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ABSTRACT 
 

We virtually design here an important new weedkiller Cycloalka[d]quinazoline-
2,4dione−Benzoxazinones (CQB), inhibitors of Protoporphyrinogen IX Oxidase (PPO). Based on 
computer-assisted combinatorial chemistry techniques, docking, 3D-QSAR and pharmacophore 
models we first enumerate, focus and in silico screen a virtual library of CQB analogs substituted at 
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positions R1, R2 and R3. By docking inhibitors into the target active site from the crystal structure 
(PDB ID: 1SEZ) of PPO in complex with a CQB ligand, 3D models of 29 PPO:CQBx complexes with 
known observed activity (Ki

exp
) were prepared to establish a quantitative structure–activity (QSAR) 

model and linear correlation between relative Gibbs free energy (GFE) of receptor-ligand complex 
formation (ΔΔGcom) and Ki

exp
: pKi

exp
 = -0.1664 ×ΔΔGcom + 8.306  (1); R

2 
= 0.94. A 3D QSAR 

pharmacophore model (PH4) derived from the QSAR directed our effort to design novel CQB 
analogs. During the design, an initial virtual library of 118 CQB was focused down and PH4 
screened to identify 28 promising novel analogs. Their Ki (Ki

pre
) values were predicted by means of 

equation (1). The most active analog namely CQB22 display Ki
pre

 22 times superior to that of the 
reported most active training set ligand 17i. Our survey proposes this compounds to the synthesis 
and to the assessment on herbicidal. 
 

 
Keywords: CQB; PPO; docking; 3D-QSAR models; pharmacophore; in silico screening. 
 

1. INTRODUCTION  
 
Due to their detrimental impact on green plants 
and cultures survival bad herbs have drawn 
attention of research community in the design of 
herbicides addressing the United Nations 
sustainable development goal N°2 “Zero Hunger” 
[1]. “Photosynthesis is the process by which 
green plants and some other organisms use 
sunlight to synthesize nutrients from carbon 
dioxide and water. Photosynthesis in plants 
generally involves the green pigment chlorophyll 
and generates oxygen as a product. In the 
plant’s life cycle, protoporphyrin IX is an 
important substrate involved in the biosynthesis 
of chlorophyll. It results from the oxidation of 
protoporphyrinogen IX” [2,3] and its inhibition is 
lethal for the plants making it one of the most 
important herbicidal targets.  
 
Recently Da Wei and al. [4] suggest 36 
compounds belonging to the class of the 
Cycloalka[d]quinazoline-2,4dione−Benzoxazino-

nes (CQB) with the best active namely 17i (Fig. 
1) displaying a one digit nanomolar concentration 
range (Ki = 6.7nM). The interactions between 
PPO and 17i displayed in the 2D diagram (Fig. 2) 
has served as starting structural information for 
analogs docking, QSAR modeling. Others 
weedkiller [5-7], inhibitors of Protoporphyrino-gen 
IX Oxidase (PPO), novel diphenyl ether 
derivatives have been proposed by Li-Xia Zhao 
et al. [8]. In this work we elaborate a 3D-QSAR 
pharmacophore model [9] derived from the 
QSAR model to serve as virtual library screening 
tool in the search of new herbicides. Despite the 
limitation that these new analogs did not undergo 
synthesis and biological evaluation, this 
simulation-based design of novel analogs 
shortens the way in comparison with traditional 
intuition process. Agrochemical industry is the 
main target prospect of this computer-aided 
design of herbicidal compounds keeping in mind 
that the capacity of an economy to design 
molecule to satisfy its own need is more and 
more admitted as emergence indicator. 

 

 
 

Fig. 1. Chemical structure of herbicidal agents: Cycloalka[d]quinazoline-
2,4dione−Benzoxazinones core (17i) 
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Fig. 2. PPO-17i – ligand interactions at active site depicted in 2D for the most active CQB 
 

2. MATERIALS AND METHODS 
 

2.1 Training and Validation Sets 
 

Chemical structures and biological activities 
(Ki

exp
) of training and validation sets of CQB 

derivatives ligands of PPO used in this study 
were taken from literature [3]. The potencies of 
these compounds cover a sufficiently broad 
range of half-maximal effective concentrations 
(6.7 ≤ Ki

exp
 ≤ 2500 nM) to allow construction of a 

QSAR model. The training set (TS) containing 29 
CQBs ligands and the validation set (VS) 
including 7 CQBs were taken from the ref [3]. 
 

