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ABSTRACT 
 

Fog computing, characterized as a cloud infrastructure in close proximity to end devices, faces 
substantial security challenges that necessitate robust intrusion detection mechanisms for fog 
nodes. The resource-constrained nature of fog nodes renders them particularly susceptible to 
attacks, making the development of efficient intrusion detection systems imperative. In this study, 
we propose a comprehensive approach to protect fog nodes, taking into account their limited 
resources. Leveraging the power of Support Vector Machines (SVMs), a widely adopted machine 
learning technique in IoT security, our method overcomes challenges associated with local optima, 
overfitting, and high-dimensional data. A thorough literature review underscores the prevalent use 
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of SVMs in IoT security research. Specifically, we focus on addressing two prevalent web attacks: 
Cross-Site Scripting (XSS) and SQL injection attacks, based on global statistical data. To evaluate 
our approach, we employ the CSE-CIC-IDS2018 dataset and a pseudo-real dataset. Precision, 
recall, and accuracy are employed as evaluation metrics, along with the Mean Average Precision 
(MAP). Our evaluation results demonstrate an exceptional level of accuracy, achieving an 
impressive 98.28% accuracy in terms of average performance when compared to existing methods. 
Comparative analysis with state-of-the-art approaches further validates the superior efficacy and 
efficiency of our proposed method. 
 

 
Keywords: Fog computing; internet of things; intrusion detection; support vector machines; XSS and 

SQL injection flaw attacks. 
 

1. INTRODUCTION 
 
Large-scale IoT developments create conditions 
that cloud computing is not capable of effectively 
controlling. Fog computing applications have 
grown rapidly in current IoT end devices of their 
ability to respond to edge components rapidly. 
The advantages of fog computing may include 
the reduction of bandwidth consumption as well 
as the reduction of network latency. Smart 
automated machine systems, smart vending 
machines, and smart chip systems are practical 
examples of the application of fog computing on 
the Internet of Things. The concept of fog 
computing is a new perspective that enables the 
Internet of Things to run its applications on the 
edge of the network [1]. Fog computing is not an 
alternative to cloud computing but is an expander 
that complements the concept of smart devices 
that can work on the edge of the network. 
Computing is the gateway between cloud 
computing and the Internet of Things. Fog is an 
extension of the cloud, so, inevitably, some of the 
security challenges of cloud computing will not 
continue. While some existing methods in the 
field of fog computing can solve many security 
and privacy issues in cloud computing, fog 
computing brings new security challenges due to 
its distinctive features, including resource 
constraints. These challenges affect the 
adaptation of fog computing to the Internet of 
Things. 
 

All fog nodes allow the user to process a portion 
of the data without having to send it to the cloud 
data center. While data centers are equipped 
with many resources such as processors, power, 
and memory, devices equipped with these 
resources are not abundant. This means that 
conventional methods are not suitable for 
preventing fog intrusion, as these methods will 
delay or consume more energy. Therefore, there 
is a need for a robust security system that uses a 
small number of resources to protect the entire 

layer from attacks [2]. Intrusion detection 
methods detect IoT misbehavior or malicious 
devices and notify others on the network to take 
action. The nature of IoT environments makes it 
difficult to detect attacks globally. The location of 
the cloud computing services is on the Internet, 
and the fog computing services are located at the 
edge of the local network. In other words, fog 
computing security can be defined, but cloud 
computing security cannot be defined [3]. 
However, focusing on fog layer nodes can bring 
security to a simpler level [4]. On the other hand, 
the advantages and capabilities of the SVMs 
have led researchers to use them to detect 
intrusion. These capabilities include designing 
the classifier with maximum generalization, 
achieving global optimization, automatically 
determining the optimal structure and topography 
for the classifier, modeling nonlinear 
differentiation functions using nonlinear kernels, 
and the Hilbert space's inner product as well as 
ease of working with high-dimensional data [5]. 
According to [6] and [7], SVMs are the most 
widely used algorithm, technique, and learning 
method used for IoT security papers, both for 
intrusion detection and authentication. The 
neural network, Bayesian, and decision tree 
methods are in the next categories, respectively. 
Despite the mentioned advantages, determining 
the appropriate kernels as well as the right value 
of their parameters is one of the open issues in 
support vector machines. The main idea of the 
SVMs is to choose a single separator, to 
maximize the separator margin of the two 
categories. Accordingly, different types of 
support vector machines are defined [8], 
including hard-edge linear support vector 
machines, soft-edge linear support vector 
machines, and nonlinear support vector 
machines. In general, the following advantages 
can be mentioned for SVMs: 
 

- There is no local minimal because the 
solution is a QP problem, 
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- The optimal solution can be found in 
polynomial time, 

- Few model parameters to select: the 
penalty term C, the kernel function, and 

parameters (e.g., spread   in the case of 
RBF kernels), 

- The final results are stable and repeatable 
(e.g., no random initial weights), 

- SVMs solution is sparse; it only involves 
the support vectors, 

- SVMs represent a general methodology for 
many PR problems: classification, 
regression, feature extraction, clustering, 
novelty detection, etc. 

- SVMs rely on elegant and principled 
learning methods, 

- SVMs provide a method to control 
complexity independently of 
dimensionality, 

- SVMs have been shown (theoretically and 
empirically) to have excellent 
generalization capabilities. 

 

In the next section, we will see how these 
advantages have attracted researchers. The rest 
of this manuscript is prearranged as follows: a 
brief review of recent research related to our 
proposed technique is presented in section 2. 
Section 3 depicts fog Security and our 
motivation. Section 4 focuses on web attacks 
and defined Injection Flaws as the most harmful 
type of these. The architecture and data flow 
diagram of the proposed system is presented in 
section 5. The details of implementation are 
given in section 6. Section 7 presents 
implementation, system evaluation, and results. 
Finally, the conclusions are summed up in 
section 8. 
 

2. LITERATURE REVIEW 
 

Support Vector Machines (SVMs) have been one 
of the most successful machine learning 
techniques for the past decade. The enumerated 
advantages of SVMs have long attracted 
intrusion detection systems. Recently, many 
papers have been published in intrusion 
detection addressing SVMs, including: 
 

The author in [8] used an unsupervised One-
Class SVM approach to detect, similar to a 
supervised learning approach to reduce false 
alarms. They suggested the following to improve 
the performance of the system: 
 

- Create an index of normal network 
packages to support vector machines 
learning without using default knowledge. 

- Filter network packets to prevent 
incomplete network traffic that violates the 
TCP/ IP standard. 

- Feature extraction uses the genetic 
algorithm to obtain optimal information 
from Internet packages. 

- Take into account the time relationship of 
packages in the pre-processing stage. 

 
Amer et al. [9] introduces robust SVMs to 
increase the efficiency of a One-Class vector 
machine for detecting unsupervised 
abnormalities. Its main idea is to minimize the 
role of data outliers in the decision-making 
frontier. [10] searches abnormal behaviors by 
training OC-SVM with normal behaviors. One-
class classification approaches are essentially 
helpful in solving two-class learning problems, 
whereby the first class which is mostly well-
sampled is known as the ‘target’ class, and the 
other class which is severely under-sampled is 
known as the ‘outlier’ class. The goal is to build a 
decision surface around the samples in the target 
class to distinguish the target objects from the 
outliers (all the other possible objects). [11] used 
robust SVMs to solve the over-fitting problem in 
irregular data, assuming that normal data is 
mixed with abnormal data. Their experiments 
showed that intrusion detection based on the 
word processing model generates a large 
number of false-positive alert rates and is difficult 
to apply in practice. 
 
