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ABSTRACT 
 

The quantum hydrodynamic-like equations as a function of two real sets of variables (i.e., the 4x4 
action matrix and the 4-dimensional wave function modulus vector) of the Dirac equation are 
derived in the present work.  The paper shows that in the low velocity limit the equations lead to the 
hydrodynamic representation of the Pauli’s equation for charged particle with spin given by 
Janossy [1] and by Bialynicki et al [2]. The Lorentz invariance of the relativistic quantum potential 
that generates the non-local behavior of the quantum mechanics is discussed.  
 

 
Keywords: Quantum hydrodynamic analogy; relativistic quantum hydrodynamic analogy; 

hydrodynamic form of Dirac equation; stochastic Dirac equation; non-linear Dirac 
equation. 
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NOMENCLATURE 
 

ρ = square wave function modulus: number of particle l-3; m =mass particle: m; h = Plank’s constant: 

m l2 t-1; c = light speed: l t-1; H = Hamiltonian of the system: m l2 t-2; Vqu= quantum potential energy: 
m l2 t-2. 

 
1. INTRODUCTION  
 
In the present paper the author develops the 
hydrodynamic formulation of the Dirac equation. 
  
The quantum hydrodynamic analogy (QHA) 
describes more clearly the origin of the non-local 
quantum character deriving by the quantization 
condition [2] and it results useful in treating 
problems at the edge between the quantum and 
the classical regime.    
 
In the hydrodynamic quantum equations (HQEs) 
[3] the non-local restrictions come by applying 
the quantization of vortices [2] and by the elastic-
like energy arising by the quantum pseudo-
potential but not from boundary conditions. 
 
In the low speed limit, the Schrödinger equation 
is a differential equation where the non-local 
character of evolution is introduced by the initial 
and boundary conditions that must be defined for 
describing the physical problem.   
 
In the case of charged particles, the non-local 
properties of the Schrödinger equation come also 
from the presence of the electromagnetic (em) 
potentials that depend by the intensities of em 
fields in a non-local way (e.g., Aharonov –Bohm 
effect). 
 
In the corresponding hydrodynamic equations 
the em potentials appear only in local way 
through the strength of the em fields. In this way, 
the hydrodynamic equations exhibit more clearly 
the generation of the non-local character of 
quantum behavior than in the Schrödinger 
equation. 
 
Even if the hydrodynamic and the wave 
descriptions are perfectly equivalent, no one 
prefers to solve the non-linear HQEs [1-3] 
instead of the Schrödinger one.  
 
The mathematically more clear statements of 
non-local restrictions of the HQEs and their 
classical-like structure make the HQEs suitable 
for the achievement of the connection between 
quantum concepts (probabilities) and classical 
ones (e.g., trajectories) [4-6]. This fact makes the 
HQEs very useful in describing both phenomena 

at the edge between the quantum and classical 
mechanics such as the description of dispersive 
effects [7] critical phenomena [8], and other 
complex systems [9-10].  
 
The advantage of HQEs in managing the non-
local quantum character becomes more evident 
in systems larger than a single atom when 
fluctuations become important [11] or when we 
want to investigate the effect of noise on the 
coherence of quantum non-local evolution [12], a 
field of great interest in the scientific community 
[13-18].  
 
Since the non-local behavior of quantum 
mechanics is generated by the quantum 
potential, its relativistic expression coming from 
the quantum hydrodynamic description of the 
Dirac equations (DE) can be very useful in 
investigating the compatibility between the 
quantum non-local interactions and the 
relativistic postulate of finite speed of 
transmission of light and information. The 
Lorentz invariance of the quantum potential can 
give an important contribution to the solution of 
the problem of superluminal transmission of 
information in quantum mechanics [19-20] that 
has been postulated in order to overcome the 
contrast between the quantum phenomena and 
our sense of macroscopic reality [21-23]. 
 
The paper is organized as follows: In section 2 
the hydrodynamic representation of the Dirac 
equation is derived; In section 3 it is calculated 
its low velocity limit and shown to agree with the 
hydrodynamic form of the Pauli equation; In 
section 4 the non-local property of quantum 
potential is discussed as well as its invariance 
under Lorentz transformation. 
 

