Yu. V. 

Shestopalov [5,6]. Propagation of TE-waves in a nonli-
near dielectric waveguide was considered in [7,8] by Yu. 
G. Smirnov, H.-W. Shurmann and Yu. V. Shestopalov. 
In both latter articles the problem is considered exactly 
like boundary eigenvalue problem (nonlinear, of course). 
Some numerical results are shown in [7]. The article [8] 
is devoted to strict mathematical results about the prob-
lem (solvability, existence of the solution, etc.). 

Results about propagation of TM waves in a nonlinear 
dielectric semi-infinite layer were published in [2,3]. The 
first integral of the problem under consideration in the 
section 2 has been found in [4]. This integral represents 
the conservation law. However, the complete solution of 
the problem has not been found. The dispersion equation 
for the problem has not been obtained. 

The equations of the TM waves propagation problem 
in nonlinear layer with Kerr nonlinearity were published 
for the first time in 1971-1972 in articles of P. N. 
Eleonskii and V. P. Silin (see, for example, [1]). 
 
2. Statement of the Problem 
 
Given a Cartesian system Oxyz , consider electromag-
netic waves propagating through a homogeneous iso-
tropic nonmagnetic dielectric layer with Kerr nonlineari-
ty located between two semi-infinite half-spaces 0x <  
and x h> . The half spaces are filled with isotropic 
nonmagnetic media without sources that have constant 
permittivities 1 0ε ε≥  , 3 0ε ε≥ , respectively, where 
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0 0ε >  is the permittivity of vacuum. We suppose that 
in the whole space 0µ µ= ; where 0µ  is the permeabil-
ity of vacuum. 

The electric and magnetic fields are harmonic func-
tions of time t: 

( ) ( ) ( ), , , , , cos , , sinx y z t x y z t x y z tω ω+ −= +E E E


 

( ) ( ) ( ), , , , , cos , , sinx y z t x y z t x y z tω ω+ −= +H H H


 

and satisfy Maxwell equations 

rot , rot ,i iωε ωµ= − =H E E H         (1) 

where 

( ) ( ) ( ), , , , , ,x y z x y z i x y z+ −= +E E E

( ) ( ) ( ), , , , , ,x y z x y z i x y z+ −= +H H H  

are complex amplitudes. 
The permittivity inside the layer is described by the 

Kerr law 2
2 aε ε= + E , where ( )2 1 3max ,ε ε ε>  and 

a  are positive constants. Here, ( ), ,
T

x y zE E E=E , 
22 2 2

x y zE E E= + +E  and ⋅  is modulus of com-
plex function. A solution to the Maxwell equations is 
sought in the entire space. Hereafter, the time multiplier 
is omitted. 

The electromagnetic fields E  and H  satisfy Max-
well Equation (1), the condition that their tangential 
components at 0x =  and x h=  are continuous, and 
the radiation condition at infinity; i.e., the electromag-
netic field decays exponentially as x →∞  in the re-

gions 0x <  and x h> . 

Consider the TM waves ( ), 0, T
x zE E=E  and 

( )0, , 0
T

yH=H . As a result, Equation (1) become 

0; ; 0;

; .

x xz z
y

y y
x z

E EE E i H
y z x y

H H
i E i E

z x

ωµ

ωε ωε

∂ ∂∂ ∂ = − = = ∂ ∂ ∂ ∂

∂ ∂ = = − ∂ ∂

    (2) 

It follows from (2) that ( ),z zE E x z=  and 

( ),x xE E x z=  are independent of y. Since yH  is ex-
pressed in terms of 

xE  and 
zE , we conclude that yH  

is also independent of y. 

