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ABSTRACT

The topic of reconstruction of genetic networks is of great interest to the scientific
community today – particularly those in the biological sciences. Essentially the need for
network reconstruction is motivated by the need to find relationships between regulation
mechanisms for genes, the need for discoveries in medicine, drug and pharmaceutical
industry, the need for improved agricultural crops. All this requires a concerted effort from
multi-disciplinary sciences, e.g. physics, mathematics, biology and chemistry – which
have led to disciplines such as Systems Biology and Bioinformatics. Mathematical and
statistical modeling has particularly been very instrumental for engineering and software
development has been very useful in biological networks inference. Sometimes the link
between theory, modeling and data acquisition is unclear. The goal in this article is to
discuss tools and techniques for biological network inference and the areas of
application. The pros and cons of network reconstruction methods are also provided. The
number of scientific articles on network inference is overwhelming. Additionally, there is a
dilemma in methodology choice, which is attributed to the scarcity of novel ways to
compare the performance of the existing methods on experimental data. Applications of
data visualization tools, modeling and simulation, data analysis and storage are given.
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1. INTRODUCTION

The topic of biological network inference is of great interest and its history dates back to as
far back as the 1960s [1] and the work on graph theory which is instrumental for studying
network structures was pioneered as early as1959 [2]. Since then, network inference has
been vastly explored using genomic data with numerous analytic and numerical approaches
[3,4,5,6]. We have also in the past few decades seen the publication of numerous papers on
biological systems including research and review articles providing insight into the
applications and challenges of network reconstruction, see. e.g. [5,7,8,9,10,11,12,13]. A look
at literature reveals an enormous list of genetic network reconstruction (GNR) methods that
have been proposed and used to reverse engineer networks in various model organisms,
e.g. the E. coli bacteria [14][15]plants (especially the model plant Arabidopsis [16,17]) or in
humans to represent biological signaling networks, such as the tumor suppressor protein
p53 which regulates gene activity in cell growth and death [18,19].

By definition, a genetic regulatory network refers to genes which code for transcription factor
(TF) proteins connected to their respective target genes. Elsewhere, a genetic network has
been defined as a group of genes in which individual genes can change the activity of other
genes [20]. Specific mathematically formulated definitions are sometimes used depending
on whether the regulation mechanisms in a network are directed or undirected. Most if not all
GNR methods still fall short of perfection in the total recovery of the ”true” network
structures, e.g. [21,22,23,24,25,26,27,28,29]. It still remains a challenge to find a clear guide
on the choice of methods, especially for those with little or no experience in GNR. Not all
methods are equally powerful or applicable under the same conditions, there are
circumstances when one modeling approach (or algorithm) performs well and in some cases
performs poorly. The performances are based on the training datasets used for the model
calibration. Here, a discussion on the available methods for GNR is provided. This
discussion is aimed at enlightening and guiding those with interest in networks inference.
The theories and working principles of the formalisms are not given in this review article,
instead focus is on classifying the suitability and applicability of the methods. An assessment
of opinions from scientific articles on biological network reconstruction in the fields of
Systems and Synthetic biology, Bioinformatics, Biotechnology, Mathematics and Computing
science is made. Various terms have been used in literature to refer to studies involving
biological networks, these terms are: GNR, network inference, network identification and
reverse engineering of networks.

Studies of biological systems have for long been plagued by lack of data, making the use of
in silico studies with synthetic data a common practice. Modeling and simulation enables
rigorous probing of network dynamics prior to validation with experimental data.
Mathematical modeling is a powerful tool for testing hypotheses that might be difficult to
assess otherwise. The comparison of model predictions to experimental data enables
validation of current knowledge. Similarly, a poor match in model predictions to current
knowledge triggers a need to bridge the gap in knowledge. Modeling enables in silico testing
and validation of experiments that cannot be done in vitro. The availability of relatively low
cost, high through-put genomic data has significantly increased model validation and
hypothesis testing. GNR algorithms are divided into two categories, namely: the discrete
state and continuous state approach. In discrete state based approaches, each node in a
network is considered to have a small number of discrete states and the regulatory
interactions between nodes (gene) are described using logical functions (typically, derived
from a combination of the Logical conjunction (AND), Logical disjunction (OR), Inverter
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(NOT) and Exclusive or (XOR) operators). Historically, the use of logical operations stems
from the need to describe biological processes using mathematical models.

In the continuous-state approach, messenger ribonucleic acid (mRNA) and protein levels are
considered as continuous functions in time. GNR can be done at various levels namely: (i)
genetic networks, (ii) metabolic networks, and (iii) protein networks. Although integrating
these levels into a single network is a nontrivial task, there is progress, resulting from a
concerted effort from inter-disciplinary research. Therefore, information at the gene
expression level is useful for projecting biochemical networks [30]. In a directed network, the
edges are considered to be an ordered pair of vertices from one node to another. In an
undirected network the edges are unordered. Signaling pathways are a good example of
directed networks since they contain all genes or proteins being represented as nodes. In a
directed network, the flow of information is from one gene to another while in an undirected
network the flow of information is not specified. Meanwhile, protein–protein interactions form
an undirected network with the proteins as nodes and pair-wise interaction between proteins
being represented with edges. These concepts can be found in books on Graph theory (see
e.g. [31,32]).

