
++

Visiting Professor and Ph.D. Student of Artificial Intelligence;

Assistant Professor of Artificial Intelligence;

*Corresponding author: Email: Seyedomid.azarkasb@email.kntu.ac.ir, azarkasb@ymail.com;

J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023

Journal of Engineering Research and Reports

Volume 25, Issue 3, Page 59-84, 2023; Article no.JERR.100965
ISSN: 2582-2926

Advancing Intrusion Detection in Fog
Computing: Unveiling the Power of

Support Vector Machines for Robust
Protection of Fog Nodes against XSS

and SQL Injection Attacks

Seyed Omid Azarkasb
a++*

 and Seyed Hossein Khasteh
a#

a
K.N. Toosi University of Technology, Tehran, Iran.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the

final manuscript.

Article Information

DOI: 10.9734/JERR/2023/v25i3892

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/100965

Received: 27/03/2023
Accepted: 30/05/2023
Published: 05/06/2023

ABSTRACT

Fog computing, characterized as a cloud infrastructure in close proximity to end devices, faces
substantial security challenges that necessitate robust intrusion detection mechanisms for fog
nodes. The resource-constrained nature of fog nodes renders them particularly susceptible to
attacks, making the development of efficient intrusion detection systems imperative. In this study,
we propose a comprehensive approach to protect fog nodes, taking into account their limited
resources. Leveraging the power of Support Vector Machines (SVMs), a widely adopted machine
learning technique in IoT security, our method overcomes challenges associated with local optima,
overfitting, and high-dimensional data. A thorough literature review underscores the prevalent use

Original Research Article

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

60

of SVMs in IoT security research. Specifically, we focus on addressing two prevalent web attacks:
Cross-Site Scripting (XSS) and SQL injection attacks, based on global statistical data. To evaluate
our approach, we employ the CSE-CIC-IDS2018 dataset and a pseudo-real dataset. Precision,
recall, and accuracy are employed as evaluation metrics, along with the Mean Average Precision
(MAP). Our evaluation results demonstrate an exceptional level of accuracy, achieving an
impressive 98.28% accuracy in terms of average performance when compared to existing methods.
Comparative analysis with state-of-the-art approaches further validates the superior efficacy and
efficiency of our proposed method.

Keywords: Fog computing; internet of things; intrusion detection; support vector machines; XSS and

SQL injection flaw attacks.

1. INTRODUCTION

Large-scale IoT developments create conditions
that cloud computing is not capable of effectively
controlling. Fog computing applications have
grown rapidly in current IoT end devices of their
ability to respond to edge components rapidly.
The advantages of fog computing may include
the reduction of bandwidth consumption as well
as the reduction of network latency. Smart
automated machine systems, smart vending
machines, and smart chip systems are practical
examples of the application of fog computing on
the Internet of Things. The concept of fog
computing is a new perspective that enables the
Internet of Things to run its applications on the
edge of the network [1]. Fog computing is not an
alternative to cloud computing but is an expander
that complements the concept of smart devices
that can work on the edge of the network.
Computing is the gateway between cloud
computing and the Internet of Things. Fog is an
extension of the cloud, so, inevitably, some of the
security challenges of cloud computing will not
continue. While some existing methods in the
field of fog computing can solve many security
and privacy issues in cloud computing, fog
computing brings new security challenges due to
its distinctive features, including resource
constraints. These challenges affect the
adaptation of fog computing to the Internet of
Things.

All fog nodes allow the user to process a portion
of the data without having to send it to the cloud
data center. While data centers are equipped
with many resources such as processors, power,
and memory, devices equipped with these
resources are not abundant. This means that
conventional methods are not suitable for
preventing fog intrusion, as these methods will
delay or consume more energy. Therefore, there
is a need for a robust security system that uses a
small number of resources to protect the entire

layer from attacks [2]. Intrusion detection
methods detect IoT misbehavior or malicious
devices and notify others on the network to take
action. The nature of IoT environments makes it
difficult to detect attacks globally. The location of
the cloud computing services is on the Internet,
and the fog computing services are located at the
edge of the local network. In other words, fog
computing security can be defined, but cloud
computing security cannot be defined [3].
However, focusing on fog layer nodes can bring
security to a simpler level [4]. On the other hand,
the advantages and capabilities of the SVMs
have led researchers to use them to detect
intrusion. These capabilities include designing
the classifier with maximum generalization,
achieving global optimization, automatically
determining the optimal structure and topography
for the classifier, modeling nonlinear
differentiation functions using nonlinear kernels,
and the Hilbert space's inner product as well as
ease of working with high-dimensional data [5].
According to [6] and [7], SVMs are the most
widely used algorithm, technique, and learning
method used for IoT security papers, both for
intrusion detection and authentication. The
neural network, Bayesian, and decision tree
methods are in the next categories, respectively.
Despite the mentioned advantages, determining
the appropriate kernels as well as the right value
of their parameters is one of the open issues in
support vector machines. The main idea of the
SVMs is to choose a single separator, to
maximize the separator margin of the two
categories. Accordingly, different types of
support vector machines are defined [8],
including hard-edge linear support vector
machines, soft-edge linear support vector
machines, and nonlinear support vector
machines. In general, the following advantages
can be mentioned for SVMs:

- There is no local minimal because the
solution is a QP problem,

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

61

- The optimal solution can be found in
polynomial time,

- Few model parameters to select: the
penalty term C, the kernel function, and

parameters (e.g., spread in the case of
RBF kernels),

- The final results are stable and repeatable
(e.g., no random initial weights),

- SVMs solution is sparse; it only involves
the support vectors,

- SVMs represent a general methodology for
many PR problems: classification,
regression, feature extraction, clustering,
novelty detection, etc.

- SVMs rely on elegant and principled
learning methods,

- SVMs provide a method to control
complexity independently of
dimensionality,

- SVMs have been shown (theoretically and
empirically) to have excellent
generalization capabilities.

In the next section, we will see how these
advantages have attracted researchers. The rest
of this manuscript is prearranged as follows: a
brief review of recent research related to our
proposed technique is presented in section 2.
Section 3 depicts fog Security and our
motivation. Section 4 focuses on web attacks
and defined Injection Flaws as the most harmful
type of these. The architecture and data flow
diagram of the proposed system is presented in
section 5. The details of implementation are
given in section 6. Section 7 presents
implementation, system evaluation, and results.
Finally, the conclusions are summed up in
section 8.

2. LITERATURE REVIEW

Support Vector Machines (SVMs) have been one
of the most successful machine learning
techniques for the past decade. The enumerated
advantages of SVMs have long attracted
intrusion detection systems. Recently, many
papers have been published in intrusion
detection addressing SVMs, including:

The author in [8] used an unsupervised One-
Class SVM approach to detect, similar to a
supervised learning approach to reduce false
alarms. They suggested the following to improve
the performance of the system:

- Create an index of normal network
packages to support vector machines
learning without using default knowledge.

- Filter network packets to prevent
incomplete network traffic that violates the
TCP/ IP standard.

- Feature extraction uses the genetic
algorithm to obtain optimal information
from Internet packages.

- Take into account the time relationship of
packages in the pre-processing stage.

Amer et al. [9] introduces robust SVMs to
increase the efficiency of a One-Class vector
machine for detecting unsupervised
abnormalities. Its main idea is to minimize the
role of data outliers in the decision-making
frontier. [10] searches abnormal behaviors by
training OC-SVM with normal behaviors. One-
class classification approaches are essentially
helpful in solving two-class learning problems,
whereby the first class which is mostly well-
sampled is known as the ‘target’ class, and the
other class which is severely under-sampled is
known as the ‘outlier’ class. The goal is to build a
decision surface around the samples in the target
class to distinguish the target objects from the
outliers (all the other possible objects). [11] used
robust SVMs to solve the over-fitting problem in
irregular data, assuming that normal data is
mixed with abnormal data. Their experiments
showed that intrusion detection based on the
word processing model generates a large
number of false-positive alert rates and is difficult
to apply in practice.

Zhang and Shen [12] has also considered
intrusion detection as a word processing
problem, and using the term frequency-inverse
document frequency (tf-idf) changes in the
weighting with robust SVMs and OC-SVMs have
shown changes lead to better results compared
to normal conditions. Nguyen et al. [13] offers a
Nested set SVMs for intrusion detection. In this
method, instead of labeling with criteria such as
geometric mean accuracy, the information of the
farthest and nearest neighbors of each sample is
used. Experimental results show that this method
has performed better than the basic method.
SVMs have always been compared to neural
networks. Chen and Chen [14] has compared the
support vector machines with neural networks
and shown that the support vector machines
work best with tf-idf weighting, while the simple
weighting neural network produces the worst
response. It also shows that the Gaussian kernel
support vector machines provide better results
than the RBF neural networks. Chandrashekhar
and Raghuveer [15] has used a combination of
neural networks and support vector machines