2.2 Model Building 
 

The structure of NtPPO (PDB ID: 1SEZ) [3] was 
downloaded (www.pdb.org) and prepared with 
Discovery Studio. Two monomers are present in 
the protein (A and B), we have used only A. No 
crystallographic water molecules were included 
in the model. The 3D structures of the 
cycloalka[d]quinazolinedione−benzoxazinones 
were constructed by Discovery Studio [10], on 
the basis of the crystal structure of 17a [3], and 
subsequently optimized with methods of 
algorithm Smart Minimizer before docking. 
 

2.3 Molecular Mechanics 
 

Modeling of ligands CQB and P-L complexes 
was carried out by molecular mechanics using 

CHARMm force field [11] as described earlier 
[12]. 
 

2.4 QSAR Model 
 
Training set of 29 CQBs derivatives compounds 
with known inhibitory potencies towards the PPO 
[3], were docked to the binding site model of the 
PPO receptor model using the CDOCKER 
docking procedure [9]. Complexation QSAR 
models were elaborated for training set and a 
linear correlation was established between the 
computed Gibbs free energies of binding (GFE: 
ΔΔGcom) and observed enzyme inhibition 
constants (Ki

exp
) for each training set Were 

computed an QSAR models, which relate the 
Ki

exp
 to the computed scores, were prepared by 

linear regression analysis equation (1) 
pKi = f(Gibbs free energies) and GFE = binding 
Energy of Complex(ΔGbinding) - Entropic Term 
(TΔS) + solvatation Energy (ΔGsol) of Receptor, 
which correlates the computed. The predictive 
power of Eq. (1), which was then used as the 
target-specific scoring function for the in silico 
screening of the designed virtual library CQB 
analogs, was verified by applying it to a 
validation set of 7 similar CQB inhibitors with 
known Ki

exp
 values, which were not included into 

the training set. The ratio of predicted activities 
Ki

pre
 obtained from the regression equation (1) 

and observed Ki
exp

 was used to evaluate the 
performance of the QSAR model. 
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Table 1. Training and validation set of PPO inhibitors for QSAR model 
 

 
 

Training set n R
1 

R
2 

R
3 

Ki(μM) 

8a 1 H H CH2C6H4(4-OCH3) 210 

8b 1 H H H 340 

8c 1 H H CH3 270 

8d 1 H H CH2CH3 98 

8e 1 H H CH2CH2CH3 69 

8g 1 H H CH2CH (CH3)2 170 

8h 1 H H CH2CH=CH2 20 

8j 1 H H CH2C≡CSi(CH3)3 2500 

8k 1 H H CH2CO2CH2CH3 48 

9a 2 H H CH2C6H4(4-OCH3) 200 

9c 2 H H CH3 160 

9e 2 H H CH2CH2CH3 44 

9f 2 H H CH2CH2CH2CH3 46 

9g 2 H H CH2CH (CH3)2 100 

9h 2 H H CH2CH=CH2 11 

9j 2 H H CH2C≡CSi(CH3)3 260 

9k 2 H H CH2CO2CH2CH3 370 

9l 2 H H CH2CN 110 

17a 2 F F CH2C6H4(4-OCH3) 200 

17b 2 F F H 480 

17c 2 F F CH3 140 

17d 2 F F CH2CH3 110 

17e 2 F F CH2CH2CH3 58 

17f 2 F F CH2CH2CH2CH3 21 

17g 2 F F CH2CH (CH3)2 84 

17h 2 F F CH2CH=CH2 9.8 

17i 2 F F CH2C≡CH 6.7 

17j 2 F F CH2C≡CSi(CH3)3 170 

17m 2 F F CH2CH2OCH3 120 

19 3 F F CH2C≡CH 72 

Validation set n R
1 

R
2 

R
3 

Ki(μM) 