In literature there are numerous summaries of the requirements for good network inference.
Most of the opinions converge around a couple of fundamental necessities. A good example
of a discussion of such opinions can be found in the work of Kitano [33] which summarizes
the tasks required for proper understanding of biological systems. These tasks include: (i)
system structure (topology) identification, (ii) system behavior (network dynamics) analysis,
(iii) systems design, and (iv)systems control. Most biological networks are dynamic rather
than static, which makes the dynamic approaches preferable over the static ones [34]. In
general, there are two components of network inference, namely: (i) structure identification
which refers to the determination of relationships between the genes in a network of interest
and their corresponding transcripts and (ii) the quantification of the relationship between
these genes (or transcripts) – a process that is referred to as parameter estimation. These
two processes are closely interconnected and should not be confused to refer to the same
thing. The challenges associated with modeling of network dynamics and parameter
identification are discussed in this review article. Avast number of scientific articles and
information storage systems on biological networks and genomic datasets have sprung up in
the last two decades. It is therefore useful to have guiding documents like this review paper
on the state-of-the-art methods, currents trends and emerging challenges associated to
network inference. Recently, major progress has been made following scientific meetings
like the Dialogue for Reverse Engineering Assessment and Methods (DREAM) challenge
[35]. The DREAM challenge is a project that aims to fairly compare the strengths and
weaknesses of network reconstruction methods. It also aims to validate the reliability of the
models in the various situations in which they are used.

A number of interesting papers have since come out of the DREAM series challenge, e.g.
DREAM1 [36], DREAM2 [37,38] and DREAM3 [35,39]. Details of the DREAM series
challenges are not discussed here and instead its benefits are stressed. For instance in
DREAM3, Yip et al. [35] performed in silico studies aimed to reconstruct networks from two
types of data, i.e. gene expression profiles in the ”deletion data” and time series gene
expression trajectories after initial data perturbations. They used deletion data to detect
direct regulatory activities and perturbation to enrich data that aids identification of weak and
complex regulation mechanisms. One of the interesting approaches that have been
exploited in network inference is that network excitation – also known as perturbation
studies. This excitation basically consists of introducing some kind of disturbance or external
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signal to a targeted component in a network or pathway and then assessing the resultant
impact on the other network components. This often involves experimental approaches to
obtain information on networks, i.e. excitation of an existing unmodified network and the
excitation of a modified network in a bid to exclude certain specific pathways. Excitations of
networks have in principle been approached in various ways, e.g. the input-output analysis
following excitation of an intact network – an approach that is very much of interest to
systems and control engineers. On the other hand, biologists have exploited alternative
strategies aimed at obtaining extensive insight by using experimental modification. In this
work, the terms time series and time course data often refer to the same process.

2. STATE-OF-THE-ART IN NETWORK INFERENCE

Good network inference requires proper planning and execution of an experiment, thereby
ensuring quality data acquisition. Optimal experimental design (OED) in principle refers to
the use of statistical and or mathematical concepts to plan for data acquisition. This must be
done in such a way that the data information content is enriched, and a sufficient amount of
data is collected with enough technical and biological replicates where necessary. These
requirements are necessary to ensure that the data quality does not compromise whatever
analytic approach is used for the network reconstruction and parameter estimation. To
provide some insight into the various components and requirements for proper network
inference, an overview is given in Fig. 1.

Fig. 1. A schematic representation of the steps involved in network inference
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The Prior knowledge constitutes literature information from scientific publications, biological
databases and expert knowledge on the subject. The performance of a GNR method is
judged by how well the Inferred network matches the True network structure. Starting with a
given dataset and Prior knowledge of a network, often the goal is to infer the true network
structure. Generally, testing of a reverse engineering method is done by generating virtual
data from an assumed True system – which is of course not the true system itself.The term
OED represents Optimal Experimental Design. Image adopted from PhD thesis, Omony
[40].Numerous network inference formalisms have been proposed in literature, e.g.
differential equations, hybrid models, regression models, Bayesian models and neural
networks. These approaches require large amounts of data and (super-)fast computers. The
pros and cons of the methods used in GNR are given in Table 1. Gathering sufficient prior
knowledge from literature and databases is a necessary but time-consuming and tedious
process. Once the true network topology is known, a performance comparison of reverse
engineering approaches can be made (Fig.1). Successful validations require well-designed
experiments, high quality data and robust identification procedures.

2.1 Overview of Network Inference

Fig.1 shows the main steps in network inference. One goal is to compare how well the true
network approximates the inferred network and the other is to derive meaningful insights
from such inferences. Approximations are often sufficient for inferring network dynamics for
high levels of identification accuracies. Additional comparisons as to whether two network
structures match can be done by assessing the presence of corresponding edges in the true
and identified network structures (step 4 and 6). Many networks have a high level of
uncertain information such as the node dynamics and unknown network topological
structure. Identification of structures or pathways that are considered consistent and
experimentally verifiable in the laboratory is essential in biological sciences. The recent
decade has seen huge advances made on network structure prediction. The discovery of a
network structure and the interaction mechanisms between the genes helps us: (i)
understand the dynamic interaction between the genes, (ii) make predictions of the future
expression values and the time trajectories of all genes in a network, and (iii) identify the
biological function of a gene, e.g. in relation to drug discovery and disease studies. Readers
withkeen interest on this issue are referred to [41,42,43,44].

