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Abstract

A bioequivalence study is a type of clinical trial designed to compare the biological equivalence of two different
formulations of a drug. Such studies are typically conducted in controlled clinical settings with human subjects,
who are randomly assigned to receive two formulations. The two formulations are then compared with respect
to their pharmacokinetic profiles, which encompass the absorption, distribution, metabolism, and elimination
of the drug. Under the guidance from Food and Drug Administration (FDA), for a size-α bioequivalence test,
the standard approach is to construct a 100(1− 2α)% confidence interval and verify if the confidence interval
falls with the critical region. In this work, we clarify that 100(1−2α)% confidence interval approach for

Corresponding author: E-mail: kexuan.li.77@gmail.com;

Asian J. Prob. Stat., vol. 26, no. 1, pp. 25-40, 2024

https://www.sdiarticle5.com/review-history/111609


Li et al.; Asian J. Prob. Stat., vol. 26, no. 1, pp. 25-40, 2024; Article no.AJPAS.111609

bioequivalence testing yields a size-α test only when the two one-sided tests in TOST are “equal-tailed”.
Furthermore, a 100(1− α)% confidence interval approach is also discussed in the bioequivalence study.

Keywords: Bioequivalence study; two one-sided tests; confidence interval.
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1 Introduction

Bioequivalence studies are a type of clinical trial designed to compare the biological equivalence of two different
formulations of a drug. The objective of these studies is to establish that the generic drug demonstrates the
same rate and extent of absorption as the reference drug and that its therapeutic effects are comparable. Such
studies are typically conducted in controlled clinical settings with human subjects, who are randomly assigned
to receive either the generic drug or the reference drug. The two formulations are then compared with respect
to their pharmacokinetic profiles, which encompass the absorption, distribution, metabolism, and elimination
of the drug. Acceptance criteria for bioequivalence are generally based on statistical methods that assess the
similarities between the pharmacokinetic profiles of the two drug products. These comparisons often involve
evaluating the area under the concentration-time curve (AUC) and the maximum concentration (Cmax) of
the drug in the bloodstream. By ensuring that both AUC or Cmax values fall within pre-defined equivalence
ranges, researchers can determine if the two formulations are bioequivalent. The examination of drug product
bioequivalence and the statistical foundation governing their design, analysis, and interpretation has undergone
significant evolution in the past two decades. A preference for a crossover design has emerged over a parallel-group
design, given its ability to segregate inter-subject variation (non-product-dependent) from intra-subject variation
(product-dependent). In recent years, bioequivalence studies have garnered significant attention in the literature,
reflecting an increasing focus on refining methodologies and addressing nuanced challenges. Notably, [1] delved
into the multiple testing problem within the realm of equivalence testing for food safety. Their work critically
compared various methods aimed at controlling the family-wise error rate, contributing valuable insights to this
crucial area of study. [2] conducted a comprehensive review of simultaneous confidence regions, particularly in
the context of multi-parameter bioequivalence studies, providing a nuanced exploration of diverse approaches.
[3] made a noteworthy contribution by proposing a ratio of means, grounded in the original bioavailability
measure, as a novel definition for average bioequivalence. This innovative perspective adds depth to the
ongoing discourse surrounding bioequivalence assessment. [4] introduced a method for constructing simultaneous
confidence intervals for a parameter vector, employing a series of randomization tests (RT). Notably, their
approach utilizes an efficient multivariate Robbins–Monro procedure, which incorporates correlation information
from all components, enhancing the robustness of the simultaneous confidence intervals. Furthermore, [5]
addressed the vital aspect of finite sample corrections in the context of average equivalence testing. Their
work provides valuable considerations for improving the precision and reliability of bioequivalence assessments
in practical, finite-sample scenarios. These diverse studies collectively contribute to the evolving landscape
of bioequivalence research, offering innovative perspectives, methodological advancements, and solutions to
contemporary challenges.