9i 2 H H CH2C≡CH 7.8 

8i 1 H H CH2C≡CH 14 

17k 2 F F CH2CO2CH2CH3 14 

9d 2 H H CH2CH3 98 

8f 1 H H CH2CH2CH2CH3 120 

17l 2 F F CH2CN 200 

9b 2 H H H 210 



 
 
 
 

N’Guessan et al.; J. Pharm. Res. Int., vol. 34, no. 56, pp. 42-61, 2022; Article no.JPRI.94528 
 
 

 
46 

 

2.5 Pharmacophore Generation 
 
“Bound conformations of inhibitors taken from the 
models of E-I complexes were used for 
constructing of 3D-QSAR pharmacophore (PH4) 
by using Catalyst HypoGen algorithm 
implemented in Discovery Studio” [9] as 
described earlier [13]. 

 
2.6 Virtual Library Generation 
 
The virtual library generation was performed as 
described earlier [13]. 

 
2.7 Pharmacophore-Based Library 

Searching 
 
“The pharmacophore model (PH4) described in 
Section 2.5 and derived from the bound 
conformations of CQBs at the active site of PPO 
served as a library searching tool” as described 
earlier [13]. 

 
3. RESULTS  
 
3.1 Calculation of GFE and QSAR Model 
 
The binding energy, Entropic Term and solvation 
Energy of the complex formation (E:I) , equation 
(1) [14], was computed for the 29 complexes 
from docking and the ratio of predicted and 
observed inhibition constants (pKi

pre
/pKi

exp
) for 

the validation set of 7 CQBs  (not included into 
the training set) are listed, show in Table 2.            
The QSAR model explained variation in the 
CQBs experimental potencies (pKi

exp
=-

log10(Ki
exp

)) [13] by correlating it with computed 
GFE ΔΔGcom through linear regression (Equation 
(1) [12] Table 2. In addition, significant 
correlation obtained in this QSAR relationship                      
permitted to identify the CQBs active bound 
conformation at the PPO binding site and 
enabled definition of the PH4 pharmacophore. 
This correlation explained about 94% of the 
pKi

exp
 data variation and underlined the role of 

the enthalpic contribution to the binding affinity of 
the ligand. Relatively high values of the 
regression coefficient R

2
, the leave-one-out 

cross-validated regression coef-ficient R
2

xv and 
Fischer F-test of the correlation suggest strong 
relationship between the 3D model of ligand 
binding and the observed activation potencies of 
the CQBs. 
 

The statistical data of the regression are 
presented in Table 3. 

Therefore, structural information derived               
from the 3D models of PPO:CQBx                      
complexes can be expected to lead to reliable 
prediction of PPO activation potencies                        
for new CQBs analogs based on the QSAR 
model. 

 
The statistical data confirmed validity of the 
correlation Equations (1) plotted on Fig. 3. The 
ratio pKi

pre
/pKi

exp
 (the pKi

pre
 values were 

estimated using correlation Equation (1),                        
Table 3) calculated for the validation set 
documents the substantial predictive power of 
the complexation QSAR model from Table 2. 
Thus, the regression Equation (1) (Table 3) and 
computed ΔΔGcom GFEs can be used for 
prediction of activator potencies Ki

pre
                          

against PPO for novel CQB analogs, provided 
they share the same binding mode as the 
training set. 
 

3.2 QSAR Pharmacophore Model 
 
“PPO activation 3D-QSAR pharmacophore                   
was generated from the active conformation of 
29 TS CQBx and evaluated by 7 VS CQB 
covering a large range of experimental                       
activity (6.7–2500 nM) spanning more                    
than two orders of magnitude. The generation 
process is divided into three main steps:                       
(i) the constructive step, (ii) the subtractive                     
step and (iii) the optimization step”                          
[9]. 
 