Zhang and Shen  [12] has also considered 
intrusion detection as a word processing 
problem, and using the term frequency-inverse 
document frequency (tf-idf) changes in the 
weighting with robust SVMs and OC-SVMs have 
shown changes lead to better results compared 
to normal conditions. Nguyen et al. [13] offers a 
Nested set SVMs for intrusion detection. In this 
method, instead of labeling with criteria such as 
geometric mean accuracy, the information of the 
farthest and nearest neighbors of each sample is 
used. Experimental results show that this method 
has performed better than the basic method. 
SVMs have always been compared to neural 
networks. Chen and Chen [14] has compared the 
support vector machines with neural networks 
and shown that the support vector machines 
work best with tf-idf weighting, while the simple 
weighting neural network produces the worst 
response. It also shows that the Gaussian kernel 
support vector machines provide better results 
than the RBF neural networks. Chandrashekhar 
and Raghuveer [15] has used a combination of 
neural networks and support vector machines 
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with RBF kernels to strengthen the intrusion 
detection system. The emergence and 
pervasiveness of cloud computing in recent 
decades and the need for security in it have led 
researchers to provide methods to detect 
intrusion in these contexts. Yu [16] introduces a 
Density-Based Support Vector Machines. The 
basic idea is based on the density of each class 
in the dataset. Training data is converted to a 
binary sequence. According to this sequence, the 
educational model of system behavior is 
obtained. To run, it uses the Map Reduce 
Parallel Computational Framework in Hadoop 
provided by Apache to reliably process large-
scale distributed data. Mayuranathan et al. [17] 
introducing the optimized SVMs has used a 
combination of genetic algorithms and SVMs to 
enhance the ability to generalize classification 
and detect denial-of-service attacks in cloud 
computing. Wang [18] has developed a hybrid 
system based on deep learning that uses a 
stacked auto-encoder to reduce feature 
dimensions and the SVMs classification 
algorithm to detect malicious attacks. Mugabo 
and Zhang [19] uses the SVMs to classify 
network data into normal behavior and attack 
behavior, as well as to remove irrelevant and 
redundant features. Finally, it introduces an 
invasive detection system based on SVMs and 
Information Gain (IG). Jaber and Rehman [20] 
provides a combination of fuzzy clustering and 
SVMs to improve the accuracy of the detection 
system in the cloud computing environment. Sakr 
et al. [21] uses SVMs to classify network 
connections. The nature of the traffic is notified to 
the network administrator to disconnect and 
block any intruders to the network. Besides, 
Binary Particular Swarm Optimization is used to 
select the most relevant network features and 
Standard Particular Swarm Optimization is used 
to adjust the control parameters of the SVMs. Du 
et al. [22] provides the SVMs intrusion detection 
scheme based on cloud-fog collaboration. This 
design uses the Principal Component Analysis 
(PCA) method to reduce the dimensions, 
eliminate the correlation between the features 
and reduce the training time. The cloud server 
uses a Particular Swarm Optimization SVMs to 
complete the dataset training operation and 
achieve optimal classification. The obtained 
results are then sent to the fog node and the 
attack detection operation is performed on the 
fog node.  
 
Hadem et al. [23] recommends a Software-
Defined Networking (SDN) based intrusion 
detection system using the SVMs along with 

Selective Logging for IP Traceback. Using IP, in 
addition to saving a high percentage of memory 
consumption, allows the actual source of packets 
to be tracked in the event of an attack. Detection 
of anomalous traffic and network intrusion is 
done during the PACKET_IN event at the 
controller and then again by fetching the flow 
statistics from the OpenFlow switches at regular 
intervals. Selective logging of suspicious 
packets/flows during a PACKET_IN event 
enables an IP traceback to be performed in the 
eventuality of an attack that can be initiated by a 
network admin using an HTTP-based web 
console. Logging is performed selectively at the 
controller and not at the switches, achieving 
significant savings in terms of overall memory 
resources. Moreover, logging is performed using 
the in-memory structure at the controller thereby 
enhancing the performance of the logging 
operation over the traditional file-based 
database. Not all the features captured from the 
network packets contribute to detecting or 
classifying attacks. Therefore, the objective of 
[24] research work is to study the effect of 
various feature selection techniques on the 
performance of IDS. Feature selection 
techniques select relevant features and group 
them into subsets. This paper implements Chi-
Square, Information Gain, and Recursive Feature 
Elimination (RFE) feature selection techniques 
with machine learning classifiers such as SVMs, 
Naïve Bayes, Decision Tree Classifier, Random 
Forest Classifier, K-Nearest Neighbors, Logistic 
Regression, and Artificial Neural Networks. 
Authors in [25] have implemented six of the most 
popular ML models that are used for IDS, 
including Decision Tree, Random Forest, 
Support Vector Machines, Naïve Bayes, Artificial 
Neural Network, and Deep Neural Network. Their 
experiments using the CIC-IDS2017 and the 
CSE-CIC-IDS2018 datasets show that at first 
SVMs and the second ANN are most resistant to 
overfitting and have better results. Besides that, 
their experiment results also show that DT                    
and RF suffer the most from overfitting, although 
they perform well on the training dataset.                
Table 1 summarizes the related work with the 
limitations of the work discussed. More                  
details of these are going to present at end of 
section 7. 
 
Accordingly, in a nutshell, the literature                    
indicates the very prominent role of the                      
use of SVMs in IoT security, cloud                   
computing, and fog computing. This is our 
motivation to utilize SVMs to protect fog nodes 
from IDS. 
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Table 1. The related work with limitations of the work discussed 
 

Description Year of 
publication 

Reference 
number 

A robust SVMs to solve the over-fitting problem in irregular data, 
assuming that normal data is mixed with abnormal data. 

2003 [11] 

Using term frequency-inverse document frequency (tf-idf) changes in 
the weighting with robust SVMs and OC-SVM. 

2005 [12] 

An unsupervised One-Class SVM approach to detection, similar to a 
supervised learning approach to reduce false alarms, suggested 4 
approaches to improve the performance of the system. 

2007 [8] 

An SVM based on entropy and tf-idf. 2008 [14] 
A robust SVMs to increase the efficiency of a One-Class vector 
machine for detecting unsupervised abnormalities. 

2013 [9] 

Combination of SVMs and neural networks with RBF kernels in cloud 
computing. 

2013 [15] 

Density-based binary SVM in cloud computing. 2015 [16] 
A Nested One-Class SVM for intrusion detection. 2018 [13] 
Optimized SVMs with the combination of genetic algorithm and SVMs. 2019 [17] 
Applied Binary Particular Swarm Optimization (PSO) to select the 
most relevant network features and Standard Particular Swarm 
Optimization to adjust the control parameters of the SVMs in cloud 
computing. 

2019 [21] 

Training OC-SVM with normal behaviors for searching for abnormal 
behaviors in cloud computing. 

2020 [10] 

Hybrid system with the combination of deep learning and SVMs in 
cloud computing. 

2020 [18] 

Combination of SVMs with information gain in cloud computing. 2020 [19] 
Combination of SVMs with fuzzy clustering (FCM) in cloud computing. 2020 [20] 
A Software-Defined Networking (SDN) with the SVMs and Selective 
Logging for IP Traceback. 

2021 [23] 

Comparison of machine learning methods such as SVMs, Naïve 
Bayes, Decision Tree Classifier, Random Forest Classifier, K-Nearest 
Neighbors, Logistic Regression, and Artificial Neural Networks. 

2021 [24] 

Combination of SVMs, principal component analysis (PCA), and 
particle swarm optimization in fog computing. 

2022 [22] 

Comparison of machine learning methods such as Decision Tree, 
Random Forest, Support Vector Machines, Naïve Bayes, Artificial 
Neural Networks, and Deep Neural Network 

2022 [25] 

 

3. FOG SECURITY AND MOTIVATION 
 
Fog computing is a decentralized computing 
architecture whereby data is processed and 
stored between the source of origin and                    
cloud infrastructure. This results in the 
minimization of data transmission overheads, 
and subsequently, improves the performance of 
computing in cloud platforms by reducing the 
requirement to process and store large volumes 
of superfluous data [26].In addition to the listed 
benefits, this issue also brings risks. Fog 
security, if compromised, directly affects the 
security and trust of all applications and users. 
The sensitivity of fog nodes is often higher than 
that of cloud servers such as IoT devices due to 
their limited resources [27]. Attack levels are also 

wider for fog nodes because they are                          
prone to inaccurate information and malware, 
service manipulation, and information leakage. 
Attacking fog nodes can be more dangerous            
than attacking IoT devices because they                  
usually have private information and privacy 
concerns, and trust in relationships with                  
more nodes and remote items. The nature                    
of the fog pattern naturally increases the                   
threats of rogue and unreliable structures [28], 
because they have less computing power and 
are closer to the attacker than the cloud [22]. 
This is the motivation to protect fog nodes from 
IDS. 
 
There is a very subtle difference between fog 
computing and edge computing, which is worth 
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noting. Fog computing is different from edge 
computing in its ability for Fog nodes to 
interconnect, while edge computing operates 
with separate edge nodes [29]. Fogging is a 
smart computing system in which fog nodes can 
independently respond to computing and 
processing requests of end devices and can 
connect for collaboration. Management and 
Collaborative Procedures are applied to fog 
nodes for management and control practices. 
Cooperation between fog nodes can be done 
through telecommunications or local 
communication between them [30]. For example, 
Fig. 1 shows the fog grid architecture, which 
consists of fog nodes and intrusion detection 
nodes. The symmetry and proximity of intrusion 
detection nodes to fog nodes ensure that the 
deployment of detection nodes reduces latency. 
Each detector node, located one step away from 
the other nodes, observes all the nodes inside a 
circle with a radius of one step from it in a Wheel 
Spoke Fashion. Whenever it finds a 
compromised node or a threatened node, it 
simply notifies the nearest node to disconnect 
from it. Fog nodes here can be a single device or 
a platform/networking layer that sits in between a 
cloud and a collection of IoT devices. In addition, 
packets move from origin to destination by 
moving in several steps along the Y-axis (i.e. 
only moving up and down). The packets move 
along the Y-axis until they reach their destination. 