There are many stages involved in network inference, as depicted in Fig. 1 (steps 1 to 12).
These steps entail other elements that play important roles in the network inference. The
goal of this paper is not to provide details of the individual steps but to show the interplay
between the various steps. Overall, each of the steps has to be carefully considered if the
Biological inference of results at step 12 is to be meaningful. This is because of the data
quality, experimental design, prior knowledge, model and/or network inference formalism
used all play a part in network inference. Recently, interesting progress has been made on
experimental design (step 6), e.g. [45,46,47]. Good experimental design practice enriches
data information content. There is evidence that studies from well-designed experiments
significantly improve the network inference, as well as save time and money [47]. First, an
overview of the most popular methods for network inference is provided, this is followed by
an assessment of the suitability of the method and then circumstances under which it can be
used. The working principles of the methods are based on a diversity of approaches, e.g.
probability theory, others are stochastic based and again others are deterministic in nature.
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Table 1. Summary of pros and cons for GNR methods. These methods and associated literature references showcase the
success and challenges faced on the various GNR methods as applied to various model organisms

Methods used Advantages (pros) Disadvantages (cons) Model organism
Differential or difference
equation models

Reliably suitable for time course
experiments (TCEs) data for small
number of genes and conditions.
Implementation simplicity.

Unsuitable for large number of genes
and leads to under determined
models, so unsuitable for models
with many parameters [48,49].

A. niger [47], E. coli[14][50],
B. subtilis [51],
S. cerevisiae [52].

Random Boolean
Networks

Suitable for TCEs and is used
together with other clustering
algorithms.

Discretization complexity; decision
boundary problem, e.g. critical cut-off

-values.

E. coli [53] dataset; often
also validated with in silico
datasets or simulations.
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Bayesian
Networks
(BNs)

Suitable for TCEs, yields reliable
networks [54,55,56] and sub-
networks [57].

Cyclic regulations in networks are
not possible [56,58]. Involves using
numerous assumptions some of
which are not robust neither
adequate.

E. coli [59], using simulated
expression data [60], yeast
cell cycle data [61].

Dynamic
Bayesian
Networks
(DBNs)

Suitable for TCEs and yields
reliable networks [54,55,56].
Cyclic regulations in networks
possible [54,58]. Can be easily
used to model feedback loops in a
network.

Lack of a systematic approach to
determine a biologically relevant
transcriptional time-lag [61].
Implementation complexity, high
computational costs [61].

S. cerevisiae [54,62,63],
E. coli [56], S. cerevisiae
cell cycle data [3], yeast cell
cycle data [61].

Neural
Networks

Effective depending on the data
structure and dimensions;
reliability of the training dataset
problem at hand. Dependent on
data structure and classifier
function used – i.e. the level of
robustness of a classifier function.

Unsuitable for TCEs. Complexity in
choice of classifier functions and
decision boundaries determination,
handling dimensionality reduction.

Budding yeast cell data
[64], data from S.
cerevisiae and E. coli [15],
tested on simulated and E.
coli data [65].

Graphical
Gaussian
Models(GGMs)

Available open-source software,
operate on fairly simple principles,
needs no data discretization,
little/no need for prior knowledge.

Unsuitable for large or highly
connected networks, unable to infer
causal relations. Does not infer
indirect interaction from hidden state
variables.

Using in silico(synthetic)
data [34], E. coli dataset
[66], Arabidopsis dataset
[17].
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2.2 Probabilistic Bayesian Network Formalism

Bayesian networks (BNs) are defined by graphical structures which are a family of
conditional distributions and a set of corresponding parameters. Together they represent a
joint distribution for a set of random variables – the random variables being gene expression.
BNs can be learned from a prior known network structures using well known sparse training
datasets. BNs were first introduced by Kauffman [67]. This approach is based on conditional
dependencies between sets of variables (see [7] for a detailed review). Applications of
Dynamic Bayesian Networks (DBNs) can be found in the work of Kim et al. [54] and Zou and
Conzen [61]. The DBN as an extension of the BN incorporates time dynamics into the GNR.
Unlike simple BNs, the DBN can model cyclic regulation in genetic networks [62].

Cyclic regulation refers to the regulatory effect of a gene starting from one particular gene to
another gene or group of genes in some kind of sequence, and finally ending back at the
gene from which the regulation of transcription was initiated (Fig. 2B). Cyclic regulation can
be positive or negative depending on if the overall impact on transcription of the initial gene
of interest is increased (up-regulated) or reduced (repressed). These collective up-regulatory
or down regulatory effect can arise from any of the other genes involved in the cyclic loop
during regulation – some might be repressors while others might be activators, or even
exhibit self-regulation. Cyclic regulation does occur in many biological networks although in
some systems unraveling its existence can be a challenge due to indirect loops between the
various network components. Additional applications can be found in the works of Werhli et
al. [68], Spirtes et al. [58] and Pearl [69]. According to Murphy and Mian [70], BNs are highly
stochastic and have been shown tobe suitable for modeling with noisy transcription data [3].
The Bayesian formalism is efficient but requires many working assumptions, good network
structural prior knowledge and readily handles missing values in microarray datasets [71].