During the constructive phase. 17i alone                        
was retained as the lead (since only the activity 
of 17i fulfilled the threshold criterion. Ki

exp
 ≤ 1.2×8 

nM) and used to generate the starting                         
PH4 features. In the subtractive phase, 
compounds for which Ki

exp
 > 8×103.5 nM = 

25.298 nM were considered inactive. Accordingly 
none of the training set CQBx was inactive                     
and no starting PH4 features were removed. 
Finally, during the optimization phase, the score 
of the pharmacophoric hypotheses was 
improved. Hypotheses were scored                          
according to errors in activity estimates from 
regression and complexity via a simulated 
annealing approach. At the end of the 
optimization, the top scoring 10 unique 
pharmacophore hypotheses were kept, all 
displaying five-point features. The cost values, 
correlation coefficients, root-mean square 
deviation (RMSD) values, the pharmacophore 
features, and the max-fit value of the top 10 
ranked hypotheses (Hypo1- Hypo10) are listed in 
Table 4. 
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Table 2. Gibbs free energy (binding affinity) and its components for the training set of PPO ligands CQBs and validation set ligands 
 

Training set Ki (μM) ΔGbinding 

(kcal/mol) 

ΔGsol (kcal/mol) TΔS (kcal/mol) ΔGcompl (kcal/mol) ΔΔGcompl 

(kcal) 
pKi 

17i 0.0067 -58.79 -383.92 20.19 -462.90 0.00 8.17 

17h 0.0098 -56.99 -383.42 20.20 -460.62 2.28 8.01 

9h 0.011 -57.56 -382.94 19.98 -460.48 2.42 7.96 

8h 0.02 -55.37 -383.61 20.36 -459.33 3.56 7.7 

17f 0.021 -55.27 -382.60 20.36 -458.22 4.67 7.68 

9k 0.037 -55.26 -382.90 20.24 -458.40 4.50 7.43 

9e 0.044 -54.29 -382.90 20.02 -457.21 5.69 7.36 

9f 0.046 -54.90 -382.56 20.15 -457.61 5.29 7.34 

8k 0.048 -54.36 -382.26 20.14 -456.77 6.13 7.32 

17e 0.058 -53.09 -382.99 20.22 -456.30 6.60 7.24 

8e 0.069 -52.32 -383.16 19.91 -455.39 7.51 7.16 

19 0.072 -53.94 -382.85 20.36 -457.15 5.75 7.14 

17g 0.084 -52.66 -382.61 20.30 -455.57 7.33 7.08 

8d 0.098 -51.19 -382.61 19.78 -453.57 9.33 7.01 

9g 0.1 -51.88 -382.83 20.10 -454.81 8.09 7 

9l 0.11 -51.06 -383.04 19.99 -454.09 8.81 6.96 

17d 0.11 -51.17 -382.89 20.12 -454.18 8.72 6.96 

17m 0.12 -51.00 -383.88 20.36 -455.24 7.65 6.92 

17c 0.14 -51.45 -383.55 20.04 -455.03 7.86 6.85 

9c 0.16 -49.96 -383.33 19.80 -453.10 9.80 6.8 

17j 0.17 -49.69 -382.60 20.01 -452.30 10.60 6.77 

8g 0.17 -51.97 -381.34 20.01 -453.32 9.57 6.77 

9a 0.2 -51.07 -382.35 20.51 -453.93 8.97 6.7 

17a 0.2 -50.55 -382.12 20.69 -453.35 9.55 6.7 

8a 0.21 -51.18 -382.11 20.41 -453.69 9.21 6.68 

9j 0.26 -49.73 -381.67 20.50 -451.90 11.00 6.59 

8c 0.27 -49.35 -383.32 19.68 -452.36 10.54 6.57 

8b 0.34 -49.04 -383.76 19.57 -452.37 10.52 6.47 

17b 0.48 -47.26 -384.00 19.94 -451.20 11.70 6.32 

8j 2.5 -45.55 -384.04 19.10 -448.69 14.21 5.60 
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Validation set Ki ΔGbinding 

(kcal/mol) 

ΔGsol (kcal/mol) TΔS  

(kcal/mol) 

ΔGcompl 

(kcal/mol) 

pKi_théo 

 

pki_théo/pki_exp 

 