Let ( )...
x
∂ ′≡
∂

. Assuming that the field components 

depend harmonically on z, i.e., ( ),y yH H x z= = 

( ) i z
yH x e γ , ( ) ( ), i z

x x xE E x z E x e γ= = , and zE =  

( ) ( ), i z
z zE x z E x e γ= , we obtain the system of equations 

( ) ( ) ( )
( ) ( )
( ) ( )

;

;

,

x z y

y z

y x

i E x E x i H x

H x i E x

i H x i E x

γ ωµ

ωε

γ ωε

′ − =
 ′ = −
 =

        (3) 

which implies that 

( ) ( ) ( )( )1
y x zH x i E x E x

i
γ

ωµ
′= − .      (4) 

Here γ  is unknown spectral parameter, i.e., the pro- 
pagation constant. 

Differentiating (4) and using (3) yields 

( )( ) ( ) ( )
( )( ) ( ) ( )( )

2

2 2

;

.
x z z

x z x

iE x E x E x

iE x E x iE x

γ ω εµ

γ γ ω εµ

 ′ ′′− =


′ − =

     (5) 

Introducing 2 2
0k ω µε=  with 0µ µ=  and norma-

lizing the equations according to the formulas x kx= , 
d dk
dx dx

=


, 
k
γγ = , 

0

j
j

ε
ε

ε
=  (j = 1, 2, 3), 

0

aa
ε

= . 

We introduce the new notation ( )zE Z x≡   and 

( )xiE X x≡  . 
By omitting the tilde, (5) is written in the normalized 

form as 

2

;
.

Z X Z
Z X X

γ ε

γ γ ε

′′ ′− + =
 ′− + =

             (6) 

The real solution ( )X x  and ( )Z x  of (6) are sought 

assuming that γ  is real (so that 2E  is independent of 
z), where 

( )
1

2 2
2

3

, 0;

, 0 ;

, .

x

a X Z x h

x h

ε

ε ε

ε

<


= + + < <
 >

      (7) 

It is also assumed that ( )X x  and ( )Z x  are diffe-
rentiable in the layer: 

( ) ( ] [ ] [ )
( ) ( ) ( )1 1 1

; 0 0; ;

; 0 0; ; ;

X x C C h h

C C h C h

∈ −∞ ∩ ∩ +∞ ∩

∩ −∞ ∩ ∩ +∞
 

( ) ( )
( ] [ ] [ )
( ) ( ) ( )

1 1 1

2 2 2

;

; 0 0; ;

; 0 0; ; .

Z x C

C C h C h

C C h C h

∈ −∞ +∞ ∩

∩ −∞ ∩ ∩ +∞ ∩

∩ −∞ ∩ ∩ +∞

 

These smoothness conditions follow from continuous 
conditions of tangential components at 0x = and x h= . 
We search for γ such that ( ) 2

1 3 2max ,ε ε γ ε< < .  
The statement of the problem is shown in the Figure 1. 
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Figure 1. The geometry of the problem. 

 
3. Solution to the System of Differential  

Equations 
 
For 1ε ε=  in the half-space 0x < , the general solution 
of (6) is 

( ) ( )
( ) ( )

2
1

2
1 2

1

exp ,

exp ,

X x A x

Z x A x

γ ε

γ ε
γ ε

γ

 = −
 − = −


     (8) 

where we took into account the condition at infinity. 
For 3ε ε=  in the half-space x h> , we have 

( ) ( )( )
( ) ( )( )

2
3

2
3 2

3

exp ,

exp ,

X x B x h

Z x B x h

γ ε

γ ε
γ ε

γ

 = − − −
 − = − − − −


   (9) 

according to the condition at infinity. The constants A 
and B in (8) and (9) are determined by the boundary 
conditions. 