The packets then move along the X-axis, i.e. 
backward or forwards, until they reach their exact 
destination [31]. 
 

4. WEB ATTACKS  
 

Web attacks exploit vulnerabilities on the Web to 
circumvent the security policies of Web 
applications. Web attacks use the HyperText 
Transfer Protocol (HTTP) or HyperText Transfer 
Protocol Secure (HTTPS) protocol. The HTTP 
protocol uses port 80 and the HTTPS protocol 
uses port 443. Web attacks typically use these 
two ports to circumvent Web policies [32]. All a 
web hacker needs are a web browser and an 
internet connection. The latest official report on 
the frequency of web attacks is related to the 
OWASP site. According to the report, the ten 
most web vulnerabilities in 2017 are as follows 
[33]. 
 
According to Fig. 2, Injection Flaws are the most 
harmful type of Web attack and are similar to fog 
computing. There are a lot of research papers 
that proposed features for detecting SQL 
injection and XSS attacks. Reference number 
[34] is one of these researches. Accordingly, 
provided professional study, the current paper 
addresses two types of Injection Flaws as 
follows.  Another attack is going to be reviewed 
in future works. 

 

 
 

Fig. 1. Security model architecture in fog computing and how nodes are located and 
cooperated [2] and [31] 



 
 
 
 

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965 
 
 

 
65 

 

 
 

Fig. 2. The latest report on the most vulnerabilities of the web in 2017 [34] 
 

4.1 SQL Injection Flaws 

 
The SQL Injection Flaws include the main type of 
injections. These are only malicious queries that 
change a normal SQL query into a malicious one 
and consequently allow anomalous database 
access and processing. SQL Injection Flaws are 
the method by which an intruder executes an 
application in the database layer. Injection occurs 
when user-provided data is sent to an interpreter 
as part of a command or query. The attackers 
deceive the interpreter and force them to carry 
out unplanned orders. Injection Flaws allow 
attackers to create, read, update, or delete any 
arbitrary data available in the application. In the 
worst case, these flaws allow attackers to exploit 
the application and the systems under it; they 
even pass through deeply nested firewalls. All 
web application frameworks that use interpreters 
or invoke other processes are vulnerable to 
injection flaws [35]. Different types of SQL 
injection vulnerabilities include [36]: 
 
- Improperly refine escape characters: 

This type of SQL injection vulnerability 
occurs when the user input of escape 
characters is not refined and sent in a SQL 
command. This causes major 
manipulations of the instructions executed 
on the database by the end-users of the 
application. 

- Print mismanagement: This type of SQL 
injection occurs when a user-generated 
field is not strongly written or tested for 
printing restrictions. This happens when a 

numeric field is used in the SQL statement, 
but the programmer does not check if the 
data provided by the user is numeric. 

- Blind SQL Injection: Blind SQL injection 
is used when a web application is more 
vulnerable to SQL injection, but the 
injection results are not visible to the 
attacker. The data representing the page 
may not be vulnerable, but showing the 
called legal results of the logical command 
injected into the SQL commands of the 
page. This type of attack can be very time-
consuming, as a new command must be 
provided per a recovered bit. Many tools 
can automatically detect these attacks 
when the location of the vulnerability                   
and target information is known. The types 
of blind SQL injection attacks are as 
follows: 
 

1. Conditional responses: A type of blind 
SQL injection that forces the database to 
execute a logical command on the page 
of a typical application. 

2. Conditional errors: This type of blind 
SQL injection causes a SQL error by 
forcing the database to execute a single 
command. If the WHERE command is 
correct, it will cause an error. 

3. Time Delays: Time delays are a type of 
SQL blind injection that causes the SQL 
engine to execute a long continuous 
query or a time delay command 
depending on the logic injected. The 
attacker can then measure the length of 
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time the page has been loaded to 
determine if the injected command is 
correct. 

 
4.2 XSS Attacks  

 
XSS attacks are a subset of HTML injection 
flaws, found in web applications that allow users 
to inject code into web pages viewed by other 
users. Examples of such code are HTML, 
XHTML, and client-side scripts. An XSS attack 
can be used by attackers to bypass access 
control. An attacker can intelligently find ways to 
inject malicious scripts into web pages and gain 
high access to content on sensitive pages and 
various other objects. XSS allows hackers to 
execute scripts in the victim's browser that can 
steal user sessions, corrupt websites, enter 
malicious programs, and infiltrate the user's 
browser by executing scripts. This is very 
dangerous in systems such as content 
management systems, blogs, and forums where 
a large number of users view data from other 
users [37]. The well-known types of this flaw 
include [38]: 

 
- DOM-based XSS attack: DOM Based 

XSS (or as it is called in some texts, “type-
0 XSS”), is based on the standard object 
model for displaying HTML or XML. In this 
type of vulnerability, there is a problem 
with the client-side page script. For 
example, if a part of JavaScript accesses 
the URL parameter of the request and 
uses this information to write some HTML 
code on its page, and this information is 
not encrypted with the HTML entities, then 
there is an XSS hole where the written 
information can be interpreted again by 
browsers. In practice, this type of 
vulnerability is similar to the non-persistent 
one, except in a very important case. In 
older scripting models, a script was placed 
on objects in the local area on the client 
side, such as the local hard drive, and by 
using an XSS hole of this type on the             
local page, it could perform remote 
vulnerabilities. For example, if an attacker 
hosts a malicious website, which includes 
a link to a vulnerable page on the client's 
local system, a script could be injected and 
executed on the system with the user's 
browser access level. Thus, not only can 
the information normally obtained by XSS 
be accessed, but also all customer-side 
information can be accessed. 

- Non-Persistent attacks: A non-persistent 
attack or a type of XSS, also known as a 
reflected vulnerability, is the most common 
type of XSS attack. It is easier to 
implement the reflected type than any 
other type. These holes are observed 
when the data provided by the client web is 
immediately used by the server-side 
scripts to generate that user's results page. 
If invalid data provided by the user is 
placed on the result page without HTML 
encryption, it allows the client-side code to 
be injected into the dynamic page. A 
traditional example of this type of search 
engine attack is this: If someone searches 
for a string that contains some specific 
HTML characters, the search string is 
usually displayed on the result page to 
indicate what was searched, or at least the 
search terms are placed in the text box for 
easier editing. An XSS hole is created if 
not all search term events are HTML-
encrypted entities. At first glance, this does 
not seem like a big deal, as users can only 
inject code into their pages. This is when 
the attacker can persuade the user to 
follow a malicious URL that injects code 
into the result page, thereby giving the 
attacker full access to the page content. 

- Persistent attacks: Persistent or type 2, 
or persistent vulnerability is known as a 
Stored XSS (or double-vulnerability) and 
allows the strongest XSS attacks. XSS 
Type 2 Vulnerability occurs when user-
generated data for a web application is first 
stored permanently on a server such as a 
database or a file system and then 
displayed to users on a web page without 
encryption using HTML entities. A 
traditional example of this is an online 
messaging attack where users are allowed 
to send HTML messages for other users to 
view. The persistent XSS is more 
important than the other types because, in 
this type, the malicious script of the 
attacker is transmitted more than once. 
Such attacks can potentially affect a large 
number of users and a virus or XSS worm 
can infect the application. Injection 
methods can be very different, and an 
attacker may not have the prerequisites to 
use a web application to execute such an 
attack alone. Any data received by the web 
application, such as e-mail or system logs 
that can be controlled by an attacker,              
must be encrypted before it can be re-
displayed on the dynamic page, otherwise, 
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an XSS vulnerability of this type could 
occur. 

 

5. ARCHITECTURE AND DATA FLOW 
DIAGRAM OF THE PROPOSED 
SYSTEM 

 

Fig. 3 depicts the proposed system                     
architecture consisting of six components: data 
provider, preprocessor, analyst, manager and 
controller, responder, and intrusion detection 
system. 
 