2. THE HYDRODYNAMIC 
REPRESENTATION OF THE DIRAC 
EQUATION  

 
Following the method used in a preceding paper 
[24], we proceed to find the current density 
conservation equation and the hydrodynamic 
force equation in agreement with the DE.  
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In relativistic mechanics it is well known that the 
DE  
 

( ) 0 =Ψ+∂ mci µ
µγh    (1) 

 
By the minimal coupling with the electromagnetic 
field) reads 
 

0 =Ψ
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+∂ mcA

ie
i µµ

µγ
h

h  (2) 

 
Where  µ  is a four-dimensional index that for 

the space-time vector reads )iq,ct(q j =µ , 

where 
j

q  are the spatial components, and where 
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Moreover, (2) can be re-cast in the Schrödinger-
like form 
 

Ψ=Ψ∂ Dt Hih    (4) 

 
Where  
 

φγγγ emceA
i

cH
i

D ++







−∇= •

200 h
 (5) 

 
That for free particle reduces to 
 









+∇= •

20 mc
i

c
H i

D
h

γγ          (6) 

 

Moreover, given the property of the µσ  

matrices, so that it holds both  
 

( ) ( ) µ
µ

µ
µ γγ ∂=∂

††
,   (7) 

 
and  
 

000 γγγγγγ µ
µµ

µ
µ

µ *** Ψ∂=Ψ∂=Ψ∂   (8) 

 
It follows that 

 

0 =Ψ
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−∂ mcA

ie
i µµ

µγ
h

h  (9) 

 
That leads to the Schrödinger-like form 
 

Ψ=Ψ∂− *
Dt Hih            (10) 

 

Where
0γ*Ψ=Ψ  and where  

 

φγγγ emceA
i

cH
i*

D ++







−∇−= •

200 h

. 
 
 In force of relations (2, 9) the current 
 

ΨΨ= µµ γJ     (11) 

 
obeys to the conservation equation  
 

( ) ( ) ( )

0=ΨΨ+ΨΨ−ΨΨ−ΨΨ=
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µ
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(12) 

 
that by using the identities  
 

2
4

1

2000
||||Jc

** Ψ=Ψ=ΨΨ=ΨΨ== ∑
=µ

µγγρ  13) 

ΨΨ=ΨΨ= i*i
iJ γγγ 0

                (14) 

 
leads to the conservation equation  
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It is useful for the calculations below to observe 
that, with the help of (4,10), equation (12) leads 
to 
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In order to end with the other independent 
hydrodynamic equations (to obtain the full 
quantum hydrodynamic representation as a 

function of  ||ψ  and S), we write the four-

dimensional wave function as 
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where ||R ii Ψ= are the components of the vector R  and the matrix S  reads 
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Moreover, by multiplying (4, 10) by the matrices 
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we obtain the equation  
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Equation (21) holds only for the space points where 
4321 ,,, ΨΨΨΨ  are different from zero. 

Nevertheless, since the quantum wave functions are regular functions (they are at least two times 

derivable)) so that the space domains, where 
4321

,,, ΨΨΨΨ  vanish, have null volume, the solutions 

of (21) extend themselves to those singular points by means of continuity (the fact that the 
singularities are resolvable is also confirmed by the outcomes of the Dirac’s equation that do not have 
discontinuity in those points). 
 
After some manipulations, equation (21)  leads to (see Appendix A) 
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and, hence, to (see Appendix B) 
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Moreover, by multiplying (24) on the left by 
||

*

Ψ

Ψ
and on the right by 

|| Ψ

Ψ
, it follows that 
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Moreover, by taking the gradient of equation (28), it follows that 
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being the rotor of the gradient of the action null (i.e., the quantization condition) [2] 
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equation (29) reads (see Appendix C)  
 

( ) ( )










∂

∂
+∇∇−

−∇−∇−







×+−=

−

•

•

••

]ln[
t

]ln[q
i

eAqmcq
dt

eAd
ii

R

R

R

R

pBE
p

2

20

h
                    

 e γ

    (32) 

 
 
 



 
 
 
 