Inside the layer 0 x h< < , (6) becomes 

( )( )
( )( )

2
2 2

22

2 2
2

;

1 .

d Z dX a X Z Z
dxdx

dZ X a X Z X
dx

γ ε

γ ε
γ


− + = + +

− + = + +


    (10) 

We can reduce (10) to the form: 

( )

( )

( )( )

2 2 2
2 2

2 2
2

2 2
2

2 2
2

2 2 2
2

2
3

;
3
1 .

a X ZdX a X Z
dx aX aZ

a X Z
Z

aX aZ
dZ a X Z X
dx

ε γ

γ ε

ε
γ
ε

ε γ
γ

 − + +
 = +

+ +


+ ++
+ +


= − − + +




   (11) 

From (11) we have an ordinary differential equation: 

( )2 2
2 3 dXaX aZ

dZ
ε− + + =  

( )
( )

2 2
22

2 2 2
2

2
a X Z ZaXZ

Xa X Z

ε
γ

ε γ

+ +
= +

− + +
     (12) 

Multiplying (12) by ( )( )2 2 2
2 a X Z Xε γ− + +  we 

obtain a total ordinary differential equation. Its solution 
is easy to write in the form: 

( )( ) ( )( )
( )( ) ( )( )( )

2 36 2 2 2 2 2
1 2 2

2 2 2 2 2
2 2

3 2

2 2

C a X Z a X Z

a X Z a X Z

γ γ ε ε

ε γ ε

+ + + − + +
=

+ + − + +
 

2
2aZ ε= + ,                (13) 

from item 2 it is known that 2
0γ ε>  and 0a > . Equa-

tion (13) is true under these conditions. 
Define the new variables 

( )
( ) ( )( )2 2

2

2

a X x Z x
x

ε
τ

γ

+ +
= , ( ) ( )

( ) ( )
X x

x x
Z x

η γ τ= .(14) 

Let 2
0 2

ε
τ

γ
= , then ( )22

02
2 2 2X

a
η τ τγ
η γ τ

−
=

+
, 

( )24
02

2 2 2Z
a
τ τ τγ
η γ τ

−
=

+
. In these variables, (11) and (13) 

become 

( )( )
( ) ( )

( )

2
02

2 2 2 2
0

2 2 2

2
2 ,

2

1
;

d
dx

d
dx

τ η τ τ ττ γ
τ η γ τ η τ τ

γ τ η τη
τ

 − −
=

+ + −

 + −

=


    (15) 

( )
( )

2 2 2
12

2 3
1 03 2 2 2

C

C

γ τ τ
η

τ τ τ τ τ

−
=

+ − − −
.      (16) 

Here, (16) is a fourth-degree algebraic equation in τ. 
Its solution ( )τ τ η=  can be explicitly written using the 
Cardano-Ferrari formulas (see [9]). 

 
4. Boundary Conditions and Dispersion  

Equation 
 
To derive dispersion equations for the propagation con-
stants, we have to find ( )0η  and ( )hη . 

Since the tangential components of E  and H  are 
continuous, we obtain 

( ) ( ) ( )0 h
z zZ h E h E= + = , ( ) ( ) ( )00 0 0z zZ E E= − =  (17) 

( ) ( ) ( ) ( )0 h
y yX h Z h i H h Hγ ωµ′− = + = , 
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( ) ( ) ( ) ( )00 0 0y yX Z i H Hγ ωµ′− = = , where ( )h
zE  is a 

known constant. Then 
( ) ( ) 3

2
3

h h
y zH E

ε

γ ε
= −

−
, ( ) ( )0 0 1

2
1

y zH E ε

γ ε
=

−
.  (18) 

According to (7) in the layer, we have 

( ) ( ) ( ) ( )( )( ) ( )2 2
2

1Z x X x a X x Z x X xγ ε
γ

′− + = + + .(19) 

Combining (14), (16), (17), and (19) yields 

( )
( )( )

( )
( ) ( ) ( ) ( )( )

2 2
1

2 2 3
1 03 2 2 2h

z

X h h C
C h h h hE

τ
τ τ τ τ τ

−
=

+ − − −
;(20) 

( ) ( )( )( ) ( ) ( )22
2

1 h h
z ya X h E X h Hε

γ
 + + = 
 

,    (21) 

where 

( )
( )

( )

h
yH

X h
hγτ

= .               (22) 