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

62

with RBF kernels to strengthen the intrusion
detection system. The emergence and
pervasiveness of cloud computing in recent
decades and the need for security in it have led
researchers to provide methods to detect
intrusion in these contexts. Yu [16] introduces a
Density-Based Support Vector Machines. The
basic idea is based on the density of each class
in the dataset. Training data is converted to a
binary sequence. According to this sequence, the
educational model of system behavior is
obtained. To run, it uses the Map Reduce
Parallel Computational Framework in Hadoop
provided by Apache to reliably process large-
scale distributed data. Mayuranathan et al. [17]
introducing the optimized SVMs has used a
combination of genetic algorithms and SVMs to
enhance the ability to generalize classification
and detect denial-of-service attacks in cloud
computing. Wang [18] has developed a hybrid
system based on deep learning that uses a
stacked auto-encoder to reduce feature
dimensions and the SVMs classification
algorithm to detect malicious attacks. Mugabo
and Zhang [19] uses the SVMs to classify
network data into normal behavior and attack
behavior, as well as to remove irrelevant and
redundant features. Finally, it introduces an
invasive detection system based on SVMs and
Information Gain (IG). Jaber and Rehman [20]
provides a combination of fuzzy clustering and
SVMs to improve the accuracy of the detection
system in the cloud computing environment. Sakr
et al. [21] uses SVMs to classify network
connections. The nature of the traffic is notified to
the network administrator to disconnect and
block any intruders to the network. Besides,
Binary Particular Swarm Optimization is used to
select the most relevant network features and
Standard Particular Swarm Optimization is used
to adjust the control parameters of the SVMs. Du
et al. [22] provides the SVMs intrusion detection
scheme based on cloud-fog collaboration. This
design uses the Principal Component Analysis
(PCA) method to reduce the dimensions,
eliminate the correlation between the features
and reduce the training time. The cloud server
uses a Particular Swarm Optimization SVMs to
complete the dataset training operation and
achieve optimal classification. The obtained
results are then sent to the fog node and the
attack detection operation is performed on the
fog node.

Hadem et al. [23] recommends a Software-
Defined Networking (SDN) based intrusion
detection system using the SVMs along with

Selective Logging for IP Traceback. Using IP, in
addition to saving a high percentage of memory
consumption, allows the actual source of packets
to be tracked in the event of an attack. Detection
of anomalous traffic and network intrusion is
done during the PACKET_IN event at the
controller and then again by fetching the flow
statistics from the OpenFlow switches at regular
intervals. Selective logging of suspicious
packets/flows during a PACKET_IN event
enables an IP traceback to be performed in the
eventuality of an attack that can be initiated by a
network admin using an HTTP-based web
console. Logging is performed selectively at the
controller and not at the switches, achieving
significant savings in terms of overall memory
resources. Moreover, logging is performed using
the in-memory structure at the controller thereby
enhancing the performance of the logging
operation over the traditional file-based
database. Not all the features captured from the
network packets contribute to detecting or
classifying attacks. Therefore, the objective of
[24] research work is to study the effect of
various feature selection techniques on the
performance of IDS. Feature selection
techniques select relevant features and group
them into subsets. This paper implements Chi-
Square, Information Gain, and Recursive Feature
Elimination (RFE) feature selection techniques
with machine learning classifiers such as SVMs,
Naïve Bayes, Decision Tree Classifier, Random
Forest Classifier, K-Nearest Neighbors, Logistic
Regression, and Artificial Neural Networks.
Authors in [25] have implemented six of the most
popular ML models that are used for IDS,
including Decision Tree, Random Forest,
Support Vector Machines, Naïve Bayes, Artificial
Neural Network, and Deep Neural Network. Their
experiments using the CIC-IDS2017 and the
CSE-CIC-IDS2018 datasets show that at first
SVMs and the second ANN are most resistant to
overfitting and have better results. Besides that,
their experiment results also show that DT
and RF suffer the most from overfitting, although
they perform well on the training dataset.
Table 1 summarizes the related work with the
limitations of the work discussed. More
details of these are going to present at end of
section 7.

Accordingly, in a nutshell, the literature
indicates the very prominent role of the
use of SVMs in IoT security, cloud
computing, and fog computing. This is our
motivation to utilize SVMs to protect fog nodes
from IDS.

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

63

Table 1. The related work with limitations of the work discussed

Description Year of
publication

Reference
number

A robust SVMs to solve the over-fitting problem in irregular data,
assuming that normal data is mixed with abnormal data.

2003 [11]

Using term frequency-inverse document frequency (tf-idf) changes in
the weighting with robust SVMs and OC-SVM.

2005 [12]

An unsupervised One-Class SVM approach to detection, similar to a
supervised learning approach to reduce false alarms, suggested 4
approaches to improve the performance of the system.

2007 [8]

An SVM based on entropy and tf-idf. 2008 [14]
A robust SVMs to increase the efficiency of a One-Class vector
machine for detecting unsupervised abnormalities.

2013 [9]

Combination of SVMs and neural networks with RBF kernels in cloud
computing.

2013 [15]

Density-based binary SVM in cloud computing. 2015 [16]
A Nested One-Class SVM for intrusion detection. 2018 [13]
Optimized SVMs with the combination of genetic algorithm and SVMs. 2019 [17]
Applied Binary Particular Swarm Optimization (PSO) to select the
most relevant network features and Standard Particular Swarm
Optimization to adjust the control parameters of the SVMs in cloud
computing.

2019 [21]

Training OC-SVM with normal behaviors for searching for abnormal
behaviors in cloud computing.

2020 [10]

Hybrid system with the combination of deep learning and SVMs in
cloud computing.

2020 [18]

Combination of SVMs with information gain in cloud computing. 2020 [19]
Combination of SVMs with fuzzy clustering (FCM) in cloud computing. 2020 [20]
A Software-Defined Networking (SDN) with the SVMs and Selective
Logging for IP Traceback.

2021 [23]

Comparison of machine learning methods such as SVMs, Naïve
Bayes, Decision Tree Classifier, Random Forest Classifier, K-Nearest
Neighbors, Logistic Regression, and Artificial Neural Networks.

2021 [24]

Combination of SVMs, principal component analysis (PCA), and
particle swarm optimization in fog computing.

2022 [22]

Comparison of machine learning methods such as Decision Tree,
Random Forest, Support Vector Machines, Naïve Bayes, Artificial
Neural Networks, and Deep Neural Network

2022 [25]

3. FOG SECURITY AND MOTIVATION

Fog computing is a decentralized computing
architecture whereby data is processed and
stored between the source of origin and
cloud infrastructure. This results in the
minimization of data transmission overheads,
and subsequently, improves the performance of
computing in cloud platforms by reducing the
requirement to process and store large volumes
of superfluous data [26].In addition to the listed
benefits, this issue also brings risks. Fog
security, if compromised, directly affects the
security and trust of all applications and users.
The sensitivity of fog nodes is often higher than
that of cloud servers such as IoT devices due to
their limited resources [27]. Attack levels are also

wider for fog nodes because they are
prone to inaccurate information and malware,
service manipulation, and information leakage.
Attacking fog nodes can be more dangerous
than attacking IoT devices because they
usually have private information and privacy
concerns, and trust in relationships with
more nodes and remote items. The nature
of the fog pattern naturally increases the
threats of rogue and unreliable structures [28],
because they have less computing power and
are closer to the attacker than the cloud [22].
This is the motivation to protect fog nodes from
IDS.

There is a very subtle difference between fog
computing and edge computing, which is worth

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

64

noting. Fog computing is different from edge
computing in its ability for Fog nodes to
interconnect, while edge computing operates
with separate edge nodes [29]. Fogging is a
smart computing system in which fog nodes can
independently respond to computing and
processing requests of end devices and can
connect for collaboration. Management and
Collaborative Procedures are applied to fog
nodes for management and control practices.
Cooperation between fog nodes can be done
through telecommunications or local
communication between them [30]. For example,
Fig. 1 shows the fog grid architecture, which
consists of fog nodes and intrusion detection
nodes. The symmetry and proximity of intrusion
detection nodes to fog nodes ensure that the
deployment of detection nodes reduces latency.
Each detector node, located one step away from
the other nodes, observes all the nodes inside a
circle with a radius of one step from it in a Wheel
Spoke Fashion. Whenever it finds a
compromised node or a threatened node, it
simply notifies the nearest node to disconnect
from it. Fog nodes here can be a single device or
a platform/networking layer that sits in between a
cloud and a collection of IoT devices. In addition,
packets move from origin to destination by
moving in several steps along the Y-axis (i.e.
only moving up and down). The packets move
along the Y-axis until they reach their destination.

The packets then move along the X-axis, i.e.
backward or forwards, until they reach their exact
destination [31].

4. WEB ATTACKS

Web attacks exploit vulnerabilities on the Web to
circumvent the security policies of Web
applications. Web attacks use the HyperText
Transfer Protocol (HTTP) or HyperText Transfer
Protocol Secure (HTTPS) protocol. The HTTP
protocol uses port 80 and the HTTPS protocol
uses port 443. Web attacks typically use these
two ports to circumvent Web policies [32]. All a
web hacker needs are a web browser and an
internet connection. The latest official report on
the frequency of web attacks is related to the
OWASP site. According to the report, the ten
most web vulnerabilities in 2017 are as follows
[33].

According to Fig. 2, Injection Flaws are the most
harmful type of Web attack and are similar to fog
computing. There are a lot of research papers
that proposed features for detecting SQL
injection and XSS attacks. Reference number
[34] is one of these researches. Accordingly,
provided professional study, the current paper
addresses two types of Injection Flaws as
follows. Another attack is going to be reviewed
in future works.