9i 0.0078 -56.88 -383.52 19.97 -460.38 7.91 0.974 

8i 0.014 -57.57 -383.00 19.86 -460.44 7.92 1.009 

17k 0.014 -57.87 -382.75 20.54 -461.16 8.05 1.025 

9d 0.098 -52.90 -382.98 19.90 -455.78 7.13 1.017 

8f 0.12 -52.27 -382.93 20.01 -455.21 7.03 1.016 

17l 0.2 -50.02 -383.01 20.22 -453.26 6.70 1.000 

9b 0.21 -49.94 -383.79 19.71 -453.44 6.73 1.008 

  
Table 3. Analysis of computed binding affinities ΔΔGcom and experimental activity effective concentration of CQBs towards PPO [13] 

 

Statistical Data of Linear Regression 

pKi
exp

 = -0.1664 ×ΔΔGcom + 8.306 (1) 
Number of compound n 29 
Squared correlation coefficient of regression R

2 
0.94 

LOO cross-validated squared correlation coef R
2

xv 0.94 
Standard error of regression σ 0.132 
Statistical significance of regression, Fisher F-test 449.36 
Level of statistical significance α ˃95% 
Range of activities Ki

exp
 [nM] 6.7-2500 
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Fig. 3. Plot for relative complexation Gibbs free energies of the PPO-CQBx complex formation 
ΔΔGcom [kcal.mol

-1
] of the training set [15]. The validation set data points are shown in red 

color 
 

Table 4. Parameters of 10 generated PH4 pharmacophoric hypotheses for PPO ligand after 
Cat-Scramble validation procedure (49 scrambled runs for each hypothesis at the selected 

level of confidence of 98%) 
 

Hypothesis
a
 RMSD

b 
R² Total costs

c 
Costs Difference

d 

Hypo 1 5.35 0.91 475.78 1994.95 
Hypo 2 5.52 0.90 503.08 1967.65 
Hypo 3 5.68 0.89 529.64 1941.09 
Hypo 4 5.76 0.89 544.18 1926.55 
Hypo 5 5.79 0.89 549.03 1921.70 
Hypo 6 5.79 0.89 549.23 1921.50 
Hypo 7 5.81 0.89 551.80 1918.92 
Hypo 8 5.86 0.88 559.82 1910.91 
Hypo 9 5.87 0.88 562.11 1908.62 
Hypo 10 6.08 0.87 597.58 1873.15 

a
root mean square deviation; 

b
 squared correlation coefficient; 

c
 overall cost parameter of the PH4 

pharmacophore; 
d
 cost difference between Null cost and hypothesis total cost; 

e
 lowest cost from 49 scrambled 

runs at a selected level of confidence of 98%. The Fixed Cost = 43.48 with RMSD = 0, the Null Cost = 2470.73 
with RMSD = 12.76 and the Configuration cost = 14.78 

 
“The generated pharmacophore models were 
then assessed for their reliability based on the 
calculated cost parameters ranging from 475.78 
(Hypo1) to 597.58 (Hypo10). The relatively small 
gap between the highest and lowest cost 
parameter corresponds well with the 
homogeneity of the generated hypotheses and 
consistency of the TS of CQBx. For this PH4 
model, the fixed cost (43.48) is lower than the 
null cost (2470.73) by a difference Δ = 2427.25. 
This difference is a major quality indicator of the 
PH4 predictability (Δ > 70 corresponds to an 
excellent chance or a probability higher than 90% 
that the model represents a true correlation” [9]. 
“To be statistically significant, a hypothesis has 
to be as close as possible to the fixed cost and 
as far as possible from the null cost. For the set 

of 10 hypotheses, the difference Δ ≥ 597.58 
which attests to the high quality of the 
pharmacophore model. The standard indicators 
such as the RMSD between the hypotheses 
ranged from 5.35 to 6.08, and the squared 
correlation coefficient (R

2
) falls to an interval from 

0.91 to 0.87” [13]. The first PH4 hypothesis with 
the total costs (475.78) and best RMSD and R

2 

was retained for further analysis. The statistical 
data for the set of hypotheses (costs, RMSD, R

2
) 

are listed in Table 4. The configuration cost 
(14.78 for all hypotheses) below 17 confirms this 
pharmacophore as a reasonable one. The 
evaluation of Hypo 1 is the mapping of the best 
active training set 17i (Fig. 4 (D)) displaying the 
geometry of the Hypo1 pharmacophore of PPO 
activation. The regression equation for pKi

exp
 vs. 
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pKi
pre

 estimated from Hypo1: pKi
exp

 = 0.947× 
pKi

pre
 + 0.41 (2) (n = 29. R

2
 = 0.91. R

2
xv = 0.91. 