Solving (21) for ( )X h , we obtain 

( )
( )( )

( )
( )

2

23 0
h h

z y
a E H

X h X h
a a

ε γ+
+ − = .   (23) 

Since the value of ( )( )( )2

2
h

za E aε +  is nonnegative, 

(23) has at least one real root (which we consider). 
Thus, ( ) ( ) ( )( )h

yh H X hτ γ= . Using (18) and (22), we 
find 

( )
( )

( )
3

2
3

h
zEX h
h

ε
γτ γ ε

= −
−

.          (24) 

Combining (20) with (24) gives 

( )
( ) ( )( ) ( )( )

( ) ( )

2
3 02

1 2 2 2 2
3 3

2 2h h h
C h

h

ε τ τ τ τ
τ

ε γ γ ε τ

− −
= −

+ −
.    (25) 

If 1 0C > , then (16) which is regarded as an equation 
in ( )hτ  has a positive root. It is easy to show that 1C  
is strictly positive. Indeed, (25) implies that 1 0C >  for 

( ) 2hτ > , since ( ) 0 1τ τ≥ >h  and ( )2
3 0γ ε− > . Con-

sider the case of ( ) )0 , 2hτ τ∈  . Converting the terms in 
(25) to a common denominator and, if necessary, making 
the substitution ( ) 0hτ τ α= +  ( )0 1α< < , we obtain 

( )
( ) ( ) ( )( )( )

( ) ( )

2 2 3 2
3 3 0

1 2 2 2 2
3 3

2 1h h
C h

h

γ γ ε τ ε α τ τ α
τ

ε γ γ ε τ

− + − + −
=

+ −
 

with a positive right-hand side. 

It is well known that the field components ( )X xε  

and ( )Z x  are continuous at the interface of the media. 

Then, the function ( ) ( )
( )

x X x
Z x

τ
γ  is also continuous at 

the interface of the media at points x  such that 

( ) 0Z x ≠ . Since ( ) ( ) ( )
( )

x X x
x

Z x
τ

η γ= , we use (8) and 

(9) to obtain 

( ) 1

2
1

0 0
ε

η
γ ε

= >
−

; ( ) 3

2
3

0h
ε

η
γ ε

= − <
−

.  (26) 

Since the right-hand side of the second equation in (15) 
is positive, ( )xη  is an increasing function on the inter-

val ( )0; h . Taking into account the signs in (26), we 

conclude that ( )xη  is not differentiable on the entire 

interval ( )0; h  but has a point of discontinuity. Assume 

that this point is ( )0;x h∗ ∈ . It follows from (16) that 

x∗  is such that ( )xτ τ∗ ∗=  is a root of the equation 

( ) ( ) ( )2 3* * * *
1 03 2 2 2 0C τ τ τ τ τ+ − − − = .  Moreover, 

( )* 0xη − → +∞  and ( )* 0xη + → −∞ . Let 

( ) ( )2 2 2 1
f f τη

γ τ η τ
≡ =

+ −
, 

where ( )τ τ η=  is expressed from (16). In the general 
case, there are several points 0 1, , ..., Nx x x  on the inter-
val [ ]0, h  at which ( )xη  becomes infinite, so that 

( ) ( ) ( )0 10 0 ... 0Nx x xη η η− = − = = − = +∞ , 

( ) ( ) ( )0 10 0 ... 0Nx x xη η η+ = + = = + = −∞ .  (27) 

Below, it will be proved that the number of such 
points is finite for any h. 