Suppose we want to access the bioequivalence of two drugs or formulations. Under the guidance of Food
and Drug Administration (FDA), the bioequivalence is claimed if a 90% two-sided confidence interval of the
geometric mean ratio falls within 80-125%. Under the context of statistical hypothesis testing, to demonstrate
bioequivalence, the following significance level α hypothesis testing problem is considered:

H0 :
ηT
ηR
≤ δL or

ηT
ηR
≥ δU versus Ha : δL <

ηT
ηR

< δU , (1.1)

where ηT , ηR are the population geometric mean of the test product and reference product respectively, δL, δU
are the lower and upper error bounds determined by the regulatory. Under the theory of intersection-union test,
[6, 7, 8] proposed two one-sided tests (TOST), which now has been the standard approach to test (1.1). As
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its name implies, TOST decomposes the interval hypothesis into two size-α one-side hypotheses and rejects H0

if and only if both two one-sided hypotheses are rejected. In general, when multiple size-α tests are combined
together, the overall size of the combined test is no longer α. Fortunately, due to the theory of interaction-union
test, the size of TOST is still α, which will be discussed in Section 2.1. It has also been showed that, for a
size-α TOST procedure, it is identical to construct a 100(1 − 2α)% confidence interval for ηT

ηR
and reject H0 if

the confidence interval falls entirely between δL and δU . Even though the procedure seems simple, there are still
some questions that need to be clarified, for example:

• Why is the geometric mean preferred over the arithmetic mean?

• Why are the BE limits (0.8, 1.25) not symmetric about 1?

• Why is the product of BE limit equal to 1 (0.8× 1.25 = 1), i.e., symmetric about 1 on the ratio scale?

• In general, the combination of two size-α tests could not get a size-α test, but why TOST works? Why
is a size-α TOST identical to a 100(1− 2α)% confidence interval, not a 100(1− α)% confidence interval?
Is TOST the most powerful?

The purpose of this paper is to answer these questions theoretically and provide a clear and in-depth understanding
of the bioequivalence study. For example, the geometric mean is preferred in bioequivalence studies because
pharmacokinetic parameters, such as AUC and Cmax, typically follow a log-normal distribution. Using the
geometric mean ensures that the ratio of the means remains unaffected by extreme values or outliers, leading
to a more accurate and robust comparison of the test and reference formulations. The geometric mean is
calculated by taking the exponential of the average of the natural logarithms of individual observations. This
ensures that extreme values or outliers do not unduly influence the mean, providing a robust measure that
accurately represents the central tendency of log-normally distributed data. However, the geometric mean is not
suitable for data with negative values and can be influenced by small sample sizes. The bioequivalence limits
(0.8, 1.25) are not symmetric around 1 because they account for potential differences in variability and the
possibility of type I or type II errors. The limits are based on log-transformed data, and when back-transformed
to the original scale, they yield asymmetric confidence intervals. The asymmetry helps to accommodate the
potential differences in variability between the two drug formulations. The product of the BE limits is equal to
1 to ensure that the ratio of the test and reference products’ geometric means is unbiased on the ratio scale.
When the two limits are multiplied, they effectively cancel out any deviation from the true ratio of 1, allowing
for a more accurate comparison of the drug formulations. The specific bioequivalence limits (0.8, 1.25) are
strategically chosen to accommodate variability and control error rates. The product of these limits equals 1 to
ensure an unbiased ratio on the scale. This condition significantly impacts the overall design and interpretation
of bioequivalence studies. TOST works because of the intersection-union test theory. While it may not be the
most powerful test in all situations, it maintains the overall size-α test by decomposing the interval hypothesis
into two size-α one-sided hypotheses and rejecting the null hypothesis only if both one-sided hypotheses are
rejected. The intersection-union test theory ensures that the overall type I error rate remains controlled at
the desired level (α) when combining the two one-sided tests. In general, combining two size-α tests does not
guarantee a size-α test because the overall type I error rate may be inflated due to multiple testing. However, the
TOST procedure, based on the intersection-union test theory, accounts for this issue and successfully maintains
the overall type I error rate at the desired level, making it a suitable method for bioequivalence testing.

The rest of the paper is organized as follows. Section 2 provides the theoretical background of bioequivalence
study for a univariate PK parameter. We summarize the paper in Section 3 and technical proofs are provided
in Appendix.