Fig. 1. Security model architecture in fog computing and how nodes are located and
cooperated [2] and [31]

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

65

Fig. 2. The latest report on the most vulnerabilities of the web in 2017 [34]

4.1 SQL Injection Flaws

The SQL Injection Flaws include the main type of
injections. These are only malicious queries that
change a normal SQL query into a malicious one
and consequently allow anomalous database
access and processing. SQL Injection Flaws are
the method by which an intruder executes an
application in the database layer. Injection occurs
when user-provided data is sent to an interpreter
as part of a command or query. The attackers
deceive the interpreter and force them to carry
out unplanned orders. Injection Flaws allow
attackers to create, read, update, or delete any
arbitrary data available in the application. In the
worst case, these flaws allow attackers to exploit
the application and the systems under it; they
even pass through deeply nested firewalls. All
web application frameworks that use interpreters
or invoke other processes are vulnerable to
injection flaws [35]. Different types of SQL
injection vulnerabilities include [36]:

- Improperly refine escape characters:

This type of SQL injection vulnerability
occurs when the user input of escape
characters is not refined and sent in a SQL
command. This causes major
manipulations of the instructions executed
on the database by the end-users of the
application.

- Print mismanagement: This type of SQL
injection occurs when a user-generated
field is not strongly written or tested for
printing restrictions. This happens when a

numeric field is used in the SQL statement,
but the programmer does not check if the
data provided by the user is numeric.

- Blind SQL Injection: Blind SQL injection
is used when a web application is more
vulnerable to SQL injection, but the
injection results are not visible to the
attacker. The data representing the page
may not be vulnerable, but showing the
called legal results of the logical command
injected into the SQL commands of the
page. This type of attack can be very time-
consuming, as a new command must be
provided per a recovered bit. Many tools
can automatically detect these attacks
when the location of the vulnerability
and target information is known. The types
of blind SQL injection attacks are as
follows:

1. Conditional responses: A type of blind
SQL injection that forces the database to
execute a logical command on the page
of a typical application.

2. Conditional errors: This type of blind
SQL injection causes a SQL error by
forcing the database to execute a single
command. If the WHERE command is
correct, it will cause an error.

3. Time Delays: Time delays are a type of
SQL blind injection that causes the SQL
engine to execute a long continuous
query or a time delay command
depending on the logic injected. The
attacker can then measure the length of

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

66

time the page has been loaded to
determine if the injected command is
correct.

4.2 XSS Attacks

XSS attacks are a subset of HTML injection
flaws, found in web applications that allow users
to inject code into web pages viewed by other
users. Examples of such code are HTML,
XHTML, and client-side scripts. An XSS attack
can be used by attackers to bypass access
control. An attacker can intelligently find ways to
inject malicious scripts into web pages and gain
high access to content on sensitive pages and
various other objects. XSS allows hackers to
execute scripts in the victim's browser that can
steal user sessions, corrupt websites, enter
malicious programs, and infiltrate the user's
browser by executing scripts. This is very
dangerous in systems such as content
management systems, blogs, and forums where
a large number of users view data from other
users [37]. The well-known types of this flaw
include [38]:

- DOM-based XSS attack: DOM Based

XSS (or as it is called in some texts, “type-
0 XSS”), is based on the standard object
model for displaying HTML or XML. In this
type of vulnerability, there is a problem
with the client-side page script. For
example, if a part of JavaScript accesses
the URL parameter of the request and
uses this information to write some HTML
code on its page, and this information is
not encrypted with the HTML entities, then
there is an XSS hole where the written
information can be interpreted again by
browsers. In practice, this type of
vulnerability is similar to the non-persistent
one, except in a very important case. In
older scripting models, a script was placed
on objects in the local area on the client
side, such as the local hard drive, and by
using an XSS hole of this type on the
local page, it could perform remote
vulnerabilities. For example, if an attacker
hosts a malicious website, which includes
a link to a vulnerable page on the client's
local system, a script could be injected and
executed on the system with the user's
browser access level. Thus, not only can
the information normally obtained by XSS
be accessed, but also all customer-side
information can be accessed.

- Non-Persistent attacks: A non-persistent
attack or a type of XSS, also known as a
reflected vulnerability, is the most common
type of XSS attack. It is easier to
implement the reflected type than any
other type. These holes are observed
when the data provided by the client web is
immediately used by the server-side
scripts to generate that user's results page.
If invalid data provided by the user is
placed on the result page without HTML
encryption, it allows the client-side code to
be injected into the dynamic page. A
traditional example of this type of search
engine attack is this: If someone searches
for a string that contains some specific
HTML characters, the search string is
usually displayed on the result page to
indicate what was searched, or at least the
search terms are placed in the text box for
easier editing. An XSS hole is created if
not all search term events are HTML-
encrypted entities. At first glance, this does
not seem like a big deal, as users can only
inject code into their pages. This is when
the attacker can persuade the user to
follow a malicious URL that injects code
into the result page, thereby giving the
attacker full access to the page content.

- Persistent attacks: Persistent or type 2,
or persistent vulnerability is known as a
Stored XSS (or double-vulnerability) and
allows the strongest XSS attacks. XSS
Type 2 Vulnerability occurs when user-
generated data for a web application is first
stored permanently on a server such as a
database or a file system and then
displayed to users on a web page without
encryption using HTML entities. A
traditional example of this is an online
messaging attack where users are allowed
to send HTML messages for other users to
view. The persistent XSS is more
important than the other types because, in
this type, the malicious script of the
attacker is transmitted more than once.
Such attacks can potentially affect a large
number of users and a virus or XSS worm
can infect the application. Injection
methods can be very different, and an
attacker may not have the prerequisites to
use a web application to execute such an
attack alone. Any data received by the web
application, such as e-mail or system logs
that can be controlled by an attacker,
must be encrypted before it can be re-
displayed on the dynamic page, otherwise,

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

67

an XSS vulnerability of this type could
occur.

5. ARCHITECTURE AND DATA FLOW
DIAGRAM OF THE PROPOSED
SYSTEM

Fig. 3 depicts the proposed system
architecture consisting of six components: data
provider, preprocessor, analyst, manager and
controller, responder, and intrusion detection
system.

The data provider component is responsible for
collecting the data required by the system and
sending them to the preprocessor unit. This
component is associated with the event file,

receives the required system data from this file,
and delivers it to the preprocessor component.
Having received data from the data provider
component, the preprocessor component
extracts the required properties. Special features
are extracted for each type of attack. These
properties are numeric, so the database data is
converted to records with numeric fields. The
analyst component, which is the most important
component of the system, has two functions:
training and detection. In the training phase, the
analyst receives the generated records from the
preprocessor component and sends them to the
SVMs for training. In the detection phase, when
new data is resubmitted to the analyst, it
determines whether the data was previously

Fig. 3. Architecture and data flow diagram of the proposed system

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

68

normal or abnormal by using trained SVMs. The
responder generates the appropriate response
based on the output received from the analyzer.
The response is done passively, that is, if an
attack is detected, it only notifies the system
security manager of the attack by generating
various types of warnings, and leaves other
actions, such as tracking down the attacker or
taking action against it, to the system security
manager. It also stores information about the
attack in a file called the Attack Log. The system
security administrator to track an attacker can
use this file. The System Assessor component
evaluates the performance of the intrusion
detection system based on the parameters
defined by the system security manager and by
accessing the log files and therefore reports to
the system security manager on the performance
of the system. The system security manager
gives the evaluation command to this component
at different time intervals. The interface
component of the system security manager is
under the control of the system security manager
and provides a communication interface between
the system security manager and other units.
Through this, the system security manager can
send control messages to each component to
start or end the component, for example, the
system evaluator can order system performance.
It can also change the way each component
works, for example, it can determine the type of
features that are extracted in the preprocessor,
or it can instruct the data provider to order
specific data from the database. The system
security manager can also change the type of
SVMs used in the analyzer unit by changing its
kernel, or react appropriately to the attack by
receiving a warning from the responding unit. In
general, two activities including the possibility of
managing all components, and setting work
policies per unit may be taken as the main tasks
of the system security manager.

6. IMPLEMENTATION DETAILS

The features and support vectors extracted in the
preprocessing stage are obtained from the
values of the parameters sent to each node. The
input dataset having a large number of features
is changed. Specific properties are extracted per
SQL and XSS attacks, as follows.

6.1 Extracting Features

The average length of full HTTP request
parameter values: The average length of full
HTTP request parameter values is one of the

main extracted features. The request length
module is computed based on the certain length
of the URL to analyze each record as normal or
attacked. Regular pattern analysis is emphasized
on the content of URLs and other features to
analyze certain attack patterns. In XSS and SQL
injection attacks, due to the frequent use of
special characters, the length of the request
parameter values increases, while in normal
requests, the length of the request parameter
values does not exceed a certain value.
Therefore, the mean length of the request
parameter values can be taken as an important
feature to distinguish between normal and
intrusive requests. This feature is calculated
equally for XSS and SQL injection attacks.

Mean character distribution of full HTTP
request parameters: The mean character
distribution characteristic of the request
parameters is calculated equally for XSS and
SQL injection attacks. To characterize the
average character distribution of the request
parameters from 33 to 96 characters and from
123 to 126 of the ASCI table, i.e a total of 68
characters have been used. The selected
character sets are printable characters that are
often used in written text. Characters 97 to 122 of
the letters a to z are lowercase, and because
these letters are uppercase from the number 65
to 90, in the said set, they have been removed to
reduce the dimension. With this condition, if the
characters are viewed in small, their large
equivalent is considered. For each character, the
percentage of presence of that character is
calculated relative to the length of the parameter
value. Then for each character, the average of
this percentage of attendance in all the
parameters of a request is calculated and added
to the support vector as a field.