The data provider component is responsible for 
collecting the data required by the system and 
sending them to the preprocessor unit. This 
component is associated with the event file, 

receives the required system data from this file, 
and delivers it to the preprocessor component. 
Having received data from the data provider 
component, the preprocessor component 
extracts the required properties. Special features 
are extracted for each type of attack. These 
properties are numeric, so the database data is 
converted to records with numeric fields. The 
analyst component, which is the most important 
component of the system, has two functions: 
training and detection. In the training phase, the 
analyst receives the generated records from the 
preprocessor component and sends them to the 
SVMs for training. In the detection phase, when 
new data is resubmitted to the analyst, it 
determines whether the data was previously

 

 
 

Fig. 3. Architecture and data flow diagram of the proposed system 
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normal or abnormal by using trained SVMs. The 
responder generates the appropriate response 
based on the output received from the analyzer. 
The response is done passively, that is, if an 
attack is detected, it only notifies the system 
security manager of the attack by generating 
various types of warnings, and leaves other 
actions, such as tracking down the attacker or 
taking action against it, to the system security 
manager. It also stores information about the 
attack in a file called the Attack Log. The system 
security administrator to track an attacker can 
use this file. The System Assessor component 
evaluates the performance of the intrusion 
detection system based on the parameters 
defined by the system security manager and by 
accessing the log files and therefore reports to 
the system security manager on the performance 
of the system. The system security manager 
gives the evaluation command to this component 
at different time intervals. The interface 
component of the system security manager is 
under the control of the system security manager 
and provides a communication interface between 
the system security manager and other units. 
Through this, the system security manager can 
send control messages to each component to 
start or end the component, for example, the 
system evaluator can order system performance. 
It can also change the way each component 
works, for example, it can determine the type of 
features that are extracted in the preprocessor, 
or it can instruct the data provider to order 
specific data from the database. The system 
security manager can also change the type of 
SVMs used in the analyzer unit by changing its 
kernel, or react appropriately to the attack by 
receiving a warning from the responding unit. In 
general, two activities including the possibility of 
managing all components, and setting work 
policies per unit may be taken as the main tasks 
of the system security manager. 
 

6. IMPLEMENTATION DETAILS 
 
The features and support vectors extracted in the 
preprocessing stage are obtained from the 
values of the parameters sent to each node. The 
input dataset having a large number of features 
is changed. Specific properties are extracted per 
SQL and XSS attacks, as follows. 
 

6.1 Extracting Features 
 
The average length of full HTTP request 
parameter values: The average length of full 
HTTP request parameter values is one of the 

main extracted features. The request length 
module is computed based on the certain length 
of the URL to analyze each record as normal or 
attacked. Regular pattern analysis is emphasized 
on the content of URLs and other features to 
analyze certain attack patterns. In XSS and SQL 
injection attacks, due to the frequent use of 
special characters, the length of the request 
parameter values increases, while in normal 
requests, the length of the request parameter 
values does not exceed a certain value. 
Therefore, the mean length of the request 
parameter values can be taken as an important 
feature to distinguish between normal and 
intrusive requests. This feature is calculated 
equally for XSS and SQL injection attacks. 
 

Mean character distribution of full HTTP 
request parameters: The mean character 
distribution characteristic of the request 
parameters is calculated equally for XSS and 
SQL injection attacks. To characterize the 
average character distribution of the request 
parameters from 33 to 96 characters and from 
123 to 126 of the ASCI table, i.e a total of 68 
characters have been used. The selected 
character sets are printable characters that are 
often used in written text. Characters 97 to 122 of 
the letters a to z are lowercase, and because 
these letters are uppercase from the number 65 
to 90, in the said set, they have been removed to 
reduce the dimension. With this condition, if the 
characters are viewed in small, their large 
equivalent is considered. For each character, the 
percentage of presence of that character is 
calculated relative to the length of the parameter 
value. Then for each character, the average of 
this percentage of attendance in all the 
parameters of a request is calculated and added 
to the support vector as a field. 
 

Mean Distribution Equivalent to the Basis of 
Hexadecimal Specific Characters: Sometimes 
intruders use the equivalent of the Basis of 
Hexadecimal Specific Characters instead. This 
usually happens with characters that are used to 
intrude. Although using the Basis of Hexadecimal 
Specific Characters alone does not mean 
intrusion, it usually indicates some kind of 
anomaly. This anomaly means that because a 
normal user typically uses normal characters, 
using the Basis of Hexadecimal Specific 
Characters can indicate some kind of abnormal 
behavior. To detect such an anomaly, the 
equivalent of the Basis of Hexadecimal Specific 
Characters, which are mainly used in these two 
attacks, is also considered. The use of the Basis 
of Hexadecimal Specific Characters is not 
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common for other characters. Table 2 characters 
are used by SQL injection attacks for intrusion, 
the equivalent of which is written as the Basis of 
Hexadecimal Specific Characters. 
 

Similarly, in XSS attacks, the characters in              
Table 3 are widely used, with the equivalent of 
the Basis of Hexadecimal Specific Characters 
written on them. 
 

The two characters <and> that are used both as 
the character itself and as the Basis of 
Hexadecimal Specific Characters are used as 
the <script> keyword along with the script 
keyword, and this is the reason why they are 
used so much as both the character and the 
Basis of Hexadecimal Specific Characters. The 
base rate equivalent to the Basis of Hexadecimal 
Specific Characters of the above tables is first 
calculated for each parameter value and then 
averaged from these values. 
 

The presence of keywords in the request: The 
main problem in the SQL injection flaws is the 
use of SQL queries via the web to receive or 
modify sensitive and confidential information 
stored in the database. These queries can be 
both in the URL and in the body of a request. 
Also for XSS attacks, a malicious script can be 
placed in the URL or body of the request, while a 
normal request does not contain any scripts. To 
prevent these two attacks, the user should not be 
allowed to use SQL and script commands in the 
URL or the body. The point to be noted here is 
that this feature is considered in the whole 
request and is not calculated separately in each 
parameter value. This is because such words are 
usually not seen in one or more of the parameter 
values, and in practice, averaging them reduces 
the likelihood of a keyword is present. Therefore, 

the presence of keywords for the completely 
requested request is calculated. Thus, the most 
important keywords used in the SQL injection 
flaws are as follows. 
 
Keywords_SQLInjection= {Select Insert                         
Update Delete Execute Where AND OR            
Having} 
 
One bit is taken per keyword so that in the 
presence of that keyword, the number 1, and in 
the absence of it, the number 0 is given to the bit 
value. Putting these bits together in base 2 gives 
a number. This number is added as the feature 
value of the presence of keywords to the                   
support vector. For example, if the words ‘select’, 
‘from’, ‘where’, and ‘having’ are used in a SQL 
injection flaw, the field value is that of in              
Table 4. 
 
The obtained value is [1000011001] 2, which is 
converted to the decimal value of 537. This 
number is added to the support vector as a 
keyword presence feature. Obviously, by shifting 
the order of the keywords, different numbers are 
obtained. The order of these words is shown in 
Table 3. The reason for this choice is the 
approximate order of use of these words in SQL 
queries. As in a SQL query, first words like 
select, update, etc. are inserted, then words like 
where and finally words like having are entered. 
This procedure is followed to obtain a logical 
binary value by assigning bits to each word. 
 
The following set of keywords is used in XSS 
attacks: 
 
Keywords_XSS={script  window  document    
command location write exe onload onerror}

 
Table 2. The base equivalent of the basis of hexadecimal specific characters for a SQL 

injection attack 
 

' ) ( . ! ; % = -- Character 

27 29 28 2e 21 3b 25 3D 2D2D Basis of 
Hexadecimal 

 
Table 3. The base equivalent of the basis of hexadecimal specific characters for XSS attack 

 

) ( > < & % Character 

29 28 3e 3c 26 25 Basis of Hexadecimal 

 
Table 4. An example of assigning bits to the presence of keywords in a request 

 

Having OR AND Where From Execute Delete Update Insert Select 

1 0 0 1 1 0 0 0 0 1 
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XSS attacks typically use JavaScript. These are 
the words used for coding in JavaScript. The 
order of these keywords is based on the most 
likely occurrence of that keyword in XSS attacks 
and on the approximate order of coding in 
JavaScript. Similar to the method described for 
SQL injection flaws, one bit is considered for 
each word in this set. If that word appears, the bit 
value is 1; otherwise, the bit value is 0. Then this 
binary value is converted to a decimal number. 
The decimal number obtained from this 
conversion is added to the support vector as the 
value of the presence of keywords.  
 
Character Binary Arrangement: The Character 
Arrangement property means that the order of 
the characters can be added to the support 
vector as a numeric value. This property is 
calculated for the values of the parameters of a 
request so that the binary combinations of the 
characters in the value of a parameter are 
considered. For example, if you consider the 
guess value of the password parameter, the 
combinations of "gu, ue, es, ss, sm, and me" 
must be considered, which means that, for 
example, in the value of a parameter, the 
character of g is seen before u. To obtain such 
an arrangement, each binary combination of 
characters in the value of a bit parameter or flag 
can be assigned. If a specific character 
sequence appears, the bit value is 1 and, 
otherwise 0. As mentioned earlier, since the 
parameter value of 68 characters is used in the 
character distribution, for binary sequences, 
since the duplication of two characters in a row is 
eliminated, 68 x 68, i.e. 4556 modes and bits, is 
possible. To implement 4556 modes, considering 
that each integer has 32 bits, it is necessary to 
add 143 digits to support vectors. Adding 143 
digits to the support vectors creates a lot of 
computational overhead and is practically 

impossible. To solve this problem, the number of 
occurrences of each character order in all 
requests is calculated, and if that order never 
appears, it is deleted. Then, for the sequences 
that have appeared at least once, the sequences 
that have less than the average number of 
occurrences of all the sequences are also 
removed. Thus, the number of cases is reduced 
to approximately one-third, i.e. 1600 cases. To 
implement these 1600 modes, considering that 
each integer requires 32 bits, 50 32-bit                       
digits have been used. Therefore, 50 32-bit                  
digits are added to the support vector so that 
each bit represents a dual sequence of 
characters. 
 