2 Theoretical Background

In this section, we delve into the theoretical background of bioequivalence studies for a univariate pharmacokinetic
(PK) parameter. In a typical pharmacokinetic bioequivalence study, the univariate response variables such as
log(AUC), log(Cmax) are often assumed to follow a normal distribution, or equivalently, AUC,Cmax follow a
lognormal distribution ([9], [10]). Under FDA guidelines, bioequivalence is treated as a statistical hypothesis
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testing problem as defined in (1.1), which states that the population geometric mean ratio for the test and
reference products should fall between 80-125%. At first glance, it may seem odd that the geometric mean ratio
is used instead of the arithmetic mean difference. Moreover, it might appear strange that 80% and 125% are
not symmetric about 100%, but 80%× 125% = 100%, meaning that the lower and upper bounds are symmetric
about 100% on a ratio scale. To explain the reason, we need to take the logarithm of (1.1) and obtain the
following hypothesis testing for the difference:

H0 : µT − µR ≤ θL or µT − µR ≥ θU versus Ha : θL < µT − µR < θU , (2.1)

where µT = log(ηT ), µR = log(ηR), θL = log(δL), θR = log(δR). The following theorem explains some of the
reasons why FDA chooses geometric mean ratio as the test statistic and 80-125% as the BE limits.

Theorem 2.1. Suppose X1, . . . , Xn are independent and identically distributed from normal distribution X ∼
N (µ, σ2) and X∗i = exp(µ+σXi), that is, X∗1 , . . . , X

∗
n are independent and identically distributed from lognormal

distribution X∗ with corresponding mean µ, variance σ2 on the log transformed scale. We let GM(X∗) =

(
∏n
i=1 X

∗
i )

1
n be the geometric mean of X∗1 , . . . , X

∗
n. Then the following statements hold true

1. exp(X̄) = GM(X∗);

2. Median(X∗) = exp(µ);

3. [GM(X∗)] = exp(µ+ σ2

2n
).

The proof is given in the supplementary material. According to Theorem 2.1, it is straightforward to obtain the
following facts:

Remark 2.1.

1. Since the PK parameters are lognormal distributed, which is right-tailed, it is more natural to compare
the median between treatment and reference products rather than the arithmetic mean;

2. According to (1) in Theorem 2.1, we know that the log-transformed geometric mean of PK data is
equivalent to the arithmetic mean of the log-transformed PK data. In other words, comparing the
geometric mean ratio between two products is equivalent to comparing the arithmetic mean difference
between the log-transformed PK data;

3. According to (2) and (3) in Theorem 2.1, we can make a conclusion that the geometric mean of PK data
is a nearly unbiased estimator of PK median with an error rate of O(1/n). To be more specific, as n
approaches infinity, [GM(X∗)] = Median(X∗). This implies that, for large sample sizes, the geometric
mean of PK data provides an accurate estimate of the PK median.

Combining everything above, we can identify the advantages of using the geometric mean ratio as the test
statistic: (1) The comparison of the geometric mean ratio can be converted to the comparison of the arithmetic
mean difference; (2) The geometric mean ratio is a “good” estimator of the median ratio, which can be naturally
applied to the distribution of PK parameters. Following the above analysis, we can further clarify the procedure
of bioequivalence testing for univariate PK parameters in practice:

• Step 1: Log-transform the PK data (e.g., AUC and Cmax) to convert the lognormal distribution into a
normal distribution.

• Step 2: Test H0 : µT − µR ≤ θL or µT − µR ≥ θU versus Ha : θL < µT − µR < θU , where µT , µR are the
log-transformed PK data from Step 1 and θL = log(0.8) = −0.223, θU = log(1.25) = 0.223.

• Step 3: Find a 100(1−2α)% confidence interval for µT −µR and reject H0 if and only if the 100(1−2α)%
confidence interval falls in [θL, θR] and the significance level of the corresponding procedure is α.

It is important to note that after taking the logarithm, the original BE limits (0.8, 1.25) become symmetric
about zero, and this fact plays a crucial role in the 100(1 − 2α)% confidence interval approach. Without the
“equal-tail” property, the 100(1 − 2α)% confidence interval approach is no longer valid. This is because the
symmetric nature of the limits on the log scale simplifies the comparison of the test and reference products,
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allowing for a balanced evaluation of bioequivalence that accounts for both type I and type II errors. For a more
in-depth exploration of this concept and its practical implications, refer to Section 2.3.2. In that section, we
delve into the intricate details of the 100(1− 2α)% confidence interval approach, elucidating how the symmetric
nature of the log-transformed limits enhances the precision and reliability of bioequivalence assessments.