Rogers and Girolami [60] used Bayesian regression to infer sparse genetic networks and
noted that the likelihood for observing false edges remains high, especially for data
measurement noise levels higher than 10%. The term false edges here refers to a prediction
that a relationship (or connection) exists between two nodes in a network and yet in reality
such a relationship does not exist. They observed that typically precision levels drop to about
10% and that for each true connection there are 9 false connections. This highlights the
complications that arise from parameter variations in modeling genetic networks. Identifying
which approach is best suited for a given dataset is nontrivial since the efficiencies may vary
across datasets [72]. The problem with BNs is that for a large number of variables and
relatively small number of samples and/or experimental conditions ( ≫ )where –
number of genes and - number of time points. Generally, the theoretical concepts are
challenging and the model complexity and implementation difficulty increases with increasing
network size. Incorporating additional information about TFs, signaling molecules or
candidate regulators in BNs reduces modeling complexity. This increases the likelihood of
obtaining a reliable biological inference.

Data clustering using statistical methods is the commonest way of visualizing data –
particularly for uncovering closely related variables and patterns in high dimensional
datasets. Data clustering might provide a useful means of extracting qualitative information
on gene co-expression between genes using a large dimensional dataset, but it does not
provide information on the directionality of regulation between genes. Such information on
directionally can be obtained using BNs and DBNs. To ensure that such interactions are
unraveled accurately, the last decade has seen advancements made towards reducing the
noise levels in genomics datasets. There is therefore hope that with the availability of high
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quality and high dimensional data from methods such as RNA sequencing (RNA-Seq), the
accuracy and precision with which genetic networks will be reconstructed irrespective of the
approach used for the reconstruction will be greatly improved (as was recently demonstrated
for co-expression networks [73]).

2.3 Regression-Based Methods

Nonlinear regression involves techniques such as polynomial regression, Spline regression,
Gauss-Newton and other iterative numerical techniques. Data clustering alone is insufficient
for the determination of the kinetic parameters required in such models; more sophisticated
mathematical tools are required for the determination of such parameters [30]. The
effectiveness of partial least squares regression in reconstruction of association networks
was shown by Pihur et al. [74], especially in networks where directionality in regulation
between two genes is not that essential, e.g. if a gene is up or down regulated, if the two
genes have similar expression patterns then they are most likely to belong to the same
network module – and hence similar function. These are referred to as undirected networks
since they involve network structures in which: only edges between nodes are required, how
the genes are regulated, key TFs, and the existence of self-regulation (see Fig. 2A).
Association networks are particularly useful for uncovering groups of genes that are co-
regulated either in time or under a specific experimental condition. Generally, genes with
similar expression patterns or those that are regulated by the same TF are considered to be
functionally related, hence, belong to the same sub-network cluster. The clustering of genes
into modular units can be uncovered using regression methods.

Fig. 2. Network structures and regulation mechanisms. A: A simple representation of
an undirected (association) network with 5 genes (1 to 5) indicated in gray nodes, B:

Directed network with the 5 genes as in A, the pointed arrows () represent
activation, blunt arrow heads (|) represents repression. The loop from gene

12|341 is an example of cyclic regulation (red arrows) in a biological network

The combination of BNs and nonlinear regression is promising for GNR. Gardner et al. [22]
developed the Network Identification by multiple Regression (NIR) algorithm; this algorithm
uses steady state RNA measurements from transcriptional perturbation experiments.
Though it requires network prior knowledge, the NIR is effective for small scale microbial
gene networks. The algorithm was tested on simulated and real data for nine genes in E. coli
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and about 50% of the network edges were correctly recovered. The 9 gene network was part
of the Son of Seven less (SOS) system in the larger E. coli network. A different algorithm
(Time-Series Network Identification, TSNI) yielded a similar result as NIR [75].Perturbation
data enables investigation of how the gene expression changes from its steady state value.
Network perturbation enables assessment of which genes, group of genes and/or sub-units
(modules) in a network that influence the expression levels of the other genes. Perturbing a
network ensures that fair comparisons can be made between datasets from two
experimental conditions. Steady state perturbation data basically gives insight into what the
expression values of specific genes would be without any changes in the environment as a
result of, e.g. stressors like heat shock, change in pH and extreme (low or high) salt
concentrations.

Time course Auto Regression models coupled with the Granger causality in GNR have been
used for GNR. An extension of this model is the Auto Regressive Integrated Moving Average
(ARIMA). The notion of Granger causality was first coined by Wiener [76]and Granger [77]. It
is based on the concept that there exists a causal effect from one time series to another, if
and only if the prediction of the first time series is improved based on knowledge of the
second. The Granger causality measure enables determination of causal relation between
two signals and it also determines direct or indirect causality [78][79][80][81][82]. However,
much still remains to be done in the study of biological networks using AR-e Xogenous
models (ARX) and using the more extended ARIMA models. It was shown that successful
network inference can be achieved using Granger causality [77] and partial correlation
analysis based methods, e.g. [83,84,85]. These methods do not infer causality between
nodes. Another approach is to use association based methods – also referred to as
Relevance networks [86].