Chiarelli; PSIJ, 5(2): 93-114, 2015; Article no.PSIJ.2015.011 
 
 

 
99 

 

that using the identity  
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If, by using the correspondence rules ∇→ h-ip , we derive the Dirac Hamiltonian as a function of the 

hydrodynamic variables  ),( pq  
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where 
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q is given by (16), we can write the hydrodynamic Hamiltonian-like relations that read 
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From (37) the total derivative of the kinetic moment reads 
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from which we obtain equation (34) through the expression of the relativistic quantum potential quV  

(RQP) that reads 
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By setting to zero the RQP it follows that the motion of the density ρ  is defined by a local equation of 

motion describing the evolution of a relativistic dust. 
 
Moreover, in order to investigate the dynamics of such a local dust ρ , it is possible to define the 

corresponding non-linear Dirac equation Ψ=Ψ∂
clDt Hih  (similarly to the nonlinear Schrödinger 

equation [25]) by subtracting the non-local quantum potential, to obtain  
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Furthermore, if we consider the more realistic case where noise is present (e.g., we may consider the 
sufficiently general case of the Gaussian one) we have the stochastic equation [12] 
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where the Gaussian noise is defined by its variance that in a sufficiently general form can read 
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where T is the amplitude of noise (e.g., the temperature of the ideal gas thermostat). [12] and cλ
is the 

correlation length of the Gaussian noise. If we translate (41) back to the Dirac formalism we obtain  
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that represents the stochastic analog of the Dirac equation that in the Schrödinger-like form 

Ψ=Ψ∂ Dt Hih  leads to 
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In principle, both the correlation length cλ  and the correlation function )(G
cλ

λ
 of the Gaussian noise 

are free parameters but if we add the additional constraint that the (mean square root of) energy 
fluctuations of the quantum potential must remain finite (needed in the stochastic case to exclude non-
physical solutions [12]), a condition comes on them. In the classical limit it has been shown [12] that, 

in the small noise amplitude limit, the correlation length cλ  as well as )(G
cλ

λ
 acquire the 

expressions  
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The additional condition of non-diverging energy is needed in the stochastic case since the quantum 
potential is critically dependent by the distance on which independent fluctuations happen.  

Fluctuation of density ρ  with null correlation distance brings to infinite quantum potential energy. This 
is due to the derivative form of the quantum potential whose energy is given by the partial derivative of 
the wave function modulus.  
 

3. THE CLASSICAL LIMIT 
 

In order to derive the classical limit, we use the following limiting expression for DH   [2] that reads 
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where ( )321 σσσ ,,σ =  and ( )eA−= pπ . Moreover, being ±DH real, so that it holds 
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the current conservation equation (12) reads 
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That by the diagonal form of DH  (since particle and antiparticle are decoupled) and by using the 

notation  
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where ±χ  it is a bi-dimensional spinor, leads to the expression 
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where being −Ψ and +Ψ decoupled, we can consider just that one with the plus sign that, by using 

the notation 
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ψχ=Ψ ,        (53) 

 
leads to (see Appendix D) 
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and where  
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]iexp[sin
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ϕϑ

χ                                                                               (55) 

 

where ϑ  and ϕ  are the angles in spherical co-ordinates of the versor 
ψψ

ψψ
†

†
σ

n =  (defining the 

magnetic moment density n
2
||ψµ  ).  

Moreover, since in the classical limit particles and antiparticles are decoupled, we can factorize the 
mass phase factor as  
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                                                                       (56) 

 
with the re-defined Hamiltonian 
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and the re-defined action  
 

tmcSS cl
2−= .                                                                      (58) 

 
Thence, in the low speed limit, the conservation equation reads 
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where it has been introduced the approximation 0
2 ≅∇ tmc  , since in the low velocity limit the 

particle mass is practically constant, and the property |||| ψ=Ψ  (being  1||
2 =χ ) holds. 

 
Equation (59) agrees with the wave function density conservation equation of the hydrodynamic 
representation of the Pauli’s equation [2]. 
 