2.1 Union-interaction tests and interaction-union tests

In the section, we proceed to review the TOST, or two one-sided tests. The TOST involves performing two one-
sided tests, one to test if the difference between the treatments or populations is greater than a predetermined
non-inferiority margin and another to test if the difference is less than a predetermined equivalence margin. If
the results of both tests are significant, it suggests that the treatments or populations are equivalent within the
defined margins. Before proceeding, we first review the union-interaction test and intersection-union test, which
provide the theoretical foundation for the TOST. Suppose the parameter space of a hypothesis testing is Θ =
Θ0

⋃
Θc

0, where Θ0,Θ
c
0 are the parameter space of null and alternative hypothesis, respectively. Furthermore,

let R be the rejection region of the test, then the power function of the test, as a function of θ ∈ Θ, is defined
as β(θ) = Pθ∈Θ(T ∈ R), where T is the test statistics. Before moving on, we first clarify two definitions that are
commonly confused with one another.: the size and the level of a test.

Definition 2.1. For 0 ≤ α ≤ 1, a test with power function β(θ) is a size-α test if supΘ0
β(θ) = α.

Definition 2.2. For 0 ≤ α ≤ 1, a test with power function β(θ) is a level-α test if supΘ0
β(θ) ≤ α.

These definitions help distinguish between the size and the level of a test, which are related but distinct concepts.
The size of a test is the maximum probability of making a Type I error (i.e., rejecting the null hypothesis when
it is true) under the null hypothesis parameter space Θ0. In contrast, the level of a test refers to the upper
bound on the probability of making a Type I error. When the size of a test equals α, it is considered a size-α
test, whereas when the size of a test is less than or equal to α, it is considered a level-α test. For a level-α test,
the size of the test may be much less then α, and in such case, if we still use α as the significance level, then the
test will be less powerful.

Obviously, the null hypothesis in (2.1) can be viewed as the union of two simple null hypotheses H01 : µT −µR ≤
θL and H02 : µT − µR ≥ θU . Not only in bioequivalence studies but also in some other applications, such
complicated hypotheses can be developed from tests for simpler hypotheses. These hypotheses can be generalized
from the so-called intersection-union tests (IUT) and union-intersection test (UIT), which play an important
role in bioequivalence testing and multiple comparison procedures.

Definition 2.3. Assume a hypothesis H0 : θ ∈ Θ0 versus Ha : θ ∈ Θc
0 with reject R. A family of hypotheses

Hi0 : θ ∈ Θi versus Hia : θ ∈ Θc
i for i = 1, . . . , k with corresponding rejection region Ri is said to obey the

intersection-union principle if

H0 : θ ∈
k⋃
i=1

Θi, and Ha : θ ∈
k⋂
i=1

Θc
i , (2.2)

and is said to obey the union-intersection principle if

H0 : θ ∈
k⋂
i=1

Θi, and Ha : θ ∈
k⋃
i=1

Θc
i . (2.3)

It is straightforward to show that the rejection region of IUT is
⋂k
i=1 Ri. The logic behind this is simple. H0

is false if and only all of the H0i, i = 1, . . . , k are false. So rejecting H0 : θ ∈
⋃k
i=1 Θi is equivalent as rejecting

each individual H0i : θ ∈ Θi. Similarly, in terms of UIT, using the same logic, if any one of the hypotheses
H0i is rejected, then H0 must also be rejected, and only if each of H0i is accepted will the intersection H0 be
accepted. Thus, the rejection region of UIT is

⋃k
i=1 Ri. Clearly, the hypothesis testing in 2.1 belongs to IUT.

Now, a natural question arises: given the significance of each individual H0i, what is the significance level of
IUT? The following theorem gives an upper bound for the size of the IUT.
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Theorem 2.2. Let αi be the size of the test of H0i with rejection region Ri. Then the IUT with rejection region
R =

⋂k
i=1 Ri is a level α = supi=1,...,k αi test.

It should be remarked that Theorem 2.2 only shows that the level of an IUT is α = supi=1,...,k αi, that is, an
upper bound for the size of the IUT. In fact, the size of the IUT could be much less than α. The following
theorem provides the conditions under which the size of the IUT is exactly α, ensuring that the IUT is not too
conservative.

Theorem 2.3. Consider testing H0 : θ ∈
⋃k
j=1 Θj and let Rj be the rejection region such that the level of H0j

is α. Suppose that for some i = 1, . . . , k, there exists a sequence of parameters, θl ∈ Θi, l = 1, 2, . . . , such that

1. liml→∞ Pθl(X ∈ Ri) = α,

2. for each j = 1, . . . , k, j 6= i, liml→∞ P(X ∈ Ri) = 1.