2.4 Boolean Networks

The use of discrete models in biology dates as far back as the 1940’s [67,87]. In discrete
mathematics and computer science, discrete time models are viewed as computing
machines [88]. Boolean networks are considered as qualitative descriptions of gene
regulatory interactions. The first computational methods for genetic network inference were
the Boolean and random Boolean network approaches [89,90,91,92]. Boolean functions map
state variables at a time point to + 1. This formalism performs best for a small number of
genes. Boolean networks work on the assumption that transcript production and mRNA
degradation are controlled by switch-like processes. This approach uses discretized data;
hence there is a risk of information loss. However, according to Rocke and Durbin [93] the
use of Boolean formalisms should be treated with caution given the relatively large noise
levels in microarray data. For a brief overview into Boolean networks, let be an –
dimensional binary vector that represents the state of a network of genes. Boolean
functionsgenerallyhave two states, ”ON”(1) and ”OFF”(0). Given a genetic network of size ,
these Boolean functions take on a total of2 possible states. In this formalism, a Boolean
function of the other target genes is assigned to each gene in a network. This function
predicts the state of a target gene at a point in time leading to an enormous number of
Boolean functions. Individuals with particular interest on details of the theoretical working
principles are advised to look at literature [94,95,96,97].

Huang et al. [98] considered the binary approximation of transcription to be an over-
simplification. Many biological phenomena are portrayed as continuous. Nevertheless,
numerous studies have demonstrated that binary (and ternary) discretization sometimes
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yield reliable results. Using the binary approximation, Huang and co-workers also showed
that the Boolean formalism yields biologically meaningful results. Though computationally
costly, using ternary and higher order discretization levels has the potential to reveal more
characteristics of a biological network [99]. Liang et al. [6] proposed the REVerse
Engineering ALgorithm (REVEAL) for large-scale Boolean network reconstruction. Boolean
networks are capable of capturing the dynamic behavior in complex systems when used with
high through-put microarray data. Random Boolean networks realistically capture essential
network characteristics [67,98,100,101]. According to Shmulevich and Zhang [102], this
ability to realistically capture crucial features of networks justifies using the Boolean
formalism for network inferences.

Boolean networks only allow for qualitative rather than quantitative inferences. Steggles et
al. [103] showed that Boolean networks fail to capture vital network dynamics. To provide
insight into the complexities with random Boolean networks, suppose that ℓrepresents the
network connectivity number, –number of nodes. By assumingthat we have ℓ levels, then
the number of possible states for such a network is 2ℓ with a total possible combination of2 ℓlogical functions. It therefore follows that for each node has a total of ( , ℓ) possible un-
ordered combinations for ℓedges. Here the symbol is used to refer to a combinatorial. The

number of possible networks for a given set of parameters is 2 ℓ × ( , ℓ) ℓ
(proof not

given here, interested readers can look at [104]). The higher ℓgets the more complex the
topology of the network becomes. Boolean networks use discretized data which to some
extent subjects the formalism to information loss from the data discretization. The
dimensionality challenges highlight the complexity of the Boolean formalism in studying
biological networks.

2.5 Ordinary Differential Equation (ODE) Formalism

2.5.1 Variants of the ODE formalism

ODEs are efficient for modeling small-sized networks [105], but face the problem of
computational time complexity for large dimensional networks [106][107]. De Hoon et al.
[108] illustrated the efficiency of ODEs with real data from B. subtilis. By using ODEs,
network dynamics can be studied prior to parameter identification [109]– usually through
modeling and simulations. Simulation is a useful way to predict systems behavioral
dynamics and the way the network components (e.g. mRNA and protein concentrations)
vary over time. One of the most popular differential equation formalism for network inference
is the S-system [110,111,112,113,114,115]. They are advantageous in terms of system
analysis and control design since it allows for convenient use of analytical and computational
methods. Steady-state evaluation, control analysis and sensitivity analysis of a given system
can be established mathematically using S-system parameters [116,117].

A major disadvantage of S-systems is that it requires a large number of parameters, (i.e.2 ( + 1), being the number of state variables) to describe a network further posing a
challenge during parameter estimation. The proof of how the number 2 ( + 1) is arrived at
is not given here but further insight on its derivation can be found in [116,117].Another
bottleneck lies in the parameter estimation which is also discussed in a subsequent section
of this paper. Kabir et al. [118] used Linear Time Invariant models to infer biological network
structures and parameter estimation using synthetic data. Zhan and Yeung [119] proposed a
method that combines spline theory with Linear Programming and Nonlinear Programming.
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They used enzyme kinetics models to describe the network dynamics and study systems
parameter sensitivity. ODEs are used with time course perturbation data and knock out data.

2.5.2 Mathematical formulation

A popular representation for modeling biological networks is the transcription-translation
model: ̇ = ( ( ; , ℎ ), . . . , ( ; , ℎ )) − ,̇ = ( ; ) − , given (0), (0)
This model formalism arises from the central Dogma of molecular biology in which the DNA
is transcribed to mRNA and then translated into proteins.The nonnegative constants and

represent the mRNA and protein degradation parameters, respectively; ℎ ( =1, . . . , , . . . , ) are Hill coefficients, – number of TFs for gene and – number of genes.
The vector-valued functions ∈ { , }: ℜ → ℜdescribe the gene regulation in time; and

are repressing and activating Hill functions, respectively. These functions describe the
dependence of the mRNA concentration on the protein levels . The mRNA synthesis
function consists of sums or products of . The specific formulation of these functions is
based on the specific molecular regulatory mechanism, which TFs are involves, the target
genes of interest, the presence or absence of a feedback, feed-forward mechanism, time
delay etc.