Parameter sequencing: Parameter sequencing 
is usually maintained in legal invocations of 
server-side applications, even when some 
parameters are deleted, while this sequence is 
not necessarily present in XSS and SQL injection 
flaws. The parameter sequence property is 
added to the support vector for the same reason. 
Thus, two integers of 32 bits, i.e. a total of 64 
bits, have been used. For each binary order that 
appears from the parameter values, one bit is 
considered; if it appears, the binary order is bit 
value 1; otherwise, the bit value is 0. The total 
number of modes is always one of the total 
number of parameters and the selection of 64 
bits is done for the same purpose. Therefore, for 
each request, two numbers are added to the 
support vector, in which the bit indicates the 
appearance or non-appearance of a sequence of 
the request parameters. 
 

6.2 Extract the Support Vector  
 

Given the above, Tables 5 and 6 depict the 
extracted support vector for XSS and SQL 
injection flaws. 

 

Table 5. The extracted support vector for SQL injection flaws 
 

Parameter 
sequencing 

Character 
binary 
arrangement 

The 
presence 
of 
keywords 
in the 
request 

Mean 
distribution 
equivalent 
to the basis 
of 
hexadecimal 
specific 
characters 

Mean 
character 
distribution 
of request 
parameters 

Average 
Length of 
full HTTP 
request 
parameter 
values 

Features 
extracted 

2 50 1 10 68 1 Number 
of fields 
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Table 6. The extracted support vector for XSS attacks 
 

Parameter 
sequencing 

Character 
binary 
arrangement 

The 
presence 
of 
keywords 
in the 
request 

Mean 
distribution 
equivalent 
to the basis 
of 
hexadecimal 
specific 
characters 

Mean 
character 
distributio
n of 
request 
parameter
s 

Average 
length of 
full HTTP 
request 
parameter 
values 

Features 
extracted 

2 50 1 6 68 1 Number 
of fields 

 
Table 7. File distribution of the CSE-CIC-IDS2018 dataset 

 

Number of samples 
after cleaning 

Number of samples 
before cleaning 

Sample type Name of file 

663,808 
123,688 
163,124 

1,735,479 
193,360 
187,589 

Benign  
FTP-BruteForce  
SSH-Bruteforce 

02-14-2018.csv 

988,050 
41,499 
10,497 
684,287 

2,583,187 
41,508 
10,990 
686,012 

Benign  
DoS-GoldenEye  
DoS-Slowloris 
DDOS-HOIC 

02-15-2018.csv 

446,772 
71,889 
456,913 
1730 
576,191 

1,168,054 
139,890 
461,912 
1730 
576,191 

Benign  
DoS-SlowHTTPTest  
DoS-Hulk 
DDOS-LOIC-UDP 
DDOS-LOIC-HTTP 

02-16-2018.csv 

1,042,603 
246 
79 

2,725,812 
249 
79 

Benign  
BruteForce-Web  
BruteForce-XSS 

02-22-2018.csv 

1,042,301 
347 
151 
72 

2,725,523 
362 
151 
87 

Benign 
BruteForce-Web  
BruteForce-XSS  
SQL-Injection 

02-23-2018.csv 

235,778 
92,403 

616,425 
161,934 

Benign 
Infiltration 

03-01-2018.csv 

758,334 
285,016 

1,982,611 
286,191 

Benign 
Bot 

03-02-2018.csv 

5,177,655 
2,508,132 

14,097,779 
2,748,235 

Benign  
Attack 

Binay Class 

7,685,787 16,846,014 - Total 

 
According to the above tables, the support vector 
for XSS and SQL injection flaws are 132 and 128 
fields, respectively. 
 

6.3 Implementation Technical 
Considerations  

 
The use of datasets that are comprehensive, 
accurate, and traffic-specific is a key issue in 
training and testing an intrusion detection 
system. The best option is to use data collected 
from web servers that are to be protected. 

However, these data are usually not available to 
other researchers for security reasons to 
compare the results of different algorithms. This 
has led us to use both open but less real data as 
off-line audit data, and closed but pseudo-real 
datasets as online audit data. The recent well-
known open dataset used for intrusion detection 
is the Realistic Cyber Defense (CSE-CIC-
IDS2018) dataset. Since the publication of this 
dataset, a relatively large number of papers have 
been published. This dataset is the result of a 
collaborative project between the 
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Communications Security Establishment (CSE) 
and The Canadian Institute for Cyber Security 
(CIC) that use the notion of profiles to generate 
cybersecurity datasets systematically. It includes 
a detailed description of intrusions along with 
abstract distribution models for applications, 
protocols, or lower-level network entities. The 
dataset includes several different attack 
scenarios, namely Brute-force, Heartbleed, 
Botnet, DoS, DDoS, XSS, SQL Injection, 
Portscan, Web attacks, and infiltration of the 
network from inside. The data is organized in 
seven CSV files, where each row is a sample, 
labeled as benign or with the name of the 
corresponding attack. The attacking 
infrastructure includes 50 machines and the 
victim organization has 5 departments including 
420 PCs and 30 servers. This dataset includes 
the network traffic and logs files of each machine 
from the victim side [39], along with 80 network 
traffic features extracted from captured traffic 
using CICFlowMeter-V3 [40]. The data is 
organized in seven CSV files, where each row is 
a sample, labeled as benign or with the name of 
the corresponding attack [41]. We run analytics 
queries using Spark SQL API [42] and cleaned 
the data using the Python script provided by [43]. 
That is, we dropped the samples with                        
missing feature values and removed the columns 
with no values. Table 7 shows the file distribution 
of the data before and after the cleaning     
process. 
 
Leevy et al. [44] presents a comprehensive 
survey and analysis of other machine learning 
intrusion detection models based on 
CSE‑CIC‑IDS2018 Big Data. It should be noted 

that recently other datasets like CIRA-CIC-
DoHBrw-2020 and CIC-Bell-DNS2021 have been 
produced till now [45], but since they did not 
contain injection flaw attacks, we could not use 
them in our experiments. 
 
To apply real data, moreover the use of XSS and 
SQL Injection attacks in the CSE-CIC-IDS2018 
dataset as offline data, we tried to use the tools 
and methods that are described below, as online 
data, to create a set of data that has the three 
principles of comprehensiveness, accuracy, and 
traffic, so WebInspecct software has been used. 
All of them correspond to all types discussed in 
Section 4, and the same types of requests are 
generated for both attack types. For this purpose, 
we apply  WebInspect which is the most accurate 
and comprehensive way to diagnose 
vulnerabilities in applications and web servers. 

Using WebInspect, administrators and users can 
easily and quickly scan their applications and 
web servers for vulnerabilities. 
 
This software determines the vulnerability by 
multiple attacks on the designated target and 
reports it if the vulnerability is detected. The main 
features of this software are as follows: The 
ability to perform scanning and auditing 
processing separately and simultaneously 
organized reporting, manually attack control, 
provide system status summary, ability to change 
and correct navigation policies, traffic view 
screen, and the ability to select different Web 
attacks. 
 
To provide attack data, we target an application 
with special properties as the target of the attack 
and attack it using the powerful WebInspect 
attack tool. Files registered on the server 
represent records that can be reliably labeled. 
We first turn our system into a web server using 
XAMMP. XAMMP is a software package that 
installs MySQL on a computer, Apache server, 
and database. Then we use a web application 
called Evilboard as the target to attack. In 
Evilboard, users can send messages and talk to 
each other. In summary, we choose it as the 
target of the attack for the following: 
 
- The ability of users to connect as a 

community, and as we said before, such 
programs are good places for XSS and 
SQL injection flaws. 

- A large number of connections of this 
program, which as a result provides us 
with more scalability by WebInspect. 

 

7. IMPLEMENTATION, SYSTEM 
EVALUATION, AND RESULTS 
ANALYSIS  

 
7.1 Implementation 
 
As we mentioned, the proposed system 
architecture applied both online audit data and 
offline audit data. To implement the proposed 
system, we use the CSE-CIC-IDS2018 dataset 
for offline audit and install Evilboard on the node 
that has become the webserver for the online 
dataset. In the following, we introduce Evilboard 
in WebInspect as the attack target. To create a 
suitable online dataset, we first scan all Evilboard 
connections using the WebInspect scan mode, 
then delete the log file and use the audit mode to 
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send an attack to Evilboard, specifying the type 
of attack. In this case, we can be sure that the 
obtained log file only contains records with the 
attack tag. This is done separately for XSS and 
SQL injection flaws. A normal network is used to 
provide online normal data, which is installed on 
the server of the Evilboard node. The users of 
this local network are selected as connected 
clients through this program. The traffic 
generated on this network was collected for one 
week and used as normal data. Since this 
network was not connected to any external 
network such as the Internet, etc., we can be 
sure that there is no attack data in it. Table 8 
shows the amount of data attacks and normal 
datasets obtained. Of both online audit data and 
offline audit data, ten percent are used as test 
data, and the rest are used as training data. 
 