Mean Distribution Equivalent to the Basis of
Hexadecimal Specific Characters: Sometimes
intruders use the equivalent of the Basis of
Hexadecimal Specific Characters instead. This
usually happens with characters that are used to
intrude. Although using the Basis of Hexadecimal
Specific Characters alone does not mean
intrusion, it usually indicates some kind of
anomaly. This anomaly means that because a
normal user typically uses normal characters,
using the Basis of Hexadecimal Specific
Characters can indicate some kind of abnormal
behavior. To detect such an anomaly, the
equivalent of the Basis of Hexadecimal Specific
Characters, which are mainly used in these two
attacks, is also considered. The use of the Basis
of Hexadecimal Specific Characters is not

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

69

common for other characters. Table 2 characters
are used by SQL injection attacks for intrusion,
the equivalent of which is written as the Basis of
Hexadecimal Specific Characters.

Similarly, in XSS attacks, the characters in
Table 3 are widely used, with the equivalent of
the Basis of Hexadecimal Specific Characters
written on them.

The two characters <and> that are used both as
the character itself and as the Basis of
Hexadecimal Specific Characters are used as
the <script> keyword along with the script
keyword, and this is the reason why they are
used so much as both the character and the
Basis of Hexadecimal Specific Characters. The
base rate equivalent to the Basis of Hexadecimal
Specific Characters of the above tables is first
calculated for each parameter value and then
averaged from these values.

The presence of keywords in the request: The
main problem in the SQL injection flaws is the
use of SQL queries via the web to receive or
modify sensitive and confidential information
stored in the database. These queries can be
both in the URL and in the body of a request.
Also for XSS attacks, a malicious script can be
placed in the URL or body of the request, while a
normal request does not contain any scripts. To
prevent these two attacks, the user should not be
allowed to use SQL and script commands in the
URL or the body. The point to be noted here is
that this feature is considered in the whole
request and is not calculated separately in each
parameter value. This is because such words are
usually not seen in one or more of the parameter
values, and in practice, averaging them reduces
the likelihood of a keyword is present. Therefore,

the presence of keywords for the completely
requested request is calculated. Thus, the most
important keywords used in the SQL injection
flaws are as follows.

Keywords_SQLInjection= {Select Insert
Update Delete Execute Where AND OR
Having}

One bit is taken per keyword so that in the
presence of that keyword, the number 1, and in
the absence of it, the number 0 is given to the bit
value. Putting these bits together in base 2 gives
a number. This number is added as the feature
value of the presence of keywords to the
support vector. For example, if the words ‘select’,
‘from’, ‘where’, and ‘having’ are used in a SQL
injection flaw, the field value is that of in
Table 4.

The obtained value is [1000011001] 2, which is
converted to the decimal value of 537. This
number is added to the support vector as a
keyword presence feature. Obviously, by shifting
the order of the keywords, different numbers are
obtained. The order of these words is shown in
Table 3. The reason for this choice is the
approximate order of use of these words in SQL
queries. As in a SQL query, first words like
select, update, etc. are inserted, then words like
where and finally words like having are entered.
This procedure is followed to obtain a logical
binary value by assigning bits to each word.

The following set of keywords is used in XSS
attacks:

Keywords_XSS={script window document
command location write exe onload onerror}

Table 2. The base equivalent of the basis of hexadecimal specific characters for a SQL

injection attack

') (. ! ; % = -- Character

27 29 28 2e 21 3b 25 3D 2D2D Basis of
Hexadecimal

Table 3. The base equivalent of the basis of hexadecimal specific characters for XSS attack

) (> < & % Character

29 28 3e 3c 26 25 Basis of Hexadecimal

Table 4. An example of assigning bits to the presence of keywords in a request

Having OR AND Where From Execute Delete Update Insert Select

1 0 0 1 1 0 0 0 0 1

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

70

XSS attacks typically use JavaScript. These are
the words used for coding in JavaScript. The
order of these keywords is based on the most
likely occurrence of that keyword in XSS attacks
and on the approximate order of coding in
JavaScript. Similar to the method described for
SQL injection flaws, one bit is considered for
each word in this set. If that word appears, the bit
value is 1; otherwise, the bit value is 0. Then this
binary value is converted to a decimal number.
The decimal number obtained from this
conversion is added to the support vector as the
value of the presence of keywords.

Character Binary Arrangement: The Character
Arrangement property means that the order of
the characters can be added to the support
vector as a numeric value. This property is
calculated for the values of the parameters of a
request so that the binary combinations of the
characters in the value of a parameter are
considered. For example, if you consider the
guess value of the password parameter, the
combinations of "gu, ue, es, ss, sm, and me"
must be considered, which means that, for
example, in the value of a parameter, the
character of g is seen before u. To obtain such
an arrangement, each binary combination of
characters in the value of a bit parameter or flag
can be assigned. If a specific character
sequence appears, the bit value is 1 and,
otherwise 0. As mentioned earlier, since the
parameter value of 68 characters is used in the
character distribution, for binary sequences,
since the duplication of two characters in a row is
eliminated, 68 x 68, i.e. 4556 modes and bits, is
possible. To implement 4556 modes, considering
that each integer has 32 bits, it is necessary to
add 143 digits to support vectors. Adding 143
digits to the support vectors creates a lot of
computational overhead and is practically

impossible. To solve this problem, the number of
occurrences of each character order in all
requests is calculated, and if that order never
appears, it is deleted. Then, for the sequences
that have appeared at least once, the sequences
that have less than the average number of
occurrences of all the sequences are also
removed. Thus, the number of cases is reduced
to approximately one-third, i.e. 1600 cases. To
implement these 1600 modes, considering that
each integer requires 32 bits, 50 32-bit
digits have been used. Therefore, 50 32-bit
digits are added to the support vector so that
each bit represents a dual sequence of
characters.

Parameter sequencing: Parameter sequencing
is usually maintained in legal invocations of
server-side applications, even when some
parameters are deleted, while this sequence is
not necessarily present in XSS and SQL injection
flaws. The parameter sequence property is
added to the support vector for the same reason.
Thus, two integers of 32 bits, i.e. a total of 64
bits, have been used. For each binary order that
appears from the parameter values, one bit is
considered; if it appears, the binary order is bit
value 1; otherwise, the bit value is 0. The total
number of modes is always one of the total
number of parameters and the selection of 64
bits is done for the same purpose. Therefore, for
each request, two numbers are added to the
support vector, in which the bit indicates the
appearance or non-appearance of a sequence of
the request parameters.

6.2 Extract the Support Vector

Given the above, Tables 5 and 6 depict the
extracted support vector for XSS and SQL
injection flaws.

Table 5. The extracted support vector for SQL injection flaws

Parameter
sequencing

Character
binary
arrangement

The
presence
of
keywords
in the
request

Mean
distribution
equivalent
to the basis
of
hexadecimal
specific
characters

Mean
character
distribution
of request
parameters

Average
Length of
full HTTP
request
parameter
values

Features
extracted

2 50 1 10 68 1 Number
of fields

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

71

Table 6. The extracted support vector for XSS attacks

Parameter
sequencing

Character
binary
arrangement

The
presence
of
keywords
in the
request

Mean
distribution
equivalent
to the basis
of
hexadecimal
specific
characters

Mean
character
distributio
n of
request
parameter
s

Average
length of
full HTTP
request
parameter
values

Features
extracted

2 50 1 6 68 1 Number
of fields

Table 7. File distribution of the CSE-CIC-IDS2018 dataset

Number of samples
after cleaning

Number of samples
before cleaning

Sample type Name of file

663,808
123,688
163,124

1,735,479
193,360
187,589

Benign
FTP-BruteForce
SSH-Bruteforce

02-14-2018.csv

988,050
41,499
10,497
684,287

2,583,187
41,508
10,990
686,012

Benign
DoS-GoldenEye
DoS-Slowloris
DDOS-HOIC

02-15-2018.csv

446,772
71,889
456,913
1730
576,191

1,168,054
139,890
461,912
1730
576,191

Benign
DoS-SlowHTTPTest
DoS-Hulk
DDOS-LOIC-UDP
DDOS-LOIC-HTTP

02-16-2018.csv

1,042,603
246
79

2,725,812
249
79

Benign
BruteForce-Web
BruteForce-XSS

02-22-2018.csv

1,042,301
347
151
72

2,725,523
362
151
87

Benign
BruteForce-Web
BruteForce-XSS
SQL-Injection

02-23-2018.csv

235,778
92,403

616,425
161,934

Benign
Infiltration

03-01-2018.csv

758,334
285,016

1,982,611
286,191

Benign
Bot

03-02-2018.csv

5,177,655
2,508,132

14,097,779
2,748,235

Benign
Attack

Binay Class

7,685,787 16,846,014 - Total

According to the above tables, the support vector
for XSS and SQL injection flaws are 132 and 128
fields, respectively.

6.3 Implementation Technical
Considerations

The use of datasets that are comprehensive,
accurate, and traffic-specific is a key issue in
training and testing an intrusion detection
system. The best option is to use data collected
from web servers that are to be protected.