Then, the IUT with rejection region R =
⋂k
j=1 Rj is a size α test.

2.2 Two One-sided Tests (TOST)

We are now in a position to formally introduce the method for bioequivalence testing in (2.1). Albeit good
theoretical guarantees for IUT, [6, 7, 8] proposed the following so-called two one-sided tests (TOST), which has
now been one of the standard procedures of (2.1). As its name implies, TOST consists two one-sided hypotheses

H01 : µT − µR ≤ θL versus Ha1 : µT − µR > θL (2.4)

and

H02 : µT − µR ≥ θU versus Ha2 : µT − µR < θU . (2.5)

The H0 : µT −µR ≤ θL or µT −µR ≥ θU in (2.1) can be expressed as the union of H01 and H02. This procedure
establishes bioequivalence at significance level α if both H01 and H02 are rejected at level-α. The rationale
underlying is simple. If one may conclude that µT − µR > θL and also µT − µR < θU , then it has in effect been
concluded that θL < µT − µR < θU . In practice, size-α Student’s t-test is used for (2.4) and (2.5) and H0 is
rejected if

TL =
(X̄T − X̄R)− θL

σ̂∆X̄

> t1−α,r, TU =
(X̄T − X̄R)− θU

σ̂∆X̄

< −t1−α,r, (2.6)

where X̄T , X̄R are the average of log-transformed PK data for treatment/reference product, and σ̂∆X̄ =

Sp
√

( 1
nT

+ 1
nR

) is the standard error of X̄T − X̄R and S2
p = 1

nT+nR−2
[(nT − 1)S2

T + (nR − 1)S2
R], with ST , SR

being the standard deviation of two groups, and t1−α,r = P(X ≤ t1−α,r) = 1 − α is the critical value from t
distribution with degree of freedom r = nT + nR − 2. In addition, it should be mentioned that the size for
each individual t-test H01, H02 is α, not α/2. There is no need for multiplicity adjustment in testing each of the
two one-sided null hypotheses for a univariate PK parameter. Suppose the size for each t-test is α, since TOST
belongs to IUT, from Theorem 2.2, we know the level of TOST is α, that is, the size is at most α. To prove the
size of TOST is exactly α, we need to check the conditions of Theorem 2.3. First, consider a parameter point
θl = µT − µR = θU , then we have

lim
l→∞

Pθl(X ∈ R2) = PθU (X ∈ R2) = PθU (TU < −t1−α,r) = α,

thus the first condition in Theorem 2.3 holds true. Furthermore,

lim
l→∞

Pθl(X ∈ R1) = PθU (X ∈ R1) = PθU (TL > t1−α,r)→ 1, as σ2 → 0,

therefore, the second condition in Theorem 2.3 also remains valid, from where we summarize the above analysis
to the following theorem

Theorem 2.4. Suppose the size of each individual test in TOST is α, then the size of TOST equals α exactly.
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To compute the power of TOST, [11] derived the explicit form of the power, as a function of
(µT , µR, nT , nR, σ

2, θL, θU ) given by

Power
(
µT , µR, nT , nR, σ

2, θL, θU
)

= Qr

−t1−α,r, µT − µR − θU
σ
√

1
nT

+ 1
nT

; 0
(θU − θL)

√
r

2σ
√

1
nT

+ 1
nT
t1−α,r


−Qr

t1−α,r, µT − µR − θL
σ
√

1
nT

+ 1
nT

; 0
(θU − θL)

√
r

2σ
√

1
nT

+ 1
nT
t1−α,r


where

Qv(t, δ; a, b) =

√
2π

Γ
(
v
2

)
· 2

v−2
2

∫ b

a

Φ

(
tx√
v
− δ
)
xv−1φ(x)dx, r = n1 + n2 − 2

is referred as the Owen’s Q function and, Φ(·), φ(·) are the cdf and pdf of standard normal distribution,
respectively.