F-test = 292.32. σ = 0.16, α > 95 %) is also 
plotted on Fig. 4 (E). The ratio pKi

pre
/pKi

exp
 (the 

pKi
pre

 values were estimated using correlation     
Equation ((2), Table 5) calculated for                            
the training set and validation set is near of                 
the 1. Therefore the PH4 is good potentially to 
choice the new CQB analogs. 
 
We can carry out computational design                 
and selection of new CQB analogs with              
elevated activation potencies against                   
PPO. 
 

3.3 Virtual Screening 
 

In silico screening of a virtual (combinatorial) 
library can lead to hit identification as it was 
shown in our previous works on inhibitors design 
[14,16-20]. An initial virtual library (VL) was 
generated by substitutions at positions for R1, R2 
and R3 (Table 5) on the CQB scaffold. During the 
virtual library enumeration the R-groups listed in 
Table 5 were attached to in positions R1.R2 and 
R3 of the CQB scaffold to form a combinatorial 
library of the size:  
 

R1 × R2 × R3 = 1×1×118 = 118 analogs. 

Table 5. The ratio pKi
pre

/pKi
exp

 calculated for the training set and validation set 
 

Training set pKi
pre

 pKi
exp

 pKi
pre

/pKi
exp

 

17i 8.02 8.17 0.981 
17h 7.84 8.01 0.979 
9h 7.77 7.96 0.976 
17f 7.76 7.68 1.011 
8h 7.74 7.7 1.006 
9f 7.74 7.34 1.055 
9e 7.35 7.36 0.999 
17e 7.33 7.24 1.013 
19 7.27 7.14 1.019 
9k 7.27 7.43 0.978 
8k 7.19 7.32 0.982 
8e 7.18 7.16 1.003 
9g 7.05 7 1.006 
17g 7.02 7.08 0.992 
17d 6.97 6.96 1.001 
8d 6.84 7.01 0.975 
8g 6.75 6.77 0.997 
9l 6.71 6.96 0.965 
17a 6.70 6.7 1.001 
9a 6.70 6.7 1.000 
9j 6.69 6.59 1.015 
17c 6.68 6.85 0.975 
17j 6.68 6.77 0.986 
17b 6.67 6.32 1.056 
17m 6.65 6.92 0.961 
9c 6.55 6.8 0.964 
8a 6.51 6.68 0.974 
8b 6.40 6.47 0.990 
8c 6.35 6.57 0.966 
8j 5.60 5.6 1.001 

Validation set pKi_theo pKi_exp pKi_theo/pki_exp 

9i 8.10 8.12 0.998 
8i 7.85 7.85 1.000 
17k 7.85 7.85 1.000 
9d 7.05 7.01 1.006 
8f 6.97 6.92 1.007 
17l 6.76 6.7 1.009 
9b 6.74 6.68 1.009 
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The focused library of 118 analogs was further 
screened for molecular structures matching the 
3D-QSAR PH4 pharmacophore model Hypo1 of 
PPO activation, 28 best fitting analogs (PH4 hits) 
then underwent complexation QSAR model 
screening. The computed GFE of PPO-CQBx 
complex formation, their components and 
predicted activity Ki

pre
 calculated from the 

correlation Equation (1) (Table 3) are listed in 
Table 6. 
 

3.4 Novel CQB Analogs 
 

The design of virtual library of novel analogs was 
guided by structural information retrieved from 
the CQBx active conformation and the 
pharmacophore model, were used for the 
selection of appropriate substituents. The 
hydrophobic feature of PH4 at the position R3 
show clearly the type of group. 