However, these data are usually not available to
other researchers for security reasons to
compare the results of different algorithms. This
has led us to use both open but less real data as
off-line audit data, and closed but pseudo-real
datasets as online audit data. The recent well-
known open dataset used for intrusion detection
is the Realistic Cyber Defense (CSE-CIC-
IDS2018) dataset. Since the publication of this
dataset, a relatively large number of papers have
been published. This dataset is the result of a
collaborative project between the

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

72

Communications Security Establishment (CSE)
and The Canadian Institute for Cyber Security
(CIC) that use the notion of profiles to generate
cybersecurity datasets systematically. It includes
a detailed description of intrusions along with
abstract distribution models for applications,
protocols, or lower-level network entities. The
dataset includes several different attack
scenarios, namely Brute-force, Heartbleed,
Botnet, DoS, DDoS, XSS, SQL Injection,
Portscan, Web attacks, and infiltration of the
network from inside. The data is organized in
seven CSV files, where each row is a sample,
labeled as benign or with the name of the
corresponding attack. The attacking
infrastructure includes 50 machines and the
victim organization has 5 departments including
420 PCs and 30 servers. This dataset includes
the network traffic and logs files of each machine
from the victim side [39], along with 80 network
traffic features extracted from captured traffic
using CICFlowMeter-V3 [40]. The data is
organized in seven CSV files, where each row is
a sample, labeled as benign or with the name of
the corresponding attack [41]. We run analytics
queries using Spark SQL API [42] and cleaned
the data using the Python script provided by [43].
That is, we dropped the samples with
missing feature values and removed the columns
with no values. Table 7 shows the file distribution
of the data before and after the cleaning
process.

Leevy et al. [44] presents a comprehensive
survey and analysis of other machine learning
intrusion detection models based on
CSE‑CIC‑IDS2018 Big Data. It should be noted

that recently other datasets like CIRA-CIC-
DoHBrw-2020 and CIC-Bell-DNS2021 have been
produced till now [45], but since they did not
contain injection flaw attacks, we could not use
them in our experiments.

To apply real data, moreover the use of XSS and
SQL Injection attacks in the CSE-CIC-IDS2018
dataset as offline data, we tried to use the tools
and methods that are described below, as online
data, to create a set of data that has the three
principles of comprehensiveness, accuracy, and
traffic, so WebInspecct software has been used.
All of them correspond to all types discussed in
Section 4, and the same types of requests are
generated for both attack types. For this purpose,
we apply WebInspect which is the most accurate
and comprehensive way to diagnose
vulnerabilities in applications and web servers.

Using WebInspect, administrators and users can
easily and quickly scan their applications and
web servers for vulnerabilities.

This software determines the vulnerability by
multiple attacks on the designated target and
reports it if the vulnerability is detected. The main
features of this software are as follows: The
ability to perform scanning and auditing
processing separately and simultaneously
organized reporting, manually attack control,
provide system status summary, ability to change
and correct navigation policies, traffic view
screen, and the ability to select different Web
attacks.

To provide attack data, we target an application
with special properties as the target of the attack
and attack it using the powerful WebInspect
attack tool. Files registered on the server
represent records that can be reliably labeled.
We first turn our system into a web server using
XAMMP. XAMMP is a software package that
installs MySQL on a computer, Apache server,
and database. Then we use a web application
called Evilboard as the target to attack. In
Evilboard, users can send messages and talk to
each other. In summary, we choose it as the
target of the attack for the following:

- The ability of users to connect as a

community, and as we said before, such
programs are good places for XSS and
SQL injection flaws.

- A large number of connections of this
program, which as a result provides us
with more scalability by WebInspect.

7. IMPLEMENTATION, SYSTEM
EVALUATION, AND RESULTS
ANALYSIS

7.1 Implementation

As we mentioned, the proposed system
architecture applied both online audit data and
offline audit data. To implement the proposed
system, we use the CSE-CIC-IDS2018 dataset
for offline audit and install Evilboard on the node
that has become the webserver for the online
dataset. In the following, we introduce Evilboard
in WebInspect as the attack target. To create a
suitable online dataset, we first scan all Evilboard
connections using the WebInspect scan mode,
then delete the log file and use the audit mode to

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

73

send an attack to Evilboard, specifying the type
of attack. In this case, we can be sure that the
obtained log file only contains records with the
attack tag. This is done separately for XSS and
SQL injection flaws. A normal network is used to
provide online normal data, which is installed on
the server of the Evilboard node. The users of
this local network are selected as connected
clients through this program. The traffic
generated on this network was collected for one
week and used as normal data. Since this
network was not connected to any external
network such as the Internet, etc., we can be
sure that there is no attack data in it. Table 8
shows the amount of data attacks and normal
datasets obtained. Of both online audit data and
offline audit data, ten percent are used as test
data, and the rest are used as training data.

After preparing the online dataset, the
preprocessing step is performed using Matlab
software on both normal data and attack data on
both online and offline datasets, and the features
required to detect XSS and SQL injection flaws
are extracted so that at each request a feature
vector is specified. These support vectors are
given to the analyzer component. In the analyzer
component, the data obtained from the previous
step is given to SVMLight for training. SVMLight
is an implementation of the C-language SVM.
This software package can be run on UNIX as
well as other environments, including Windows.
To use this software package, you need to create
executable files, format the training, and test data
in a way that can be used by the software. Using
the LightDataAgent program, you can easily
convert training data to the required SVMLight
format. One of the most important features of
SVMLight is the ability to select different kernels
for the SVMs.

7.2 Evaluation

As we say in the introduction, determining the
appropriate kernels and the right value of their
parameters is one of the open issues in support
vector machines. Thus, in this section, the
experiments are done in two stages. The first
step is to find the appropriate kernel function and

the second step is to determine the right value of
parameters. In the first step, accuracy, precision,
and recall defined by the Confusion Matrix were
used to evaluate the proposed system. Using
both offline and online datasets are explained
before, the results obtained for the different
kernels of the SVMs are shown separately in
Tables 9 and 10.

According to Tables 8 and 9, the best results for
accuracy, precision, and recall for both XSS and
SQL injection flaws are for the RBF kernel. The
reason was hindered by the RBF's ability to
classify non-linear behavior as well as the non-
linear label. Both of these were solved by the
introduction of the RBF kernel and the
incorporation of soft margins. The use of radial
SVMs results in obtaining better results from the
classification process when compared to normal
linear SVMs. In linear SVMs, the classification is
made by the use of linear hyperplanes. Trying to
attain a hyper-plane reduces the distance from
the members of each class to the voluntary
hyper-plane. But the use of linear SVMs has the
disadvantages of getting a less accurate result,
getting overfitting results, and being robust to
noise. These shortcomings are effectively
suppressed by the use of the radial SVMs where
non-linear kernel functions are used and the
resulting margin hyper-plane fits in a transformed
feature space. The corresponding feature space
is a Hilbert space of infinite dimensions when the
kernel used is a Gaussian radial basis function.
After the RBF kernel, the best results are for
Gaussian. The Gaussian kernel in particular
guarantees the existence of such a decision
boundary. By observing that all the kernel entries
are non-negative, it can be concluded that all the
data in the kernel space lies in the same
quadrant. This makes the Gaussian kernel well-
suited to deal with any arbitrary dataset. The
overfitting of kernel functions also appeared in
two other of the four experimented functions.
However, our experiment with RBF and
Gaussian kernel showed not only similar
detection performance as the soft margin SVMs,
but also showed consistently higher accuracy,
precision, and recall rates than that of the others.

Table 8. Produced data

The amount of XSS attack data The amount of SQL injection flaws in data Normal data

650894 639428 756347

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

74

Table 9. Results of SQL injection flaws

Precision Recall Accuracy Kernel Function

98.31 93.95 98.37 Linear
K(x,y)=ax+by

99.00 96.82 98.92 Polynomial
k(x,y)=(x*y+1)

d

99.78 99.08 99.72 RadialBasisFuncion
K(x,y)=exp(-1/2σ

2
||x-y||

2
)

99.40 97.99 99.26 Gaussian
k(x,y)=exp(-(x-y)

2
/δ

2
)

Table 10. Results of XSS attacks

Precision Recall Accuracy Kernel Function

98.08 93.70 98.00 Linear
K(x,y)=ax+by

99.02 96.51 98.81 Polynomial
k(x,y)=(x*y+1)

d

99.21 97.75 99.12 RadialBasisFuncion
K(x,y)=exp(-1/2σ

2
||x-y||

2
)

99.10 96.80 99.02 Gaussian
k(x,y)=exp(-(x-y)

2
/δ

2
)

Fig. 4. Comparison of precision criteria obtained for XSS and SQL injection flaws

Table 11. Results obtained with different gamma parameter values for SQL injection flaws

Precision Recall Accuracy Value of The Gamma Parameter in The RBF Kernel

90.87 91.96 91.58 0.0001
92.46 93.71 92.66 0.001
94.68 95.80 93.72 0.01
96.89 96.77 96.68 0.1
96.96 96.96 96.86 0.2
97.37 97.91 96.94 0.3
98.79 98.56 97.49 0.4
99.78 99.08 99.72 0.5
99.65 98.81 99.01 0.6
99.47 98.35 98.50 0.7

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

75

Fig. 5. Comparison of recall criteria obtained for XSS and SQL injection flaws

Fig. 6. Comparison of accuracy criteria obtained for XSS and SQL injection flaws

In addition, a comparison of these two tables
shows that the results obtained for the SQL
injection flaws have better values than the XSS
attack. In general, because of their nature, SQL
injection flaws have more predictable behavior
than XSS attacks. SQL injection flaws do not
waste system resources as other attacks do. Vs.
XSS attacks occur when an attacker uses a web
application to send or execute malicious code on
a user’s computer. Therefore, due to the limited
resources in fog computing, the detection of SQL
injection flaws is more accurate. The details of
Tables 8 and 9 are shown in the following
figures, for a closer look.