The translation function of mRNA to protein is often considered to be linear. When the
protein has no effect on the mRNA levels , then the corresponding term in the model is
set to zero, i.e. = 0.Occasionally, people ignore what is happening to state variables that
might be crucial for determining the network dynamics and instead focus mainly on the
observable components which are easily quantifiable. However, understanding the particular
roles of any hidden state variables might be vital in explaining certain peculiar behavioral
dynamics of a network, thereby, reducing the reliance on considering the model as a black
box with hidden variables. The most common forms of are Hill functions and Michaelis-
Menten functions [120,121,122]. The parameters[ , . . . , , ] can be estimated using the
Maximum Likelihood approach [123,124,125]. A good illustration of the working principles of
ODEs in network inference can be found in the work of Polynikis et al. [126]. They used Hill
functions in ODEs by exploiting analytic approaches such as steady state analysis by
investigating how the concentration of mRNAs and proteins change in time for a given
network.

Big networks require a large number of ODEs and parameters. This further complicates the
network inference and increases the risk of obtaining biased parameter estimates. The
computational requirements for such networks are enormous and quickly scale up with
network size. ODEs effectively handle small-dimensional networks and irregularly sampled
data, for instance by using Kalman Filters [127]. Commonly, perturbation data obtained as a
result of variations in a factor that influences gene expression is used for the ODE formalism.
In perturbation experiments in which gene expression is followed in time, the perturbation is
performed at time zero. After this the cells are allowed sometimes to recover and regain their
steady states. Overall, differential equations model network dynamics in fine details and lead
to biological realistic inferences. Additionally, on average it requires a small amount of data
and uses both discrete and continuous data, hence it is flexible and convenient.
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2.6 Hybrid Models

The hybrid formalism combines continuous models of slowly changing metabolite
concentrations with discrete representations of the model components, particularly those
that are changing in a switch-like fashion between two states. Hybrid models, though rarely
used in reverse engineering biological networks, have been shown to successfully yield
interesting results. Hybrid models enable creation of quantitatively accurate representations
of the concentrations of metabolites in a cell [123]. This formalism is based on a combination
of methods that embrace discrete-continuous modeling. Zhang et al. [128] presented a novel
network inference method by integrating gene expression data and gene functional category
information. Their network inference approach consisted of two parts, namely: (i) module
selection, and (ii) network inference. The first of these parts uses optimal modules through
fuzzy –mean clustering and incorporating gene functional category information, while the
latter uses a hybrid of particle swarm optimization and recurrent neural network (PSO-RNN)
methods during the network inference. The latter method was tested on real data. This
demonstrates the applicability of hybrid models in network inference. In this setting the RNN
is the model formalism and the PSO refers to the parameters estimation approach. The
specifics of the theoretical framework can be found in [128].

In contrast to the approach of Zhang et al. [128] discussed above, Fernandez et al. [129]
focused on reducing computation time, increasing the efficiency and robustness of their
hybrid based optimization routine. Their approach integrates aspects of experimental design
by evaluating the Fisher Information Matrix and effectively handles data measurement noise
and partial observations in data. Additionally, local and global model identifiability is also
tested in the same approach. Hybrid systems require good prior knowledge of a biochemical
system. Prior knowledge of network pathways aid setting up mathematical models upon
which experimental designs are based.

2.7 Supporting Tools and Network Information Level

The singular value decomposition (SVD) [130,131,132], independent component analysis
[133] and principal component analysis [134] when used with ODEs have aided successful
network inference. However, this combination does not guarantee total recovery of the true
genetic network structure [135,136]. The use of SVD and ODEs can be improved by
exploiting the network structural prior knowledge. This is mainly applied to linear systems of
equations for which the dynamics of gene expression data is portioned into a noise-free and
data measurement noise. Such a partition enables acquisition of an analytic solution and an
approximation of a numerical solution to the system of equations under consideration. It is
not possible to directly apply the analytic solution of the linear system since gene expression
data because of data measurement noise. In such cases using SVD ensures that an
accurate solution to the linear system of equations as demonstrated in [130]. For most TCEs
the number of transcripts out-weighs the number of the time points, so the SVD can be used
to circumvent this problem [135].

Generally, reverse engineering networks is performed at two information levels, low and
high. Bayesian and Neural networks are examples of high-level methods. Low-level methods
include ordinary, partial and delay differential equations. The choice of a level depends on
the research objective in consideration. Often distinctions are made between the forward
and reverse engineering [137]. Achieving high true positive (TP) values (≈100%, nearly all
connections/edgesbetween nodes in a network are correctly predicted) from biological
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inference without necessarily compromising the levels of false discoveries is a nontrivial
task. Likewise, with large datasets, realistic values for TPs are ≈90%. Higher TP values lead
to higher false discovery rates, which particularly holds true for large networks.

2.8 Data Requirements, Data Sampling Strategies and Precision

Continuous dynamic models are suitable for modeling gene transcription data which is
known to be a continuous process in time. When modeling with sampled data, the challenge
is to keep the number of data samples within cost-effective values. Optimal data sampling
criteria maximize cost-effectiveness [138,139,140,141,142]. Likewise, large data
measurement errors, low resolution and small dimensional datasets can negatively impact
meaningful network inference. For instance Bourque and Sankoff [143] showed that for
relatively low data measurement noise levels (<2.5%) and ≤ 12, false negative rate
(FNRs) and false positive rates (FPRs) of as high as 30% are to be expected for a network
with low gene transcription correlation values. These findings were validated using both
synthetic and true biological networks. In GNR, using time course data, a large number of
time points in relation to model fitting to data are associated to low error rates (false
negatives, FN and false positives, FP). In such cases the ratio FN/FP seemingly remains
invariant of network size.