Solutions are sought on each of the intervals [ ]00, x , 

[ ]0 1,x x , ..., [ ],Nx h : 

( )

( )0

0

x

x

fd x c
η

η

η− = +∫ , 00 x x≤ ≤ ; 

( )

( )

1

i

x

i
x

fd x c
η

η

η += +∫ , 1i ix x x +≤ ≤ , 0, 1i N= − ; 

( )

( )

1

N

x

N
x

fd x c
η

η

η += +∫ , Nx x h≤ ≤ .      (28) 

Taking into account (27) and substituting 0x = , 
1ix x += , Nx x=  into the first, second, and third equa-

tions in (28), respectively, we find the required constants 
1 2 1, , ..., Nc c c + : 
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( )
0

0

c fd
η

η
+∞

= − ∫ ; 

1 1i ic fd xη
+∞

+ +
−∞

= −∫ , 0, 1i N= − ; 

( )

1

h

Nc fd h
η

η+
−∞

= −∫ .           (29) 

In view of (29) Equation (28) become 

( )

( )

( )

0

0

x

x

fd x fd
η

η η

η η
+∞

= − +∫ ∫ , 00 x x≤ ≤ ; 

( )

( )

1

i

x

i
x

fd x fd x
η

η

η η
+∞

+
−∞

= + −∫ ∫ , 1i ix x x +≤ ≤ , 0, 1i N= − ; 

( )

( ) ( )

N

x h

x

fd x fd h
η η

η

η η
−∞

= + −∫ ∫ , Nx x h≤ ≤ .     (30) 

Let fd Tη
+∞

−∞

=∫ . It follows from (30) that 1i ix x+ − =  

0T > , where 0, 1i N= − . Therefore, the number of 
points at which ( )η x  becomes infinite on the interval 

( )0; h  is finite. Now, setting 0x x= , ix x= , Nx x=  
in the first, second, and third equations in (30), respec-
tively, so that all the integrals on the left-hand sides va-
nish, we add all the equations in (30) to obtain 

( )
0 0 1 1

0

0 ... Nx fd x T x x
η

η
+∞

−= − + + + − + + +∫    

( )h

N NT x x fd h
η

η
−∞

+ − + + −∫                 (31) 

Finally, (31) yields 

( )

1
2

1

3
2

3

1fd N T h

ε

γ ε

ε

γ ε

η
−

−
−

− + + =∫ ,                 (32) 

where 0N ≥  is an integer. 
Formula (32) is a dispersion equation that holds for 

any h. It should be noted that, if 0N ≠ , we have several 
equations for various values of N . Each of these equa-
tions must be solved for γ . All the resulting γ  form a 
set of the propagation constants for which and only for 
which waves in the layer propagate for given h . 

It should be also noted that fdη
+∞

−∞∫  converges since 

f  can be majorized by the function 
( ) 21

M
m η−

, where 

[ ]
( )

0,
max
x h

M xτ
∈

= , and 
[ ]

( )
0,

min 1
x h

m xτ
∈

= > . Since ( )X x  

and ( )Z x  are bounded, ( )xτ  has a finite minimum 
and maximum. 

If we consider first equation of (15) combined with 
first integral, then the equation can be integrated. The 
obtained integral is so called hyperelliptic integral (it is 
one of the simplest type of Abelian integrals). If we ex-
tend definitional domain of independent variable x  on 
the whole complex plane, then we can consider the in-
verse function for these integrals. These functions will be 
solutions of the system (15). These functions are hyper-
elliptic functions which belong to set Abelian functions. 
Abelian functions are meromorphic periodical functions. 
So as function η  algebraically depends on τ  there-
fore η  is a meromorphic periodical function. Thus, the 
break point x∗  is a one of the poles of function η . The 
integral in (32) is a more general Abelian integral [10, 
11]. 
 