4. DISCUSSION 

 
4.1 Binding Mode Cycloalka 

[d]quinazoline-
2,4dione−Benzoxazinones 

 
In more the good quality of the QSAR model, 
pharmacophore and the focusing catalytic pocket 
of PPO interactions between the CQB and active 
site residues such as Leu334, Phe392, Leu372, 
and Leu356 are revealing. The key interactions 
responsible for the CQB affinity to PPO, such as 
hydrogen bonds, van der Waals interactions, and 
hydrophobic contacts, etc. As displayed in the 2D 
of Fig. 2, the binding of 17i most active ligand in 
the TS to the active site of PPO is supported by 
this interactions. This analysis indicates that 
compounds with hydrophobic groups may be 
advantageous to PPO-inhibiting activity. 
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(E) 
 

Fig. 4. (A) Distances between centers, (B) angles between centers of pharmacophoric features 
(C) features, (D) mapping of pharmacophore of ligand with the most partial agonist 17i. Feature 

legend: HYDA = Hydrophobic Aliphatic (blue), HBA = Hydrogen bond Acceptor (green). (E) 
Correlation plot of experimental vs. predicted activation activity 
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(B) 
 

Fig. 5. (A) 2D schematic interaction diagram of the most potent inhibitor CQB22 at the active 
site of PPO and  (B) 3D schematic interaction 

 

Table 6. R-groups (fragments. building blocks. substituents) used in the design of the diversity 
VL of CQB analogs 

 

 
R1=R2=Fluor (F) 

R3 

1  

 

11  

 

21 

 
 

2  

 

12 

 
 

22  
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3 

 

13 

 
 

23  

 

4 

 

14 

 
 

24  
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15 

 

25 

 

6  

 

16 

 

26  

 

7 

 

17 

 

27  

 

8  

 

18 

 

28  

 

9 

 

19 

 

29 

 

10  

 

20 

 

30 

 
31 

 

41 

 

51 

 

32 

 

42 
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60 
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74 

 

84 

 



 
 
 
 

N’Guessan et al.; J. Pharm. Res. Int., vol. 34, no. 56, pp. 42-61, 2022; Article no.JPRI.94528 
 
 

 
56 

 

65  

 

75 
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87 
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89 

 
 

70 
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111 

 

112 

 

113  

 

114 

 

115 

 

116  
 
 

 
 

117 
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Table 7. CQB analogues inhibitors of PPO 

 

Analogues ΔGbinding ΔGsol 
(kcal) 

TΔS 
(kcal) 

ΔGcompl 

(kcal) 

ΔΔGcompl 

(kcal) 

Ki_theo(nM) 

17i -58.79 -383.92 20.19 -462.90 0.00 6.7 

CQB1 -61.43 -385.56 20.81 -467.80 -4.90 0.76 

CQB2 -56.15 -383.95 20.58 -460.67 2.22 11.6 
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Analogues ΔGbinding ΔGsol 
(kcal) 

TΔS 
(kcal) 

ΔGcompl 

(kcal) 

ΔΔGcompl 

(kcal) 

Ki_theo(nM) 