The hydrodynamic-like force equation acting on the particle density and spin can be obtained by 

multiplying on the left side the Dirac equations (4, 10) by the matrices 
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where in the low velocity limit it follows that
β*Ψ→Ψ

 , where 
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By considering just the positive-energy spinor and eliminating the mass phase factor by using the 
Hamiltonian (57), relation (61) reads  
 

( )

( ) ( )

( ) ( ) 







Ψ






Ψ
+Ψ






Ψ
−



































Ψ∇






Ψ
−Ψ∇






Ψ
−









Ψ∇






Ψ
−Ψ∇






Ψ
−









Ψ∇∇






Ψ
−Ψ∇∇






Ψ
−+

−=









Ψ






Ψ
+Ψ






Ψ
−=

Ψ

Ψ

∂

∂

••

••

••

••

++

*

*

*

*

*

*

*

*
D*D*

BB
i

eAeA
im

*AeAe
im

mm

eA
e

i

HH
i

]ln[
t

σσ µµ

φ

11

11

2

11

2

11

2
2

11

22

h

h

h

h

h

h

         

    

        

*

   (65) 

where 
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For sake of simplicity (see Appendix E) we will give here the solution for spinless particles obtained 

for 0=µ and tcons tan=χ (so that it holds 0=∇χ and 0=∇=∇ ϑϕ ) that leads to 
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Moreover, by using the relation (60) with the condition 0=∇ϕ (i.e., ( )eAS
m
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), relation (71) 

leads to 
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and, being  the gradient of the action irrotational [2] (i.e., 0=∇×∇ S ), to 
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that finally reads 
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leading to the expression 
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that represents the correct classical limit [2]. 
 

4. DISCUSSION 
 
If we look at the manageability of the quantum 
equations no one would solve the hydrodynamic 
ones. Nevertheless, the interest for the QHA 
remained unaltered since it was proposed by 
Madelung [3]. The motivation comes both from 
the formal analogy with the classical mechanics 
and from the fact that the QHA model facilitates 
the correlation between the quantum and the 
classical dynamics since the non local properties 
of quantum mechanics can be more easily 
recognizable in it. 
 
If in the Schrödinger problem not all solutions are 
considered, but only those that fulfill precise 
boundary conditions (e.g., for bounded problems 
the eigenstates are those that go to zero to 
infinity) so that the quantization comes in, in the 
QHA, these non local characteristics are 
transferred to the dynamics through the quantum 
potential (39).   
 
This is clearly recognizable in the classical limit 
where, if we subtract the contribution of the 
quantum potential to the quantum equation, the 
classic non-linear Schrödinger one is obtained 
[25]. 
On the other hand, if the quantum potential is 
null, the hydrodynamic equations describe the 
motion of a classical dust of density ρ [2]. 

 
In the QHA the eigenstates are defined by the 
stationary densities that happen when the force 
generated by the quantum potential exactly 
counterbalances that one due to the Hamiltonian 

potential (with the initial condition 0  =
•

q ).  

 
Since the quantum potential changes with the 
state of the system, more than one stationary 
state is possible.  
 
If we disregard the quantum potential, we also 
wipe out the quantum eigenstates and we end 
with the classical equation of motion.  
 

Thence, it clearly comes out that in the QHA the 
non locality does not come from boundary 
conditions (that are apart from the equations) but 
from the quantum pseudo-potential that depends 
by the state of the system and is a source of an 
elastic-like (non-local) energy [12,25,26]. 
 
Just for instance, if we consider a bi-dimensional 
space, the quantum potential makes the vacuum 
acting like an elastic membrane that becomes 
quite rigid against curvature on very small scale.  
 
Since the force of the quantum potential in a 
point depends by the state of the system around 
it, the character of non-local dynamics is 
introduced into the QHA equations. One of the 
major consequences of this is the realization of 
the eigenstates and the related coherent 
evolution of the superposition of them. 
 
The fact that the state of a quantum system in a 
point depends by its state in far away regions 
generates a rejection from our sense of reality. 
 
The determination of the result of a quantum 
measurement as a function of what happen to a 
quantum entangled state at a far distance is at 
the base of the Einstein-Podolsky-Rosen 
paradox [21] where the classic concepts conflict 
with the quantum results.  
Nevertheless, Bell’ inequalities and connected 
works [22-23] compared with experiments show 
that the Copenhagen interpretation of quantum 
mechanics is always verified. 
 