After preparing the online dataset, the 
preprocessing step is performed using Matlab 
software on both normal data and attack data on 
both online and offline datasets, and the features 
required to detect XSS and SQL injection flaws 
are extracted so that at each request a feature 
vector is specified. These support vectors are 
given to the analyzer component. In the analyzer 
component, the data obtained from the previous 
step is given to SVMLight for training. SVMLight 
is an implementation of the C-language SVM. 
This software package can be run on UNIX as 
well as other environments, including Windows. 
To use this software package, you need to create 
executable files, format the training, and test data 
in a way that can be used by the software. Using 
the LightDataAgent program, you can easily 
convert training data to the required SVMLight 
format. One of the most important features of 
SVMLight is the ability to select different kernels 
for the SVMs. 
 

7.2 Evaluation 
 

As we say in the introduction, determining the 
appropriate kernels and the right value of their 
parameters is one of the open issues in support 
vector machines. Thus, in this section, the 
experiments are done in two stages. The first 
step is to find the appropriate kernel function and 

the second step is to determine the right value of 
parameters. In the first step, accuracy, precision, 
and recall defined by the Confusion Matrix were 
used to evaluate the proposed system. Using 
both offline and online datasets are explained 
before, the results obtained for the different 
kernels of the SVMs are shown separately in 
Tables 9 and 10.  
 
According to Tables 8 and 9, the best results for 
accuracy, precision, and recall for both XSS and 
SQL injection flaws are for the RBF kernel. The 
reason was hindered by the RBF's ability to 
classify non-linear behavior as well as the non-
linear label. Both of these were solved by the 
introduction of the RBF kernel and the 
incorporation of soft margins. The use of radial 
SVMs results in obtaining better results from the 
classification process when compared to normal 
linear SVMs. In linear SVMs, the classification is 
made by the use of linear hyperplanes. Trying to 
attain a hyper-plane reduces the distance from 
the members of each class to the voluntary 
hyper-plane. But the use of linear SVMs has the 
disadvantages of getting a less accurate result, 
getting overfitting results, and being robust to 
noise. These shortcomings are effectively 
suppressed by the use of the radial SVMs where 
non-linear kernel functions are used and the 
resulting margin hyper-plane fits in a transformed 
feature space. The corresponding feature space 
is a Hilbert space of infinite dimensions when the 
kernel used is a Gaussian radial basis function. 
After the RBF kernel, the best results are for 
Gaussian. The Gaussian kernel in particular 
guarantees the existence of such a decision 
boundary. By observing that all the kernel entries 
are non-negative, it can be concluded that all the 
data in the kernel space lies in the same 
quadrant. This makes the Gaussian kernel well-
suited to deal with any arbitrary dataset. The 
overfitting of kernel functions also appeared in 
two other of the four experimented functions. 
However, our experiment with RBF and 
Gaussian kernel showed not only similar 
detection performance as the soft margin SVMs, 
but also showed consistently higher accuracy, 
precision, and recall rates than that of the others. 

 
Table 8. Produced data 

 

The amount of XSS attack data The amount of SQL injection flaws in data Normal data 

650894 639428 756347 
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Table 9. Results of SQL injection flaws 
 

Precision Recall Accuracy Kernel Function 

98.31 93.95 98.37 Linear 
K(x,y)=ax+by 

99.00 96.82 98.92 Polynomial 
k(x,y)=(x*y+1)

d
 

99.78 99.08 99.72 RadialBasisFuncion 
K(x,y)=exp(-1/2σ

2
||x-y||

2
) 

99.40 97.99 99.26 Gaussian 
k(x,y)=exp(-(x-y)

2
/δ

2
) 

 
Table 10. Results of XSS attacks 

 

Precision Recall Accuracy Kernel Function 

98.08 93.70 98.00 Linear 
K(x,y)=ax+by 

99.02 96.51 98.81 Polynomial 
k(x,y)=(x*y+1)

d
 

99.21 97.75 99.12 RadialBasisFuncion 
K(x,y)=exp(-1/2σ

2
||x-y||

2
) 

99.10 96.80 99.02 Gaussian 
k(x,y)=exp(-(x-y)

2
/δ

2
) 

 

 
 

Fig. 4. Comparison of precision criteria obtained for XSS and SQL injection flaws 
 

Table 11. Results obtained with different gamma parameter values for SQL injection flaws 
 

Precision  Recall  Accuracy Value of The Gamma Parameter in The RBF Kernel 

90.87 91.96 91.58 0.0001 
92.46 93.71 92.66 0.001 
94.68 95.80 93.72 0.01 
96.89 96.77 96.68 0.1 
96.96 96.96 96.86 0.2 
97.37 97.91 96.94 0.3 
98.79 98.56 97.49 0.4 
99.78 99.08 99.72 0.5 
99.65 98.81 99.01 0.6 
99.47 98.35 98.50 0.7 



 
 
 
 

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965 
 
 

 
75 

 

 
 

Fig. 5. Comparison of recall criteria obtained for XSS and SQL injection flaws 
 

 
 

Fig. 6. Comparison of accuracy criteria obtained for XSS and SQL injection flaws 
 
In addition, a comparison of these two tables 
shows that the results obtained for the SQL 
injection flaws have better values than the XSS 
attack. In general, because of their nature, SQL 
injection flaws have more predictable behavior 
than XSS attacks. SQL injection flaws do not 
waste system resources as other attacks do. Vs. 
XSS attacks occur when an attacker uses a web 
application to send or execute malicious code on 
a user’s computer.  Therefore, due to the limited 
resources in fog computing, the detection of SQL 
injection flaws is more accurate. The details of 
Tables 8 and 9 are shown in the following 
figures, for a closer look. 
 
Of course, it should be noted that the results 
were achieved in 2 for the gamma parameter and 
0.5 for the bandwidth parameter. In the second 

step of our experiments, we performed to obtain 
the appropriate value of the parameters. For 
more details, see Tables 11 to 14. Experiments 
with different gamma parameter values have also 
been performed for the RBF kernel. The obtained 
results are shown in Tables 11 and 12. 
 
A comparison of Tables 11 and 12 shows that 
the best results are related to the value of 0.5 for 
the gamma parameter for both SQL injection 
flaws and XSS attacks. The result is improved by 
increasing the amount of gamma until 0.5 and 
decreasing after that. 
 
For the Gaussian kernel, experiments with 
different values of the bandwidth parameter in 
the Gaussian kernel have been performed as 
shown in Tables 13 and 14. 
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Table 12. Results obtained with different gamma parameter values for XSS attacks 
 

Precision  Recall  Accuracy Value of the gamma parameter in the RBF kernel 

93.97 91.56 92.37 0.0001 
94.76 93.68 94.46 0.001 
94.91 94.85 95.72 0.01 
96.96 95.37 96.48 0.1 
97.37 95.71 96.97 0.2 
97.99 95.98 97.52 0.3 
98.27 96.46 98.71 0.4 
99.21 97.75 99.12 0.5 
98.80 97.51 98.94 0.6 
98.67 97.20 98.73 0.7 

 
Table 13. Results with different bandwidth parameter values for SQL injection flaws 

 

Precision  Recall  Accuracy Values of The Bandwidth Parameter in The Gaussian Kernel 

87.71 89.43 85.40 0.0001 
89.96 90.67 89.56 0.001 
90.95 92.48 90.45 0.01 

92.87 93.71 91.67 0.1 
92.95 93.86 91.78 0.5 
92.98 93.93 91.99 1 
92.96 93.94 91.97 1.3 
93.37 94.26 91.37 1.5 
93.56 94.51 92.56 1.7 
99.40 97.99 99.26 2 

99.15 97.85 99.01 2.3 

98.82 97.60 98.41 2.5 
 

A comparison of Tables 13 and 14 shows that 
the best results are related to the value of 2 for 
the bandwidth parameter for both SQL injection 
flaws and XSS attacks. The result is improved by 
increasing the amount of gamma until 2 and 
decreasing after that. Besides, the amount of 
time required to perform the experiments was 
almost the same and no significant difference 
was observed.  
 

Then we addressed different types of SVMs 
discussed earlier to better evaluate the proposed 
method. Proper judgment requires that all 
methods use the same dataset and be                 
used to detect the same attack categories.                      
In this regard, we went through a difficult 
process, the details of which are summarized in 
the following. It should be noted that our 
proposed method has also been performed with 
the RBF kernel. 
 