Of course, it should be noted that the results
were achieved in 2 for the gamma parameter and
0.5 for the bandwidth parameter. In the second

step of our experiments, we performed to obtain
the appropriate value of the parameters. For
more details, see Tables 11 to 14. Experiments
with different gamma parameter values have also
been performed for the RBF kernel. The obtained
results are shown in Tables 11 and 12.

A comparison of Tables 11 and 12 shows that
the best results are related to the value of 0.5 for
the gamma parameter for both SQL injection
flaws and XSS attacks. The result is improved by
increasing the amount of gamma until 0.5 and
decreasing after that.

For the Gaussian kernel, experiments with
different values of the bandwidth parameter in
the Gaussian kernel have been performed as
shown in Tables 13 and 14.

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

76

Table 12. Results obtained with different gamma parameter values for XSS attacks

Precision Recall Accuracy Value of the gamma parameter in the RBF kernel

93.97 91.56 92.37 0.0001
94.76 93.68 94.46 0.001
94.91 94.85 95.72 0.01
96.96 95.37 96.48 0.1
97.37 95.71 96.97 0.2
97.99 95.98 97.52 0.3
98.27 96.46 98.71 0.4
99.21 97.75 99.12 0.5
98.80 97.51 98.94 0.6
98.67 97.20 98.73 0.7

Table 13. Results with different bandwidth parameter values for SQL injection flaws

Precision Recall Accuracy Values of The Bandwidth Parameter in The Gaussian Kernel

87.71 89.43 85.40 0.0001
89.96 90.67 89.56 0.001
90.95 92.48 90.45 0.01

92.87 93.71 91.67 0.1
92.95 93.86 91.78 0.5
92.98 93.93 91.99 1
92.96 93.94 91.97 1.3
93.37 94.26 91.37 1.5
93.56 94.51 92.56 1.7
99.40 97.99 99.26 2

99.15 97.85 99.01 2.3

98.82 97.60 98.41 2.5

A comparison of Tables 13 and 14 shows that
the best results are related to the value of 2 for
the bandwidth parameter for both SQL injection
flaws and XSS attacks. The result is improved by
increasing the amount of gamma until 2 and
decreasing after that. Besides, the amount of
time required to perform the experiments was
almost the same and no significant difference
was observed.

Then we addressed different types of SVMs
discussed earlier to better evaluate the proposed
method. Proper judgment requires that all
methods use the same dataset and be
used to detect the same attack categories.
In this regard, we went through a difficult
process, the details of which are summarized in
the following. It should be noted that our
proposed method has also been performed with
the RBF kernel.

All methods were implemented based on the
algorithm presented in their references and
tested with the same dataset that contained a
combination of CSE-CIC-IDS2018 and an online
dataset. For this purpose, we tried to access

most of the codes of these references. Some of
them through contact with the original authors,
and some of them through the code that was
made available. Virtualization was also used to
perform experiments in cloud computing and fog
computing environment. With this approach, we
tried to observe the three principles of
comprehensiveness, accuracy, and having the
necessary traffic. In addition, a new dataset
obtained was used to compare the 11 algorithms
used in our experiment. First of all, it should be
noted that all the methods discussed have
performed their experiments on their dataset, but
since we have implemented these methods on
our dataset, it is very logical that our detection
rate is slightly different from the detection rate
reported by the respected authors of these
articles. The mean accuracy of the proposed
method in comparison with the mean accuracy of
11 other methods is presented in Fig. 7, which
is:

1. A support vector machine based on
entropy and tf-idf in 2008 [14],

2. Combination of support vector machines
and neural networks in 2013 [15],

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

77

3. Robust support vector machines in 2013
[9],

4. Combination of support vector
machines and binary particle swarm
optimization and standard particle swarm
optimization in cloud computing in 2019
[21],

5. Density-based binary support vector
machines in cloud computing 2015
[16],

6. Combination of support vector machines
with fuzzy clustering in cloud computing in
2020 [20],

7. One-Class support vector machine in cloud
computing in 2020 [10],

8. Combination of support vector machines
with information gain in cloud computing in
2020 [19],

9. Combination of support vector machines
with deep learning in cloud computing in
2020 [18],

10. Combination of support vector machines,
principal component analysis, and particle
swarm optimization in fog computing in
2022 [22],

11. Combination of Software Defined
Networking (SDN) with the SVMs and
Selective Logging for IP Traceback in 2021
[23],

12. Proposed method.

Fig. 7. The Chart of mean accuracy obtained from the proposed method in comparison with
the mean accuracy obtained from other methods based on the types of support vector

machines

Table 14. Results with different bandwidth parameter values for XSS attacks

Precision Recall Accuracy Values of the bandwidth parameter in the Gaussian kernel

85.57 91.97 87.37 0.0001
87.71 90.86 89.46 0.001
88.91 91.94 89.59 0.01

90.89 92.74 90.75 0.1
91.98 92.97 90.89 0.5
90.96 92.98 90.94 1
91.37 93.27 93.98 1.3
91.41 93.48 91.49 1.5
91.56 93.66 91.67 1.7
99.10 96.80 99.02 2

98.73 96.22 98.70 2.3

98.13 95.67 98.33 2.5

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

78

According to Fig. 7, the proposed method
provides a plausible result compared to other
methods. The results indicate good performance
of the proposed system; this is for the proper
extraction of features and support vectors, with
the proposed efficient architecture. In addition,
the use of appropriate kernels and proportional
values obtained from the results of experiments
performed for the values of dependent
parameters is another reason for the high
efficiency of the proposed method. Due to the
use of a real database and the same
conditions for all methods, it can be
explicitly said that the obtained results are close
to reality and an accurate evaluation has been
done. For more details, the following reasons are
stated:

- According to Fig. 7, the rate of 89.86 was

obtained for the accuracy criterion of
reference [14]. Although this method was
introduced in 2008, the result shows good
performance for this method. The relatively
low detection rate of this method can be
attributed to its incompatibility with recent
computing. In this regard, we first extracted
the entropy and TF-IDF (term frequency
and inverse documents frequency) from
processes. Next, entropy and TF-IDF
features are sent to the SVMs model for
learning and testing. Finally, using a voting
schema named Weighted Voting SVM
(WV-SVM) to determine whether a process
is an intrusion.

- Compared with [15] made us a long way.
This reference was working with KDD Cup
99 dataset and we had to implement
feature extraction patterns on the CSE-
CIC-IDS2018 and online dataset. Of
course, it should be noted that this method
used an RBF kernel, which made us a bit
easier. However, after the experiments, the
result was an 86.92 rate for the accuracy
criterion, which was not a good result. The
reason was hindered by getting caught in a
local optimum. Moreover, using a neural
network takes more time for training. This
method has five major steps in which, the
first step is to perform the relevance
analysis, and then input data is clustered
using Fuzzy C-means clustering. After that,
neuro-fuzzy is trained, such that each of
the data points is trained with the
corresponding neuro-fuzzy classifier
associated with the cluster. Subsequently,
a vector for SVMs classification is formed
and in the last step, classification using

RBF-SVM is performed to detect whether
an intrusion has happened or not.

- [9] states that only normal data is required
for training before anomalies can be
detected. The key idea is that outliers
should contribute less to the decision
boundary than normal instances. It causes
the decision boundary to be shifted
towards the normal points. The rate of 88.2
is achieved in our experiment. Centralized
to only anomaly detection is the reason for
this low accuracy.

- Like [9,21] focused on anomaly-based
network intrusion detection systems called
(NIDS). This is also the reason for its low
detection rate in general compared to our
method. But the ability to run in cloud
computing and taking some consideration
has made it performs better than [9] until
we reached the rate of 92.88 for the
accuracy parameter. This approach can
monitor and analyze the network traffics
flow that targets a cloud environment. The
network administrator should be notified
about the nature of this traffics to drop and
block any intrusive network connections.
SVMs are employed as the classifier of the
network connections. The binary-based
Particle Swarm Optimization is adopted for
selecting the most relevant network
features, while the standard-based Particle
Swarm Optimization is adopted for tuning
the SVMs control parameters. For an
experiment, we changed the NSL-KDD
dataset to the CSE-CIC-IDS2018, and the
online dataset was used as the network
data source. This approach is trained and
tested on the benchmark of our dataset
and the evaluation results stated its
efficacy in recognizing normal behaviors
and detecting the attacks.

- Reference [16] is one of the first works
done to detect intrusions in cloud
computing. However, 90.99 is a suitable
detection rate. In this approach, a new
intrusion detection method of binary SVMs
with Hadoop is put forward, whose basic
idea is, according to the density of the data
set to set the priority classification, let the
class of the easiest separate, and generate
the training decision tree, to improve the
accuracy of the classification model. This
algorithm is modified to one based on
MapReduce. It is the innovation of this
approach. For an experiment, we used
virtualization. Within each virtual machine,
we have the same basic configuration

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

79

software environment used in [16] such as
Ubuntu 16.05 for Operating System,
jdk1.7.0_05 for the JDK version, Weka
package for SVMs tool, and Hadoop
version 0.20.2. In addition, we used the
CSE-CIC-IDS2018 and online dataset
instead of the KDD Cup 99 dataset to get
real and comparable results. Although the
ability to detect known attacks is the
advantage of this method, but also the
inability to detect unknown attacks and
anomaly detection is a shortcoming of this
method.