The fact that the result of a quantum 
measurement is determined by what happens far 
away (in another experiment) has led many 
physicists to postulate the possibility of quantum 
transmission of information at a speed larger 
than that one of the light [19-20].  
 
The availability of the relativistic quantum 
potential (39) allows verifying if the non-local 
interactions involved in the quantum mechanics 
propagate themselves compatibly with the 
postulate of the relativity about the invariance of 
light speed as the fastest way to which signals 
and interactions are transmitted. 
 
Since the invariance of light speed is the 
generating property of the Lorentz 
transformations, the co-variant form of quantum 
potential  (39) under the same transformation (4-
scalar product) and the property of the 4-wave 
function vector that changes accordingly with the 
Lorentz transformation, allow affirming that the 
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quantum non-local behavior is compatible with 
such a postulate of the relativity. 
 
In fact, whatever inertial system we choose 

moving with velocity v < c, through (39), we 
have the quantum potential expression able to 
describe the quantum dynamics as realizes itself 
in such new reference system (where the light 

speed is always c and hence not attainable). 
This fact forbids that in any inertial system the 
time difference between the initial condition (e.g., 
starting of measurement (i.e., cause)) and the 
final one (wave collapse (i.e., effect)) is null (or 
negative) so that the quantum-potential action on 
the whole wave function (sometime de-localized 
on very far away space regions) cannot realize 
itself in a null time. 
 
This result enforces the hypothesis that any 
measurable quantum non-local process (even 
involving a large distance) is compatible with the 
postulate of invariance of light speed as the 
fastest way to which signals and interactions can 
be transmitted. 
 
It is a matter of fact that the compatibility 
between the quantum mechanics and the 
postulate of light speed invariance of the relativity 
needs the definition of a theory able to describe 
the kinetic of the wave function collapse during 
the measurement process.  
 
Actually, the dependence of the standard 
quantum theory from the measurement process 
makes it a semi empirical theory. On the other 
hand, a closed (self-standing) quantum theory 
must be able to describe the measuring process 
itself.  
From the general point of view, the kinetics of an 
irreversible process (i.e., the measurement 
and/or wave function collapse) can be achieved 
with the help of the stochastic calculus applied to 
the quantum motion equations. To this end the 
QHA shows to be a very suitable formalism 
[12,27].  
 

6. CONCLUSION 
 
In the present paper, the coupled hydrodynamic-
type quantum equations for the phase and the 
amplitude of the wave function of the relativistic 
Dirac equation have been derived.   
 
The work shows that in the low speed limit the 
quantum hydrodynamic conservation equation of 
a charged particle with spin described by the 
Pauli equation is recovered. The hydrodynamic 

motion equations in the low velocity limit also 
lead to the correct expression of the quantum 
pseudo-potential for charged particles. 
 
The output shows that it is possible to derive the 
relativistic form of the quantum potential 
responsible for the non-local behavior of 
quantum mechanics in a co-variant form 
compatible with the Lorentz transformation.  
 
The Lorentz co-variance of the quantum potential 
points out that the non-local quantum effects 
such as the correlation between far away 
quantum measurements do not violate the 
relativistic postulate of invariance of light speed 
as the fastest way to which signals and 
interactions can be transmitted. 
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APPENDIX 
 

Appendix A 
 

Excluding the domains where 0=Ψ  (that for the regularity of the wave function solutions are of null 

volume) we can write 
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Appendix B 
 
In detail we have 
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from where it follows that 
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Appendix C 
 
From equation (29) it follows that 
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Appendix D 
 
Given the equation 
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considering just that one with the plus sign, we obtain 
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being 
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Moreover, from (D.2) it follows that 
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and that 
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Appendix E 
 
The total velocity time derivative and the total spin time derivative of the hydrodynamic representation 
of the Pauli equation can be obtained by the linear combinations of the system of two equations of 
(65). In fact, by taking the gradient of both members it follows that 
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Moreover, by multiplying both members of the above equation by the matrix 
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then by making the summation of the two equations it follows that 
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and that 
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that leads to 
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and so on. 
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