All methods were implemented based on the 
algorithm presented in their references and 
tested with the same dataset that contained a 
combination of CSE-CIC-IDS2018 and an online 
dataset. For this purpose, we tried to access 

most of the codes of these references. Some of 
them through contact with the original authors, 
and some of them through the code that was 
made available. Virtualization was also used to 
perform experiments in cloud computing and fog 
computing environment. With this approach, we 
tried to observe the three principles of 
comprehensiveness, accuracy, and having the 
necessary traffic. In addition, a new dataset 
obtained was used to compare the 11 algorithms 
used in our experiment. First of all, it should be 
noted that all the methods discussed have 
performed their experiments on their dataset, but 
since we have implemented these methods on 
our dataset, it is very logical that our detection 
rate is slightly different from the detection rate 
reported by the respected authors of these 
articles.  The mean accuracy of the proposed 
method in comparison with the mean accuracy of 
11 other methods is presented in Fig. 7, which                
is: 
 

1. A support vector machine based on 
entropy and tf-idf in 2008 [14], 

2. Combination of support vector machines 
and neural networks in 2013 [15], 
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3. Robust support vector machines in 2013  
[9], 

4. Combination of support vector                    
machines and binary particle swarm 
optimization and standard particle swarm 
optimization in cloud computing in 2019 
[21], 

5. Density-based binary support vector 
machines in cloud computing 2015                       
[16], 

6. Combination of support vector machines 
with fuzzy clustering in cloud computing in 
2020 [20], 

7. One-Class support vector machine in cloud 
computing in 2020 [10], 

8. Combination of support vector machines 
with information gain in cloud computing in 
2020 [19], 

9. Combination of support vector machines 
with deep learning in cloud computing in 
2020 [18], 

10. Combination of support vector machines, 
principal component analysis, and particle 
swarm optimization in fog computing in 
2022 [22], 

11. Combination of Software Defined 
Networking (SDN) with the SVMs and 
Selective Logging for IP Traceback in 2021 
[23], 

12. Proposed method. 
 

 
 

Fig. 7. The Chart of mean accuracy obtained from the proposed method in comparison with 
the mean accuracy obtained from other methods based on the types of support vector 

machines 
 

Table 14. Results with different bandwidth parameter values for XSS attacks 
 

Precision  Recall  Accuracy Values of the bandwidth parameter in the Gaussian kernel 

85.57 91.97 87.37 0.0001 
87.71 90.86 89.46 0.001 
88.91 91.94 89.59 0.01 

90.89 92.74 90.75 0.1 
91.98 92.97 90.89 0.5 
90.96 92.98 90.94 1 
91.37 93.27 93.98 1.3 
91.41 93.48 91.49 1.5 
91.56 93.66 91.67 1.7 
99.10 96.80 99.02 2 

98.73 96.22 98.70 2.3 

98.13 95.67 98.33 2.5 
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According to Fig. 7, the proposed method 
provides a plausible result compared to other 
methods. The results indicate good performance 
of the proposed system; this is for the proper 
extraction of features and support vectors, with 
the proposed efficient architecture. In addition, 
the use of appropriate kernels and proportional 
values obtained from the results of experiments 
performed for the values of dependent 
parameters is another reason for the high 
efficiency of the proposed method. Due to the 
use of a real database and the same                 
conditions for all methods, it can be            
explicitly said that the obtained results are close 
to reality and an accurate evaluation has been 
done. For more details, the following reasons are 
stated: 
 
- According to Fig. 7, the rate of 89.86 was 

obtained for the accuracy criterion of 
reference [14]. Although this method was 
introduced in 2008, the result shows good 
performance for this method. The relatively 
low detection rate of this method can be 
attributed to its incompatibility with recent 
computing. In this regard, we first extracted 
the entropy and TF-IDF (term frequency 
and inverse documents frequency) from 
processes. Next, entropy and TF-IDF 
features are sent to the SVMs model for 
learning and testing. Finally, using a voting 
schema named Weighted Voting SVM 
(WV-SVM) to determine whether a process 
is an intrusion. 

- Compared with [15] made us a long way. 
This reference was working with KDD Cup 
99 dataset and we had to implement 
feature extraction patterns on the CSE-
CIC-IDS2018 and online dataset. Of 
course, it should be noted that this method 
used an RBF kernel, which made us a bit 
easier. However, after the experiments, the 
result was an 86.92 rate for the accuracy 
criterion, which was not a good result. The 
reason was hindered by getting caught in a 
local optimum. Moreover, using a neural 
network takes more time for training. This 
method has five major steps in which, the 
first step is to perform the relevance 
analysis, and then input data is clustered 
using Fuzzy C-means clustering. After that, 
neuro-fuzzy is trained, such that each of 
the data points is trained with the 
corresponding neuro-fuzzy classifier 
associated with the cluster. Subsequently, 
a vector for SVMs classification is formed 
and in the last step, classification using 

RBF-SVM is performed to detect whether 
an intrusion has happened or not.  

- [9] states that only normal data is required 
for training before anomalies can be 
detected. The key idea is that outliers 
should contribute less to the decision 
boundary than normal instances. It causes 
the decision boundary to be shifted 
towards the normal points. The rate of 88.2 
is achieved in our experiment. Centralized 
to only anomaly detection is the reason for 
this low accuracy. 

- Like [9,21] focused on anomaly-based 
network intrusion detection systems called 
(NIDS). This is also the reason for its low 
detection rate in general compared to our 
method.  But the ability to run in cloud 
computing and taking some consideration 
has made it performs better than [9] until 
we reached the rate of 92.88 for the 
accuracy parameter. This approach can 
monitor and analyze the network traffics 
flow that targets a cloud environment. The 
network administrator should be notified 
about the nature of this traffics to drop and 
block any intrusive network connections. 
SVMs are employed as the classifier of the 
network connections. The binary-based 
Particle Swarm Optimization is adopted for 
selecting the most relevant network 
features, while the standard-based Particle 
Swarm Optimization is adopted for tuning 
the SVMs control parameters. For an 
experiment, we changed the NSL-KDD 
dataset to the CSE-CIC-IDS2018, and the 
online dataset was used as the network 
data source. This approach is trained and 
tested on the benchmark of our dataset 
and the evaluation results stated its 
efficacy in recognizing normal behaviors 
and detecting the attacks. 

- Reference [16] is one of the first works 
done to detect intrusions in cloud 
computing. However, 90.99 is a suitable 
detection rate. In this approach, a new 
intrusion detection method of binary SVMs 
with Hadoop is put forward, whose basic 
idea is, according to the density of the data 
set to set the priority classification, let the 
class of the easiest separate, and generate 
the training decision tree, to improve the 
accuracy of the classification model. This 
algorithm is modified to one based on 
MapReduce. It is the innovation of this 
approach. For an experiment, we used 
virtualization. Within each virtual machine, 
we have the same basic configuration 



 
 
 
 

Azarkasb and Khasteh; J. Eng. Res. Rep., vol. 25, no. 3, pp. 59-84, 2023; Article no.JERR.100965 
 
 

 
79 

 

software environment used in [16] such as 
Ubuntu 16.05 for Operating System, 
jdk1.7.0_05 for the JDK version, Weka 
package for SVMs tool, and Hadoop 
version 0.20.2. In addition, we used the 
CSE-CIC-IDS2018 and online dataset 
instead of the KDD Cup 99 dataset to get 
real and comparable results. Although the 
ability to detect known attacks is the 
advantage of this method, but also the 
inability to detect unknown attacks and 
anomaly detection is a shortcoming of this 
method. 

- Jaber and Rehman [20] proposes an 
intrusion detection system that combines a 
fuzzy c-means clustering (FCM) algorithm 
with SVMs to improve the accuracy of the 
detection system in the cloud computing 
environment. As before, performed 
experiments, we changed the dataset. 
Even though this method has been 
implemented in cloud computing, 
centralized just on DDoS attacks caused 
its detection rate to be below 88.61 in our 
experiment. 