In the previous sections, the theoretical foundations of the TOST method for bioequivalence testing have been
established. However, the relationship between the TOST and 100(1−α)% and 100(1−2α)% confidence intervals
is not yet clear. In the next section, we will explore the connections between the TOST and these two types of
confidence intervals, shedding light on their similarities, differences, and implications for bioequivalence testing.
Understanding the connections between the TOST and different confidence intervals will provide insights into
how these statistical methods relate to each other, and how they can be effectively applied in bioequivalence
testing for univariate pharmacokinetic parameters. This will enhance the interpretation and application of these
methods in practice, contributing to more accurate and reliable conclusions about bioequivalence.

2.3 Confidence sets

Intuitively, a hypothesis is associated with an equivalent confidence interval approach. Traditionally,
bioequivalence is claimed if the 100(1 − 2α)% two-sided confidence interval of the geometric mean ratio, or
equivalently, the arithmetic mean difference of the log-transformed data, falls within the BE limits. The use of
a 100(1 − 2α)% confidence interval for bioequivalence testing, rather than a 100(1 − α)% confidence interval,
has been a subject of debate among statisticians. The relationship between the size-α TOST procedure and the
100(1−2α)% confidence interval approach has been questioned by some researchers, who argue that the similarity
is based more on an algebraic coincidence than a true statistical equivalence. [12] suggested that the association
between the TOST procedure and the 100(1− 2α)% confidence interval approach may be somewhat of a fiction,
while [13] pointed out that using a 100(1−2α)% confidence interval for bioequivalence testing can be conservative
and may only work in specific cases. Other discussions on the use of the 100(1 − 2α)% confidence interval
procedure in bioequivalence testing can be found in works by [14],[6], [15], [16]. These discussions highlight
the ongoing debate about the appropriateness of using a 100(1 − 2α)% confidence interval for bioequivalence
testing, and the importance of understanding the underlying statistical concepts and assumptions in order to
make informed decisions about the most suitable methods for a given study.

2.3.1 100(1 − α)% confidence interval

As we mentioned before, there are many different formulations of the bioequivalence hypothesis that lead to
alternate tests and confidence intervals. In this section, we will discuss a 100(1 − α)% confidence interval
approach that corresponds exactly to a size-α TOST. It is well-known that there is a closed relationship between
the level-α hypothesis and 100(1 − α)% confidence set, that is, rejecting H0 if and only if the intersection of
the 100(1−α)% confidence set and the null hypothesis is empty. We summarize the property into the following
theorem
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Theorem 2.5. Let Θ be the parameter space. For each θ0 ∈ Θ, let Tθ0 be a test statistic for H0 : θ = θ0 with
significance level α and acceptance region A(θ0), then the set C(X) = {θ : X ∈ A(θ)} is a level-α confidence set
for θ.

In other words, suppose [L(X), R(X)] is a confidence interval of parameter θ ∈ Θ with condidence coefficient
equal to 1− α, that is, infθ Pθ∈Θ(θ ∈ [L(X), R(X)]) = 1− α. Consider the hypothesis testing H0 : θ ∈ Θ0 verse
Ha : θ ∈ Θc

0. Then from Theorem 2.5, we know that the test that rejects H0 if and only if [L(X), R(X)]
⋂

Θc
0 = Ø

is a level-α test. In this section, we will apply Theorem 2.5 to show that a size-α TOST is associated with a
100(1− α)% confidence interval.

Theorem 2.6. Consider the hypothesis testing H0 : µT −µR ≤ θL or µT −µR ≥ θU versus Ha : θL < µT −µR <
θU in (2.1) and define the following confidence interval for µT − µR

[L(X), U(X)] =
[
min{0, (X̄T − X̄R)− t1−α,rσ̂∆X̄},max{0, (X̄T − X̄R) + t1−α,rσ̂∆X̄}

]
, (2.7)

where

σ̂∆X̄ = Sp

√
1

m
+

1

n
, Sp =

√
(m− 1)S2

XT
+ (n− 1)S2

XR

m+ n− 2
, r = m+ n− 2, (2.8)

and SXT , SXR are the sample standard derivation of the two groups. Then the following two statements hold
true

label=(0) If µT −µR 6= 0, then the coverage probability of [L(X), U(X)] is 100(1−α)%, otherwise, the coverage
probability equals 1.

lbbel=(0) [L(X), U(X)] is associated with the size-α TOST for (2.1).

Following Theorem 2.6, we could make the following remarks.

Remark 2.2.

1. From (1) in Theorem 2.6, we know [L(X), U(X)] is a level-α confidence interval.

2. If [L(X), U(X)] contains zero, then it is identical to the 100(1 − 2α)% confidence interval which will be
introduced in the next section.