- Jaber and Rehman [20] proposes an
intrusion detection system that combines a
fuzzy c-means clustering (FCM) algorithm
with SVMs to improve the accuracy of the
detection system in the cloud computing
environment. As before, performed
experiments, we changed the dataset.
Even though this method has been
implemented in cloud computing,
centralized just on DDoS attacks caused
its detection rate to be below 88.61 in our
experiment.

- Mahfouz et al. [10] presents a network
intrusion detection approach that trains on
normal network traffic data and searches
for anomalous behaviors that deviate from
the normal model. Its proposed approach
applies a one-class support vector
machines (OCSVM) algorithm to detect
anomalous activities in the network traffic.
The basic author's idea was to use an
appropriate kernel function to map the
input data to a high-dimensional feature
space. By doing this, it was possible to
create a decision function that best
separates one-class samples from second-
class samples with the maximum margin.
To perform the experiments, in addition to
using the CSE-CIC-IDS2018 dataset as an
off-line audit, for online audit we
implemented the Modern Honey Network
(MHN), which is a centralized server to
manage and collect data from honeypots.
MHN has an easy to use Web interface
that helps in quickly deploying the sensors
and immediately collecting viewable data.
We used Google Cloud to create instances
of Ubuntu 16.05 LTS servers, where we
had one MHN server, and sensor servers.
Using this architecture like [10], we were
able to collect a large amount of data
through the sensors. Next, we used Azure
Machine Learning (AML), which is a cloud-
based environment from Microsoft to

preprocess data, train and test, deploy,
manage, and track machine learning
models. The AML evaluation module
shows that there is no big variance in the
results, and the average accuracy of the
proposed anomaly detection model was
89.51. By default, a radial basis kernel is
used like [10]. The relatively low detection
rate can also be attributed to the time-
consuming and complex decision-making
power of this method in real-time network
traffic. The inability to deal with online data
is an issue that the authors have pointed
out, which we also found in our
experiments.

- In the [19] method, the SVM classifier is
adopted to binary classify network data in
either normal or attack behaviors, and due
to the irrelevant and redundant features
found in the dataset, information gain (IG)
is used to select the relevant features and
remove unnecessary features. IG is a
method used to decide which feature in a
given dataset is most important to be used
in the machine learning process for
classifying data. The IG uses Shannon's
entropy to measure the feature set quality.
Like other experiments, we replaced the
dataset of this article (KDD Cup 99 and
NSL-KDD) with our dataset. In this
method, the authors have used 10-field
Cross Val to tackle the overfitting problem,
which divides the dataset into 10 subsets
of size N/10 (N is the size number of the
dataset) and uses 9 sub-sets for training
and 1 remaining sub-set for testing. The
[19] method was implemented in MATLAB
and the Weka data mining tool. The SVM
classifier is applied with the LibSVM
package in MATLAB and Radial Bias
Kernel Function is used. In this regard, we
achieved rather a high rate of accuracy
detection equal to 95.95.

- Wang et al. [18] presented an effective
stacked contractive autoencoder (SCAE)
method for unsupervised feature
extraction. By using the SCAE method,
better and robust low-dimensional features
can be automatically learned from raw
network traffic. The SCAE+SVM approach
combines both deep and shallow
learning techniques, and it fully exploits
their advantages to significantly reduce
the analytical overhead. Though authors
have reported high accuracy in using
their datasets as NSL-KDD and KDD
Cup 99 datasets but implemented

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

80

our dataset, and we achieved 94.75
for its accuracy criterion. This can
happen with any other method, even our
own.

- Due to the high dimensionality of network
data, like [22] we first used Principal
Component Analysis (PCA) to reduce the
dimensionality of the data, eliminate the
correlation between features and reduce
the training time. Then, in the cloud server,
a support vector machine optimized by the
particle swarm algorithm is used to
complete the training of the dataset, obtain
the optimal SVMs intrusion-detection
classifier, send it to the fog node, and carry
out attack detection at the fog node. The
experiments in this reference are based on
KDD CUP 99 dataset, while we were also
able to achieve acceptable results up to
96.21 by performing experiments with our
dataset. In addition, virtualization is used
for implementation. Centralized on PCA
and PSO, and most importantly the ability
to run in fog computing is one of the main
reasons for the high efficiency of this
method. Working in a foggy environment
reduces the dependence on the dataset
and at the same time can provide good
results with a variety of datasets.

- The authors in [23] aim that it is not
always correct to take punitive action
against packets of a traffic flow, solely
based on a detection of a possible threat
that may result in blocking or dropping of
genuine packets. However, IP traceback
provides the ability to track the actual
source of the packets in the eventuality of
an attack. It was very interesting that
although the authors of this article reported
an accuracy of 95.98 in using the NSL-
KDD dataset, we achieved an accuracy
equal to 97.95 in our experiments using
the CIC-IDS2018 dataset. This is due to
the high power of this method in
performing calculations without additional
overhead and also saving system
resources. The detection rate of this
method was very close to the detection
rate of our proposed method.

8. DISCUSSION AND CONCLUSION

As we move from cloud computing to fog
computing to reduce bandwidth consumption as
well as network latency, securing all nodes
becomes a serious issue. Besides, all nodes are
at greater risk of attacking vulnerabilities due to

their limited resources and their proximity to
attackers. It can be said with certainty that
implementing a method that can protect all nodes
from the threat of attackers can establish security
throughout the system. Fog security is cloud
security. On the other hand, it is easier to protect
the node because the fog has more limited
resources than the cloud and does not have the
complexities of controlling and establishing
security in cloud computing. Reducing the
complexity of the system architecture in fog is the
key to the success of IoT applications. The
current paper considers the use of the SVMs
technique to protect all the nodes from attackers.
The motivation is the ease of working with high-
dimensional data, the design of the most
generalized classifier, the achievement of the
optimal cost function, the automatic
determination of the optimal structure, and the
topography for the classifier. According to the
documentation provided in the authoritative
articles, the SVM is one of the most widely used
and efficient machine learning algorithms used in
recent computer security issues.

In the following, the architecture of the proposed
intrusion detection system, which consisted of
the components of the data provider, processor,
analyst, manager and controller, responder, and
evaluator, was presented. The proposed system
architecture applied both online audit data and
offline audit data. To implement the proposed
system, we use the CSE-CIC-IDS2018 dataset
for the offline dataset and install Evilboard for an
online dataset. The CSE-CIC-IDS2018 dataset is
the most recent intrusion detection dataset that is
big data, publicly available, and covers a wide
range of attack types, especially XSS and SQL
injection flaw attacks. They are the most
destructive and harmful web attacks in recent
global reports. CSE-CIC-IDS2018 contains more
than 16 million instances. Since then, two
databases with the names CIRA-CIC-DoHBrw-
2020 and CIC-Bell-DNS2021 datasets have been
produced, but since they did not contain injection
flaw attacks, we could not use them in our
experiments.

For this purpose, WebInspect software was used
to prepare the data, targeting the principles of
comprehensiveness, accuracy, and up-to-date
traffic, targeting Evilboard. The most important
task of the preprocessing component is to extract
the appropriate features. The extracted features
for XSS and SQL injection flaws included the
mean length of the request parameter values, the
mean character distribution of the request

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

81

parameters, the mean distribution equivalent to
the Basis of Hexadecimal Specific Characters,
the presence of keywords, the characterization of
the binary character sequence, and parameters
sequencing. According to the extracted features,
the support vector was obtained for XSS and
SQL injection flaws. SVMLight was used to
implement the analyst component. In which data
is converted to readable format by SVMLight
using LightDataAgent, and given to SVMLight to
determine the appropriate category. In the
respondent component, if the output received
from the analyst indicates an attack, the relevant
traffic information is recorded along with the
output from the analyzer, and an appropriate
warning is generated.

Accuracy, precision, and recall defined by the
Confusion Matrix were used to evaluate the
proposed system. The results obtained for the
different kernels of the SVMs were evaluated
separately. The best results for accuracy,
precision, and recall criteria for both XSS and
SQL injection flaws were obtained on the RBF
kernel. After the RBF kernel, the best results are
for Gaussian, Polynomial, and Linear kernels,
respectively. In addition, the results obtained for
the SQL injection flaws detection have better
values than the results obtained for the XSS
attack detection. A comparison of the obtained
results with different values of the gamma
parameter in the RBF kernel showed that the
best result is related to the value of 0.5 for this
parameter. In addition, comparing the obtained
results with different values of the bandwidth
parameter in the Gaussian kernel showed that
the best result is related to the value of two for
this parameter. Finally, to further compare the
proposed method, the mean accuracy obtained
from the proposed method was discussed with
the mean accuracy obtained from the use of
various support vector machine-based methods
defined in the literature review section. The
results show the higher efficiency of the
proposed method compared to other methods.
Briefly, the reason is the efficiency of the
proposed architecture, proper placement of
detection nodes between the edges of the fog,
the accurate selection of the kernel and its
dependent parameters, the definition of suitable
properties for feature extraction, and then the
effective extraction of support vectors and their
use in fog computing as we mentioned in detail.
In particular, the proposed method has
shown the most promising results. Creating a
larger and more diverse dataset leads us to
better and more accurate results. Therefore,

using Autoencoder (AE) and Restricted
Boltzmann Machine (RBM) as data generator is
our plan for future work.