5. Boundary Value Problem and Existence 

Theorems 
 
The continuity conditions for components of field E  
imply 

[ ] 0
0

x
Xε

=
= , [ ] 0

x h
Xε

=
= , [ ] 0

0
x

Z
=
= , [ ] 0

x h
Z

=
= .(33) 

We suppose that the functions ( )X x  and ( )Z x  al-
so satisfy the conditions 

( ) 1X x O
x

 
=   

 
 and ( ) 1Z x O

x
 

=   
 

 as x →∞ . (34) 

Introduce the notation 
0

0
d dx

d dx
 

=  
 

D , 

( ) ( )( ) ( )
( )

,
X x

X x Z x
Z x

 
=  
 

F , ( ) ( )
( )

1

2

,
,

,
G F

F
G F

γ
γ

γ
 

=  
 

G , 

where ( )X x  and ( )Z x  are unknown functions, 1G  
and 2G  are left-hand sides of system (11). The γ  is a 
spectral parameter. Also we will be considered col-

umn-vector ( ) ( )
( )

X x
x

Z x
ε 

=  
 

N . Rewrite the problem 

using introduced notation. 
In the half-space 0x <  and 1ε ε= , we have 

1 X
Z
ε 

=  
 

N  and 

2

2
1

0
0

0
γ

γ
γ ε
 

− = 
− 

DF F .                  (35) 

Inside the layer 0 x h< <  and 2
2 aε ε= + E , we 
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have ( )( )2 2
2 a X Z X

Z

ε + +
 =
 
 

N , and the system has 

the form 
( ) ( ), , 0F Fγ γ≡ − =L DF G .       (36) 

In the half-space x h>  and 3ε ε= , we have 

3 X
Z
ε 

=  
 

N  and 

2

2
3

0
0

0
γ

γ
γ ε
 

− = 
− 

DF F .          (37) 

The continuity conditions (33) imply the following 
conditions 

( )
0

0
x

x
=
=  N , ( ) 0

x h
x

=
=  N ,       (38) 

where ( ) ( ) ( )
0 0 00 0

lim lim
x x x x x x

f x f x f x
= → − → +

= −   , for vector 

it means transition to the limit for every components of 
the vector. 

Let us formulate boundary problem (conjugation 
problem). We will search for non-vanishing vector F  
and corresponding eigenvalues γ  so that F  satisfies 
(35)-(37) and conjugation conditions (38). In addition the 
components of the vector F  must obey the condition 
(34). 

The function ( ),F γL  from (36) is a nonlinear oper-
ator-function, which nonlinearly depends on the spectral 
parameter. Spectral theory of linear operator-functions, 
which nonlinearly depend on spectral parameter was 
built in [12]. As yet there is not a common spectral 
theory of nonlinear operator-functions which nonlinearly 
depend on spectral parameter. Therefore, commonly 
boundary value problems with these operator-functions 
can not be solved by known methods. 

Definition 1. The value 0γ γ=  we call eigenvalue of 
the problem if the problem (35)-(37) with conditions (34) 
and (38) has unique nonzero solution F . The solution 

,F  which corresponds to eigenvalues 0γ  we call ei-
genvector of the problem, and the components ( )X x  

and ( )Z x  of the eigenvector F  we call eigenfunc-
tions. 

There is a well-known definition of eigenvalue of li-
near operator-function which nonlinear depends from 
spectral parameter [12]. Definition 1 is a non-classical 
analog of that well-known definition. Definition under 
consideration, on the one hand, is a distribution of clas-
sical definition for a case of nonlinear operator-function 
nonlinearly depending on spectral parameter. On the 
other hand, definition 1 corresponds to physical state-
ment of the problem. 

Theorem 1. Boundary value problem (35)-(37) with 

conditions (34) and (38) has a solution (eigenvalue) then 
and only then, when the eigenvalue is a solution of dis-
persion Equation (32). 

Proof. Sufficiency. It is obviously, that, if we have a 
solution γ  of dispersion Equation (32), we can find 
functions ( )xτ  and ( )xη  from system (15) and first 
integral (16). Using Formula (14), we obtain 

( ) 0
2 2 2X x

a
τ τγη

η γ τ
−

= ±
+

  

( )
2

0
2 2 2Z x

a
τ τγ τ

η γ τ
−

= ±
+

.         (39) 