In practice the number of data points in a TCE is often low due to financial constraints.
Recently, advancements using powerful computational approaches have been made, e.g.
the improved self-adaptive Naïve Bayesian Tree (NBTree)[144], in these advancements it
was demonstrated that FPRs can tremendously reduce up to acceptable levels. Their work
resulted in accuracy levels or TPs of ~99% using the NBTree algorithm. In another algorithm
(a noise and redundancy reduction technique improves accuracy of gene regulatory network
inference (RARROMI)), proposed by [145], it was demonstrated that it outperformed the then
available algorithms by achieving an accuracy level of ~63%. However, such a performance
rate might beto some extent dependent on the test datasets used, and is likely to vary for
various datasets depending on their quality and dimension. It is therefore important that
computational methods and algorithms be trained on a variety of well-known datasets
obtained from a diversity of experiments. This is to ensure that the error rates from the
network inference can be reported with much bigger certainty and confidence. This
highlights the significance of good design strategies to ensure that experimental costs are
minimized while still obtaining datasets with high information content.

Kim et al. [146] studied the influence of varying the number of data points on estimated
standard errors from a fitted regression model of three classifications, namely: least squares,
total least squares and constraint total least squares. Of these criteria, the constraint total
least squares approach yielded the best performance. Their findings suggest that a very
small number of time points for analysis yields biased results while too many time points is
associated with increased financial costs and more experimental time for the data collection
process. The data requirement for accurate network inference with genes was investigated
by Kanehisa et al. [147]. For a Boolean network with average in-degree connectivity, the
data requirement scales to 2 + ( ) compared to a fully connected network of2 transition states [148]. The in-degree of a node in a genetic network refers to the number
of head endpoints adjacent to that specific node. Connectivity is the number of edges linking
the nodes in a network.
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2.9 Modeling Cycle in Network Inference

The choice of model formalism is important for reverse engineering biological networks, for
instance the decision of whether to use a linear or nonlinear models and discrete or
continuous models. These choices ensure that the time dynamics of the gene expression
are well captured. The problem of network reconstruction is indeed challenging as put
forward by D’Alch´e-Buc and Schachter [149]:” As this field of research matures, it is
apparent that that there is no one-size-fits-all solution but rather a range of frameworks and
methods, each with its specific trade-off between abstraction and tractability, the ultimate
test being the ability to answer relevant biological questions.” Overall, the steps involved in
the modeling cycle are summarized in Fig. 3. Some intermediary steps are skipped from the
scheme in this Figure for conceptualization purposes. Step 1 (prior knowledge) involves a
thorough literature and database search, or seeking an expert’s opinion. Once the
information is gathered, it is important to think in advance of a formalism to model your
system (step 2).

Fig. 3. The Modeling Cycle in network inference: the summary is given in steps 1 to 7.

The starting points for this cycle may vary depending on the situation at hand. Careful
handling of each step determines the quality of the network inference. When performing
network inference and parameter identification it is vital to clearly state the research
hypothesis of interest (step 3). This is closely followed by experimental design (step 4).
Getting the experimental design right ensures that high quality data is collected with all the
required variables being measured (step 5). Step 6 involves the actual network inference,
this process is mathematical rigorous and computationally costly. Upon obtaining the
identification results (step 6), there is need to cross-check how well the results meet the
expectations. This leads to the model refinement (step 7) and the process is terminated
upon obtaining a good model fit to data, otherwise, there is need for model re-adjustment.
Between these links small steps exist, all of which contribute to GNR, hence the term
Modeling Cycle (Fig.3).
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2.10 Parameter Identification

Parameter identification is an important part of network inference and the prediction of
network behavior in time. Parameter estimation techniques like linear iterative models,
stochastic optimization methods and constrained linear and nonlinear regression models are
often used in GNR [100,113,119,123,129,137]. Each approach has its own strengths and
weaknesses many of which are strongly linked to the data quality and modeling approach.
Genomic, proteomic and other -omic data types are prone to noise and/or have missing
data. With recent advancements in high resolution data acquisition techniques, the issue of
noisy or missing data is becoming less problematic. Focus has slowly shifted away from
obtaining high-resolution data to unraveling the masked information contained in such
datasets. Most methods focus on small-sized networks because of the computational
challenges associated with larger networks. However, the need to accurately describe
molecular mechanisms in biochemical systems cannot be understated. To achieve such high
performance descriptions, parameters have to be accurately and precisely identified. Many
gradient search optimization procedures often fail to converge to a unique parameter value.
Such a failure can bepartly attributed to the presence of correlated parameters and model
degeneracy with respect to the cost function. This often compromises the precision with
which the parameters are identified, therefore, there is need for alternative solutions to local
optimization methods.