CONSENT

As per international standard or university
standard, Participants’ written consent
has been collected and preserved by the
author(s).

ETHICAL APPROVAL

All procedures performed in studies involving
human participants were in accordance with the
ethical standards of the institutional and national
research committee and with the 1964 Helsinki
declaration and its later amendments or
comparable ethical standards. This article does
not contain any studies with animals performed
by any of the authors.

AVAILABILITY OF DATA AND
MATERIALS

A significant amount of data is addressed in this
article. The remaining data that support the
findings of this study are available on request
from the corresponding author. The data are not
publicly available due to privacy or ethical
restrictions. The authors declare that all the
experimental data in this paper are true and
valid. Moreover, The authors declare that all
experimental data are obtained from detailed
experiments.

COMPETING INTERESTS

The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to
influence the work reported in this paper.

REFERENCES

1. An X, Zhou X, Lu X, Lin F, Yang L. Sample
selected extreme learning machine based
intrusion detection in fog computing and
MEC. Wireless Communications and
Mobile Computing, Wiley Hindawi;
2018.

2. Aliyu F, Sheltami T, Shakshuki E. A
detection and prevention technique for
man in the middle attack in fog computing.
The 9th International Conference on

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

82

Emerging Ubiquitous Systems and
Pervasive Networks. 2018;141:24-31.

3. Vaquero LM, Rodero-Merino L. Finding
your way in the fog: towards a
comprehensive definition of fog computing.
ACM SIGCOMM Computer
Communication Review. 2014;44(5):
27-32.

4. Dsouza C, Ahn GJ, Taguinod M. Policy-
driven security management for fog
computing: preliminary framework and a
case study. Proceedings of the 2014 IEEE
15th International Conference on
Information Reuse and Integration, San
Francisco, California, USA. 2014;16-23.

5. Xiang F, Ying J. A novel learning algorithm
on probability measure for intrusion
detection. International Conference on
Computer Science and Electronic
Technology; 2016.

6. Androcec D, Vrcek N. Machine learning for
the internet of things security: a systematic
review. 13th International Conference on
Software Technologies, Porto, Portugal.
2018;563-570.

7. Subba B, Biswas S. Enhancing
performance of anomaly-based intrusion
detection systems through dimensionality
reduction using principal component
analysis. IEEE International Conference on
Advanced Networks and
Telecommunications Systems, Bangalore,
India; 2016.

8. Shon T, Moon J. A hybrid machine
learning approach to network anomaly
detection. Information Sciences. 2007;
177:3799-3821.

9. Amer M, Goldstein M, Abdennadher S.
Enhancing one-class support vector
machines for unsupervised anomaly
detection. Proceedings of the ACM
SIGKDD Workshop on Outlier Detection
and Description. 2013;8-15.

10. Mahfouz A, Abuhussein A, Venugopal D,
Shiva SG. Network intrusion detection
model using one-class support vector
machine. Advances in Machine Learning
and Computational Intelligence. 2020;
79-86.

11. Hu W, Liao Y, Vermuri VR. Robust
anomaly detection using support vector
machines. Proceedings of the International
Conference on Machine Learning and
Applications, Los Angeles, California,
USA; 2003.

12. Zhang Z, Shen H. Application of online-
training SVMs for real-time intrusion
detection with different considerations.
Computer Communications. 2005;28(12):
1428-1442.

13. Nguyen QT, Tran KP, Castagliola P.
Nested one-class support vector machines
for network intrusion detection. IEEE
Seventh International Conference on
Communications and Electronics, Hue,
Vietnam; 2018.

14. Chen RC, Chen SP. Intrusion detection
using a hybrid support vector machine
based on entropy and TF-IDF.
International Journal of Innovative
Computing, Information & Control. 2008;
4(2):413-424.

15. Chandrashekhar AM, Raghuveer K.
Fortification of hybrid intrusion detection
system using variants of neural networks
and support vector machines. International
Journal of Network Security & Its
Applications. 2013;5(1):71-90.

16. Yu, Mingyuan, Huang S, Yu Q, Wang Y,
Gao J. A density-based binary SVM
algorithm in the cloud security.
International Journal of Security and Its
Applications. 2015;9(7):153-162.

17. Mayuranathan M, Murugan M,
Dhanakoti V. An intrusion detection
system using optimized SVM for detecting
Ddos in cloud. International Journal of
Scientific & Technology Research. 2019;
8(11).

18. Wang W, Du X, Shan D, Qin R, Wang N.
Cloud intrusion detection method based on
stacked contractive auto-encoder and
support vector machine. IEEE
Transactions on Cloud Computing;
2020.

19. Mugabo E, Zhang QY. Intrusion detection
method based on support vector
machine and information gain for
mobile cloud computing. International
Journal of Network Security. 2020;
22(2):231-241.

20. Jaber AN, Ul Rehman S. FCM–SVM based
intrusion detection system for cloud
computing environment. Cluster
Computing Journal. 2020;4.

21. Sakr MM, Tawfeeq M, El-Sisi A. Network
intrusion detection system based PSO-
SVM for cloud computing. International
Journal of Computer Network and
Information Security. 2019;22-29.

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

83

22. Du R, Liang X, Tian J. Support vector
machine intrusion detection scheme based
on cloud-fog collaboration. Mobile
Networks and Applications. 2022;27:431-
440.

23. Hadem P, Saikia DK, Moulik S. An SDN-
based intrusion detection system using
SVM with selective logging for IP
Traceback. Computer Networks. 2021;
191.

24. Thakkar A, Lohiya R. Attack classification
using feature selection techniques:
A comparative study. Journal of
Ambient Intelligence and
Humanized Computing. 2021;12(4):
1249-1266.

25. Chua TH, Salam I. Evaluation of machine
learning algorithms in network-based
intrusion detection System. Cryptology
ePrint Archive; 2022.

26. Khan S, Parkinson S, Qin Y. Fog
computing security: A review of current
applications and security solutions. Journal
of Cloud Computing: Advances, Systems
and Applications. 2017;6:Article number:
19.

27. Mazumdar N, Nag A, Singh JP. Trust-
based load-offloading protocol to reduce
service delays in fog-computing-
empowered IoT. Computers & Electrical
Engineering. 2021;93.

28. Rapuzzi R, Repetto M. Building situational
awareness for network threats in fog/edge
computing: emerging paradigms beyond
the security perimeter model. Future
Generation Computer Systems. 2018;
85:235-249.

29. Ometov OL, Molua M. Komarov,
Nurmi J. A survey of security in cloud,
edge, and fog computing. Sensors.
2022;22(3).

30. Zhang PY, Zhou MC, Fortino G. Security
and trust issues in fog computing: A
survey. Future Generation Computer
Systems. 2018;88:16-27.

31. Azarkasb SO, Sedighian Kashi S, Khasteh
SH. A network intrusion detection
approach at the edge of fog. 26th
International Computer Conference,
Computer Society of Iran, Tehran, Iran;
2021.

32. Kywan NN. Analysis and simulation of
HyperText transfer protocol at the
application layer of the internet.

International Journal of Scientific and
Research Publications. 2019;9(1):78-84.

33. OWSAP, Open Web Application Security
Project. Top 10 Web Application Security
Risks; 2018.

34. Han EE, Phyu TN. Classification of SQL
injection, XSS and path traversal for web
application attack detection. Fourteenth
International Conference on Computer
Applications; 2016.

35. Lee I, Jeong S, Yeo S, Moon J. A novel
method for SQL injection attack detection
based on removing SQL query attribute
values. Mathematical and Computer
Modelling. 2012;55:58-68.

36. Sharma C, Jain SC. Analysis and
classification of SQL injection
vulnerabilities and attacks on web
applications. IEEE International
Conference on Advances in Engineering &
Technology Research, Unnao, India;2014.

37. Rodriguez G, Torres J, Flores P,
Benavides DE. Cross-Site Scripting (XSS)
attacks and mitigation: a survey. Computer
Networks. 2020;166.

38. Yusof I, Pathan ASK. Preventing persistent
cross-site scripting (XSS) attack by
applying pattern filtering approach. The
Fifth International Conference on
Information and Communication
Technology for The Muslim World,
Kuching, Malaysia, 2014.

39. Sharafaldin I, Habibi Lashkari A, Gjorbani
AA. Toward generating a new intrusion
detection dataset and intrusion traffic
characterization. 4th International
Conference on Information Systems
Security and Privacy, SciTePress: Science
and Technology Publication. 2018;108-
116.

40. Available:https://github.com/CanadianInstit
uteForCybersecurity/CICFlowMeter.

41. Andrecut M. Attack vs benign network
intrusion traffic classification. Cornell
University, Subjects: Computer Science,
Cryptography and Security (cs.CR);2022.

42. "Need Two Big Data Query & Analysis
using SQL, Three Queries",
Available:https://www.sweetstudy.com/files
/cn703120-21crwk-pdf

43. Available:https://github.com/Colorado-
Mesa-University-
Cybersecurity/DeepLearning-IDS

44. Leevy JL, Khoshgotaar67iop’ TM. A survey
and analysis of intrusion detection models

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965

84

based on CSE�CIC�IDS2018 big data.
Journal of Big Data. 2020;7:Article
number: 104.

45. The University of New Brunswick, Canada;
2021.
Available:https://www.unb.ca/cic/datasets/

© 2023 Azarkasb and Khasteh; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/100965

http://creativecommons.org/licenses/by/2.0