The question of sign’s choosing is very important. We 

know the behavior of function X
Z

η γτ= : the function 

η  is monotone increasing, if x x∗=  is such that 

( ) 0xη ∗ = , then ( )0 0xη ∗ − < , ( )0 0xη ∗ + > , and if 
x x∗∗=  is such that ( )xη ∗∗ = ±∞ , then ( )0 0xη ∗∗ − > , 
( )0 0xη ∗∗ + < . Function η  has not other points of sign 

reversal. The boundary conditions result in 
( ) ( )h

zZ h E= (>0). We know, if 0η > , then functions X  
and Z  have the same signs, but if 0η < , then X  and 
Z  have opposite signs, and keep in mind that X  and 
Z  are continuously differentiable functions (in corres-
ponding domains), we chose suitable signs in expres-
sions (39). 

Necessity. The way of obtaining dispersion Equation 
(32) from (15) implies that the eigenvalue of the problem 
is a solution of dispersion equation. ⁪ 

It is necessary to note that the eigenfunctions corres-
pond to eigenvalue 0γ  can easily find from (11) by us-
ing, for example, Runge-Kutta method. 

Let us formulate existence and localization theorem is 
founded on the obtained results. Introduce the notation 

( ), ,J J a Nγ≡  which denotes the right-hand side of 
dispersion Equation (32). It is clear that for each integer 
nonnegative finite N   

( )( )
( )

2
1 3 2max , ,

inf , , 0J a N
γ ε ε ε

γ
∈

> , 

( )( )
( )

2
1 3 2max , ,

sup , ,J a N
γ ε ε ε

γ
∈

< ∞ . 

Moreover, decreasing of N  implies decreasing of the 
infimum and supremum, and increasing of N  implies 
increasing of the infimum and supremum. It is obviously 
from the form of dispersion equation. 

Theorem 2. Let 
( )

( )( )
( )

2
1 3 2

1
max , ,

inf , ,kh J a k
γ ε ε ε

γ
∈

= , 
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( )

( )( )
( )

2
1 3 2

2
max , ,

sup , ,kh J a k
γ ε ε ε

γ
∈

= , 

and h  is such that there are i  and j , that ( )
2
ih h<  

and ( )1
2
ih h+ > ; ( )

1
jh h<  and ( )1

1
jh h+ > . 

Then, there are at least j i−  eigenvalues of the 
problem (35)-(37) with conditions (34) and (38). 

Theorem 2 requires some explanations. If for some j  
infimum is greater than h  then for all greater numbers 
j  infimum is all the more greater than h  and disper-

sion equation has not solutions. Similarly, if for some i  
supremum is smaller than h , then for all smaller num-
bers i  supremum is all the more smaller than h . In 
this case dispersion equation also has not solutions. 
These explanations follow from the fact that the infimum 
and supremum of left-hand of dispersion Equation (32) 
are finite. 
 
6. Transition to the Limit in the Case of a 

Linear Medium in the Layer 
 
Consider formal transition to the limit as 0a →  in the 
case of a linear medium in the layer. The dispersion equ-
ation in the linear case is (see [13]): 

( ) ( )
( )

2 2 2
2 2 1 3 3 12

2 2 2 2 2
1 3 2 2 3 1

tg h
ε ε γ ε γ ε ε γ ε

ε γ
ε ε ε γ ε γ ε γ ε

− − + −
− =

− − − −
. (40) 

Consider the functions 

( )2 2 2 1
f τ

γ τ η τ
=

+ −
 and 2

1 2 2
22 2

2
2

1f ε
ε γ ε η

ε γ

=
−

+
−

. 