Parameter identification, an important aspect of biological network inference, can be studied
using sensitivity analysis. Sensitivity analysis is useful for assessing which parameters
significantly affect the outputs or measured variables of interest following a network
perturbation with some stimuli [6]. Conventionally parameter sensitivity analysis is used as a
tool for analysis and design in engineering systems theory. Although it has mostly been
applied in physical systems rather than biological systems, its use in the latter has recently
increased, especially in the study of complex networks. By using parameter sensitivity
analysis, once the most influential parameters are identified the correlation matrix between
the parameters is then investigated. Thereafter, the least sensitive parameters can be left
out of a model thereby reducing the model complexity and yet retaining its explanatory
power. In dealing with model complexity, an intriguing question that comes to mind is how
possible is coarse-graining in network? The term course-graining here refers to complexity
reduction (see e.g. Erban [150]).For large networks with thousands of genes the number of
differential equations required to describe a particular system becomes huge [106]. This
implies an increased number of kinetic parameters, e.g. mRNA production and decay rates
and Hill constants. In principle, using parameter sensitivity analysis, some of these
parameters can be coalesced or dropped from the model – leaving a simpler, yet still
powerful model to describe the network dynamics.

3. DISCUSSION AND CONCLUDING REMARKS

The use of OED to enrich data used in GNR has been exploited in engineering. All this
shows the worth of using OEDs in improving parameter estimation accuracy and precision.
More on how OED can be used to improve parameter estimation can be found in the work of
Faller et al. [140]. However, its use is not yet widely embraced in network inference. It would
be interesting to see more applications of OEDs in GNR, particularly in parameter estimation
problems as suggested in [47]. Progress in the reconstruction of biological networks has
been hugely supported by advancements in data acquisition methods. High-throughput
technologies have aided quantification of metabolite abundances in cells, e.g. measuring
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gene transcription using DNA microarrays or Real Time-quantitative Polymerase Chain
Reaction (RT-qPCR) technique. Integrating different omics datasets, e.g. genomic,
transcriptomic and proteomic data drastically improves the quality of network inference [151].
The decision of which model formalism to use should be based on data attributes such as:
data noise level, data dimension, data type (continuous or discrete, relative or absolute) and
the research goal in consideration. Softwares for analyzing and visualizing data have aided
network inference – helping improve our understanding of biological pathways, e.g. the
Complex Pathway SImulator ”COPASI” – abiochemical network simulator developed by
Mendes et al. [152] and its earlier version by Hoops et al. [153]; the correlational based
approach “Gene Net” by Opgen-Rhein and Strimmer [154]; ”Snazer” – a network analyzer
and data visualization software by Mazza et al. [155]; ”Cell Designer” – a tool for modeling
biochemical networks[156][157]. Most of these tools are freely available for download and
can be easily installed and run inthe specific software language in which they were written –
although some might only run well on some operating systems. Such information is provided
in the software user manuals. Prior to data analysis and/or model fitting, it’s is advisable to
ensure that data collection criterion, experimental conditions, normalization criteria as sound
enough to ensure that the results are trustworthy. Preliminary, prior to deciding which
approach to use to answer specific research questions or test hypothesis related to network
inference, one can start by looking at the summary of advantages and disadvantages of the
methods given in Table 1.

The pace at which algorithms, software, network analysis and inference tools have
developed is astonishing– a development that has facilitated analysis and visualization of
high-dimensional datasets. Overall, deriving meaningful inferences from biological data is no
easy task. There is need for regular training to update our skills and keep abreast with
literature information and latest developments in the field through interaction with experts in
conferences, workshops and/or courses on specialized courses on,e.g. network
reconstruction and mathematical modeling. Given the vast amount of literature, it is easy to
get lost in a sea of information and inexperienced individuals in GNR are advised to seek an
expert’s opinion where necessary. Availability of relatively cheap high through-put data
acquisition techniques has revolutionized research on network inference, e.g. recently, there
has been interesting insight into the important role of small RNAs (sRNAs) in
posttranscriptional regulation in eukaryotes – particularly in bacteria. The reduced cost of
genome sequencing and RNA-Seq data in general has made these advancements in
uncovering the roles of sRNAs possible, see [158].Such studies have provided insight into
the sRNA functional and regulatory roles. Intensified efforts along this line of research could
see interesting discoveries in the line of drug discovery, cancer research and a general
improvement in our understanding of posttranscriptional regulatory events. In a nutshell, the
most important attributes in network inference are: (i) the ability to model direct and indirect
cyclic regulation, (ii) model dynamics, (iii) robustness even for small dimensional datasets,
(iv) the ease of implementation and user-friendliness, and (v) the ability to capture reality in
life with simple models.

In summary, this review article is mainly concerned with single cells rather than the
interaction between cells. Therefore, the work was focused mostly on approaches related to
studies on molecular biology and molecular genetics rather than towards developmental
biology. During data analysis and network reconstruction it is advisable to pay particular
attention to and clearly specify what hypothesis is to be tested, what dataset you intend to
use, e.g. gene knock-out data, or time-series data; data quality and dimension; is it discrete
or continuous data; what is the noise levels in your data (signal-to-noise ratio), what and how
many parameters are required to describe your network or biochemical system; decide if you
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are only interested in association between variables or trends in gene expression. It is
important to identify appropriate data analysis tools: whether it is freely available (open
access) or commercially available software, scrutinize and pay particular attention to what
type of data is being used, check if the data are from similar experiments, related strains,
ensure that the data is properly scaled and normalized. All the above is in an effort to ensure
improved network inference.
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