CQB3 -51.25 -383.64 20.52 -455.41 7.49 87.1 

CQB4 -51.25 -384.16 20.29 -455.70 7.20 78.4 

CQB5 -54.24 -384.04 20.41 -458.69 4.21 24.8 

CQB6 -56.74 -384.02 20.41 -461.17 1.73 9.6 

CQB7 -53.13 -384.35 20.33 -457.81 5.09 34.7 

CQB8 -51.26 -383.74 20.57 -455.58 7.32 81.7 

CQB9 -51.35 -383.70 20.61 -455.66 7.24 79.1 

CQB10 -49.48 -384.05 20.51 -454.04 8.86 147.4 

CQB11 -63,28 -383.44 21.24 -467.96 -5.06 0.7 

CQB12 -62.47 -382.09 20.76 -465.32 -2.43 1.9 

CQB13 -62.64 -380.04 20.80 -463.48 -0.59 3.9 

CQB14 -57.81 -385.56 20.81 -464.18 -1.28 3.03 

CQB15 -60.46 -383.37 20.68 -464.52 -1.62 2.7 

CQB16 -61.44 -380.12 20.65 -462.21 0.68 6.4 

CQB17 -63.13 -378.77 21.24 -463.14 -0.25 4.5 

CQB18 -60.61 -380.06 21.27 -461.94 0,95 7.1 

CQB19 -60.06 -383.50 20.98 -464.55 -1.65 2.6 

CQB20 -55.99 -383.80 20.81 -460.60 2.30 11.9 

CQB21 -53.72 -384.39 20.82 -458.92 3.97 22.7 

CQB22 -69.39 -380.01 20.86 -470.26 -7.36 0.29 

CQB23 -54.31 -379.73 20.39 -454.42 8.48 127.2 

CQB24 -58.82 -379.58 20.71 -459.10 3.79 21.1 

CQB25 -61.84 -379.71 20.65 -462.20 0.70 6.5 

CQB26 -61.78 -379.78 20.81 -462.37 0.52 6.04 

CQB27 -58.60 -380.12 20.67 -459.39 3.51 18.9 

CQB28 -50.35 -380.47 20.26 -451.08 11.82 458.5 

 
Table 8. CQB analogues inhibitors of PPO, depicted in 2D, 

 

  
 

CQB1 (0.76nM) CQB2 (11.6nM) CQB3 (87.09nM) 

   
CQB4 (78.04nM) CQB5 (24.8nM) CQB6 (9.6nM) 
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CQB7 (34.7nM) CQB8 (81.7nM) CQB9 (79.1nM) 

 
 

 

CQB10 (147.4nM) CQB11 (0.7nM) CQB12 (1.9nM) 

   

CQB13 (3.9nM) CQB14 (3.03nM) CQB15 (2.7nM) 

 
 

 
CQB16 (6.4nM) CQB17 (4.5nM) CQB18 (7.1nM) 

 
  

CQB19 (2.6nM) CQB20 (11.9nM) CQB21 ( 5.2nM) 

 

 
 

CQB22 (0.29nM) CQB23 (127.14nM) CQB24 (21.1nM) 

 
  

CQB25 (6.45nM) CQB26 (6.04nM) CQB27  (18.9nM) 

 

  

CQB28 (458.5nM)   
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4.2 Analysis of New Ligands from In 
silico Screening 

 

An analysis of structural requirement for PPO 
activation at the level of hydrophobic contacts 
with the active site revealed that the substituent 
at R3 Table 6. In this job, the use of the 
pharmacophore model new method to select the 
best analogs. The theoretical activities calculated 
by equation (1) are show in Table 7. Top scoring 
virtual hits analogs of CQB are: CQB1 (0.76nM), 
CQB11 (0.7nM) and CQB22 (0.29nM). The 
predicted activity of the best designed CQB 
analog CQB22 (Fig. 5) reached approximately 23 
times lower than that of the most active       
ligand of the training set 17i with Ki

exp
 = 6.7 nM 

(Table 8). 
 

5. CONCLUSION 
 
Structural investigation of the SAR of Cycloalka 
[d]quinazoline-2, 4dione- Benzoxazinones as 
partial PPO agonists from the crystal structure of 
PPO: CQB complex guided us during preparation 
of a reliable QSAR model of activation of PPO 
which correlated computed Gibbs free energies 
upon complex formation with observed PPO 
activation potencies. In addition we have derived 
a 3D-QSAR PH4 pharmacophore model for CQB 
activation using a training set of 29 and validation 
set of 7 CQBs with known activation activities [7]. 
Careful analysis of interactions between the 
PPO’s active site residues and CQBs directed us 
in the design of an initial diversity virtual 
combinatorial library of new CQB analogs with 
multiple substitutions hydrophobic group in R3. A 
library screened by matching of the analogs to 
the PH4 pharmacophore permitted selection of a 
library subset of CQBs. This subset of 28 best 
virtual hits was submitted to computation of 
predicted activation potencies by the 
complexation QSAR model. The hit analogs 
reached predicted activities in the nanomolar 
concentration range. The hit designed CQB 
analogs CQB1 (0.76 nM), CQB11 (0.7 nM) and 
CQB22 (0.29 nM) are recommended for 
synthesis and subsequent activity evaluation in 
PPO activation assays and may lead to a 
discovery of novel weedkiller potent partial PPO 
agonists. Virtual design method is an excellent 
trail already used in medicinal chemistry for 
discovery a good diseases targets therefore the 
researchers must apply it more in agropastoral.  
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