The function 1f  is derived from f  by formal tran-
sition to the limit as 0a →  with respect to τ. Since we 
search for real solutions ( )X x  and ( )Z x , the deno-
minator of 1f  cannot vanish. Moreover, as 0a → , the 
function f  tends to 1f  uniformly with respect to 

[ ]0,x h∈ . Under this condition, since f  is continuous, 
we can use classical calculus result to transit to the limit 
as 0a →  under the integral sign in (32): 

( )

1
2

1

3
2

3

2 2
2 22 2

2 2
2 2

1 11d N d

ε

γ ε

ε

γ ε

η η
ε εη η

ε γ ε γ

− +∞

−∞−
−

 
 
 − + + =
 

+ + − − 

∫ ∫  

2
2

2

hε γ
ε
−

= .               (41) 

The integrals in (41) are analytically evaluated. Finally, 
(41) yields 

( )
( )

2 2 2
2 2 1 3 3 12

2 2 2 2 2
1 3 2 2 3 1

arctgh
ε ε γ ε γ ε ε γ ε

ε γ
ε ε ε γ ε γ ε γ ε

− − + −
− = +

− − − −

( )1 π+ +N .                (42) 

Taking the tangent of (42) gives (40). 
Results of this paragraph show us that we obtain regu-

lar case when we transit to the limit as 0a → . The limit 
of dispersion Equation (32) for nonlinear medium leads 
to dispersion Equation (40) for linear medium. The dis-
persion Equation (40) is well-known classical result in 
electrodynamics. 

Note that the method of finding dispersion equation 
considered in this section can be applied to more general 
problem. Namely, to the problem of propagation TM  
wave in an anisotropic nonlinear layer with Kerr nonli-
nearity (we studied a case of isotropic nonlinear layer). 
The statement of the problem differs only one detail. In a  
case of anisotropic nonlinear layer the permittivity is      

described by diagonal tensor
0 0

0 0
0 0

xx

yy

zz

ε
ε ε

ε

 
 =  
 
 

 , where 

2 2
12xx x zb E a Eε ε= + + , 2 2

21zz x za E b Eε ε= + + , a, 

b are nonlinearity coefficients and ( )12 1 3max ,ε ε ε>  

and ( )21 1 3max ,ε > ε ε . Here, after writing the system of 

equation in terms of functions ( )X x  and ( )Z x  we 

have to chose new variables ( )xτ  and ( )xη  in form 

( )
2 2

12
2

bX aZx ε
τ

γ
+ +

=  and ( ) Xx
Z

η γτ= , where 

( )X X x=  and ( )Z Z x= . 

Anisotropic case with additional condition 12ε =  

21 2ε ε=  was completely investigated in [14]. 
The first approximation for the propagation constants 

was presented in [15]. 
 
7. Numerical Results 
 
In this section some numerical results are presented. The 
calculations are illustrated by the plots.  

In Figure 2, the solid lines show the solutions to the 
dispersion equation for the case of a linear medium in the 
layer, and the dashed lines correspond to the nonlinear 
dispersion equation.  

Figure 2 illustrates the dependence of squared propa-
gation constant 2γ  on layer’s thickness h . The fol-
lowing parameters are used: 1 3 1ε ε= = , 2 9ε = , 
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Figure 2. Dispersion curves of the problem. 
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Figure 3. Eigenfunctions for the second eigenvalue of the 
problem. 

( )( )2
1h

zE = . In the case of nonlinear dispersion equa-
tion, the value 0.1a =  is employed.  

For the next case the following initial data are chosen: 

1 1ε = , 2 4ε = , 3 2ε = , ( )( )2
1h

zE = , 0.01a =  and 

5.91h = . In this case there are three eigenvalues 1γ , 2γ   

and 3γ : 2
1 3.9γ = , 2

2 3.108γ =  and 2
3 2.1711γ = . 

In Figure 3 eigenfunctions ( )X x  and ( )Z x  cor-
responding to the second eigenvalue 2γ  are depicted. 
The dash-dotted line corresponds to the eigenfunction 

( )X x  and the solid line corresponds to the eigenfunc-

tion ( )Z x . 

It is necessary to note that the component ( )X x  is 
not continuous at the points 0x =  and x h=  (at the 
interfaces) and it has finite jumps at these points. The 
component ( )Z x  is continuous but not differentiable at 
the points 0x =  and x h= . 
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