- Mahfouz et al. [10] presents a network 
intrusion detection approach that trains on 
normal network traffic data and searches 
for anomalous behaviors that deviate from 
the normal model. Its proposed approach 
applies a one-class support vector 
machines (OCSVM) algorithm to detect 
anomalous activities in the network traffic. 
The basic author's idea was to use an 
appropriate kernel function to map the 
input data to a high-dimensional feature 
space. By doing this, it was possible to 
create a decision function that best 
separates one-class samples from second-
class samples with the maximum margin. 
To perform the experiments, in addition to 
using the CSE-CIC-IDS2018 dataset as an 
off-line audit, for online audit we 
implemented the Modern Honey Network 
(MHN), which is a centralized server to 
manage and collect data from honeypots. 
MHN has an easy to use Web interface 
that helps in quickly deploying the sensors 
and immediately collecting viewable data. 
We used Google Cloud to create instances 
of Ubuntu 16.05 LTS servers, where we 
had one MHN server, and sensor servers. 
Using this architecture like [10], we were 
able to collect a large amount of data 
through the sensors. Next, we used Azure 
Machine Learning (AML), which is a cloud-
based environment from Microsoft to 

preprocess data, train and test, deploy, 
manage, and track machine learning 
models. The AML evaluation module 
shows that there is no big variance in the 
results, and the average accuracy of the 
proposed anomaly detection model was 
89.51. By default, a radial basis kernel is 
used like [10]. The relatively low detection 
rate can also be attributed to the time-
consuming and complex decision-making 
power of this method in real-time network 
traffic. The inability to deal with online data 
is an issue that the authors have pointed 
out, which we also found in our 
experiments. 

- In the [19] method, the SVM classifier is 
adopted to binary classify network data in 
either normal or attack behaviors, and due 
to the irrelevant and redundant features 
found in the dataset, information gain (IG) 
is used to select the relevant features and 
remove unnecessary features. IG is a 
method used to decide which feature in a 
given dataset is most important to be used 
in the machine learning process for 
classifying data. The IG uses Shannon's 
entropy to measure the feature set quality. 
Like other experiments, we replaced the 
dataset of this article (KDD Cup 99 and 
NSL-KDD) with our dataset. In this 
method, the authors have used 10-field 
Cross Val to tackle the overfitting problem, 
which divides the dataset into 10 subsets 
of size N/10 (N is the size number of the 
dataset) and uses 9 sub-sets for training 
and 1 remaining sub-set for testing. The 
[19] method was implemented in MATLAB 
and the Weka data mining tool. The SVM 
classifier is applied with the LibSVM 
package in MATLAB and Radial Bias 
Kernel Function is used.  In this regard, we 
achieved rather a high rate of accuracy 
detection equal to 95.95. 

- Wang et al. [18] presented an effective 
stacked contractive autoencoder (SCAE) 
method for unsupervised feature 
extraction. By using the SCAE method, 
better and robust low-dimensional features 
can be automatically learned from raw 
network traffic. The SCAE+SVM approach 
combines both deep and shallow                   
learning techniques, and it fully exploits 
their advantages to significantly reduce               
the analytical overhead. Though authors 
have reported high accuracy in using                    
their datasets as NSL-KDD and KDD                   
Cup 99 datasets but implemented                   
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our dataset, and we achieved 94.75                      
for its accuracy criterion. This can              
happen with any other method, even our 
own. 

- Due to the high dimensionality of network 
data, like [22] we first used Principal 
Component Analysis (PCA) to reduce the 
dimensionality of the data, eliminate the 
correlation between features and reduce 
the training time. Then, in the cloud server, 
a support vector machine optimized by the 
particle swarm algorithm is used to 
complete the training of the dataset, obtain 
the optimal SVMs intrusion-detection 
classifier, send it to the fog node, and carry 
out attack detection at the fog node.  The 
experiments in this reference are based on 
KDD CUP 99 dataset, while we were also 
able to achieve acceptable results up to 
96.21 by performing experiments with our 
dataset. In addition, virtualization is used 
for implementation. Centralized on PCA 
and PSO, and most importantly the ability 
to run in fog computing is one of the main 
reasons for the high efficiency of this 
method. Working in a foggy environment 
reduces the dependence on the dataset 
and at the same time can provide good 
results with a variety of datasets. 

- The authors in [23] aim that it is not           
always correct to take punitive action 
against packets of a traffic flow, solely 
based on a detection of a possible threat 
that may result in blocking or dropping of 
genuine packets. However, IP traceback 
provides the ability to track the actual 
source of the packets in the eventuality of 
an attack. It was very interesting that 
although the authors of this article reported 
an accuracy of 95.98 in using the NSL-
KDD dataset, we achieved an accuracy 
equal to 97.95 in our experiments using 
the CIC-IDS2018 dataset. This is due to 
the high power of this method in 
performing calculations without additional 
overhead and also saving system 
resources. The detection rate of this 
method was very close to the detection 
rate of our proposed method. 

 

8. DISCUSSION AND CONCLUSION 
 
As we move from cloud computing to fog 
computing to reduce bandwidth consumption as 
well as network latency, securing all nodes 
becomes a serious issue. Besides, all nodes are 
at greater risk of attacking vulnerabilities due to 

their limited resources and their proximity to 
attackers. It can be said with certainty that 
implementing a method that can protect all nodes 
from the threat of attackers can establish security 
throughout the system. Fog security is cloud 
security. On the other hand, it is easier to protect 
the node because the fog has more limited 
resources than the cloud and does not have the 
complexities of controlling and establishing 
security in cloud computing. Reducing the 
complexity of the system architecture in fog is the 
key to the success of IoT applications. The 
current paper considers the use of the SVMs 
technique to protect all the nodes from attackers. 
The motivation is the ease of working with high-
dimensional data, the design of the most 
generalized classifier, the achievement of the 
optimal cost function, the automatic 
determination of the optimal structure, and the 
topography for the classifier. According to the 
documentation provided in the authoritative 
articles, the SVM is one of the most widely used 
and efficient machine learning algorithms used in 
recent computer security issues. 
 
In the following, the architecture of the proposed 
intrusion detection system, which consisted of 
the components of the data provider, processor, 
analyst, manager and controller, responder, and 
evaluator, was presented. The proposed system 
architecture applied both online audit data and 
offline audit data. To implement the proposed 
system, we use the CSE-CIC-IDS2018 dataset 
for the offline dataset and install Evilboard for an 
online dataset. The CSE-CIC-IDS2018 dataset is 
the most recent intrusion detection dataset that is 
big data, publicly available, and covers a wide 
range of attack types, especially XSS and SQL 
injection flaw attacks. They are the most 
destructive and harmful web attacks in recent 
global reports. CSE-CIC-IDS2018 contains more 
than 16 million instances. Since then, two 
databases with the names CIRA-CIC-DoHBrw-
2020 and CIC-Bell-DNS2021 datasets have been 
produced, but since they did not contain injection 
flaw attacks, we could not use them in our 
experiments. 
 
For this purpose, WebInspect software was used 
to prepare the data, targeting the principles of 
comprehensiveness, accuracy, and up-to-date 
traffic, targeting Evilboard. The most important 
task of the preprocessing component is to extract 
the appropriate features. The extracted features 
for XSS and SQL injection flaws included the 
mean length of the request parameter values, the 
mean character distribution of the request 
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parameters, the mean distribution equivalent to 
the Basis of Hexadecimal Specific Characters, 
the presence of keywords, the characterization of 
the binary character sequence, and parameters 
sequencing. According to the extracted features, 
the support vector was obtained for XSS and 
SQL injection flaws. SVMLight was used to 
implement the analyst component. In which data 
is converted to readable format by SVMLight 
using LightDataAgent, and given to SVMLight to 
determine the appropriate category. In the 
respondent component, if the output received 
from the analyst indicates an attack, the relevant 
traffic information is recorded along with the 
output from the analyzer, and an appropriate 
warning is generated. 
 
Accuracy, precision, and recall defined by the 
Confusion Matrix were used to evaluate the 
proposed system. The results obtained for the 
different kernels of the SVMs were evaluated 
separately. The best results for accuracy, 
precision, and recall criteria for both XSS and 
SQL injection flaws were obtained on the RBF 
kernel. After the RBF kernel, the best results are 
for Gaussian, Polynomial, and Linear kernels, 
respectively. In addition, the results obtained for 
the SQL injection flaws detection have better 
values than the results obtained for the XSS 
attack detection. A comparison of the obtained 
results with different values of the gamma 
parameter in the RBF kernel showed that the 
best result is related to the value of 0.5 for this 
parameter. In addition, comparing the obtained 
results with different values of the bandwidth 
parameter in the Gaussian kernel showed that 
the best result is related to the value of two for 
this parameter. Finally, to further compare the 
proposed method, the mean accuracy obtained 
from the proposed method was discussed with 
the mean accuracy obtained from the use of 
various support vector machine-based methods 
defined in the literature review section. The 
results show the higher efficiency of the 
proposed method compared to other methods. 
Briefly, the reason is the efficiency of the 
proposed architecture, proper placement of 
detection nodes between the edges of the fog, 
the accurate selection of the kernel and its 
dependent parameters, the definition of suitable 
properties for feature extraction, and then the 
effective extraction of support vectors and their 
use in fog computing as we mentioned in detail. 
In particular, the proposed method has                 
shown the most promising results. Creating a 
larger and more diverse dataset leads us to 
better and more accurate results. Therefore, 

using Autoencoder (AE) and Restricted 
Boltzmann Machine (RBM) as data generator is 
our plan for future work. 
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