3. From Bayesian point of view, if the prior distribution of µT−µR is noninformative, that is, π(µT−µR) ∝ 1,
then the posterior credible probability of [L(X), U(X)] is exactly (1−2α) for −t1−α,r ≤ µT −µR ≤ t1−α,r
and converges to (1− α) as |µT − µR| → ∞.

2.3.2 100(1 − 2α)% confidence interval

Following the guidance of the FDA, in practice, bioequivalence is claimed if the 100(1−2α)% two-sided confidence
interval of the geometric mean ratio falls within the BE limits. However, unfortunately, from Theorem 2.5, we
could only see the connection between TOST and 100(1−α)% confidence interval. The reason why 100(1−2α)%
confidence interval yields a size-α test is still unclear. In this section, owing to the “equal-tail” property, we will
see that is not only an “algebraic coincidence”, but also theoretically guaranteed. In general, the size of a test
associated with a 100(1− 2α)% confidence interval is not α. For example, consider the following 100(1− 2α)%
confidence interval

[L(X), U(X)] =
[
(X̄T − X̄R)− t1−α1,rσ̂∆X̄ , (X̄T − X̄R) + t1−α2,rσ̂∆X̄

]
, (2.9)

where α1+α2 = 2α. It is obvious that [L(X), U(X)] defined above is a 100(1−2α)% confidence interval. As α1 →
0, the confidence interval reduces to

(
−∞, (X̄T − X̄R) + t1−2α,rσ̂∆X̄

]
, and the size associated with this confidence

interval is 2α, not α. In fact, the lower confidence interval [L(x),∞) = [(X̄T − X̄R) − t1−α1,rσ̂∆X̄ ,∞) in (2.9)
defines a size-α1 test, and similarly, the upper confidence interval (−∞, U(x)] = (∞, (X̄T − X̄R) + t1−α2,rσ̂∆X̄ ]
in (2.9) defines a size-α2 test. From the IUT theory in Theorem 2.2 and Theorem 2.3, we know the size of the
defined by [L(X), U(X)] in (2.9) is max{α1, α2}, which equals α only if α1 = α2. We summarize the above
analysis into the following theorem.
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Theorem 2.7. Let X be a random sample from a probability distribution with statistical parameter θ. Suppose
[L(X),∞) is a 100(1−α1)% lower confidence interval for θ and (−∞, U(X)] is a 100(1−α2)% upper confidence
interval for θ and Then [L(x), U(x)] is a 100(1− α1 − α2)% confidence interval for θ.

Remark 2.3. The above theorem reveals the importance of “equal-tail”, that is α1 = α2, without this property,
the TOST will not yields a size-α test. In other words, the total uncertainty of 2α should be spent half above
and half below the observed mean. Moreover, this theorem also provides another reason why θL, θU in (2.1)
should be symmetric about zero. Otherwise, for example, if θL + θU < 0, it is reasonable to put more weights
on α1 than α2, in which case, the size of 100(1− 2α)% procedure is no longer α.

2.4 Illustration

In this section, we present an illustrative example to showcase the application of two distinct confidence interval
approaches. We utilized data from the study conducted by [17] on Ticlopidine hydrochloride—a platelet
aggregation inhibitor employed in managing and preventing thromboembolic disorders. The study aimed
to assess the bioequivalence of a new formulation of ticlopidine hydrochloride (test) against the established
market product Tiklid. This evaluation was pivotal for registering the new formulation as a generic through
the Abbreviated New Drug Application (ANDA) procedure. Essential pharmacokinetic (PK) parameters are
detailed in Table 1. Notably, the dataset exhibits a right-skewed and heavy-tailed distribution. Post-logarithmic
transformation, the average values for Cmax stand at 6.64 and 6.72 in each group, with a corresponding estimated
standard deviation of σ̂∆X̄ = 0.059. Similarly, for the second PK parameter, AUC, the averages are 5.67 and
5.76, with σ̂∆X̄ = 0.066. Employing both the 100(1−2α)% and 100(1−α)% confidence interval methods, both
approaches conclude the bioequivalence of the treatment drug.

Table 1. Pharmacokinetic parameters of ticlopidine measured in healthy volunteers after
treatment with test and reference drug

Subject ID Cmax Treatment Cmax Reference AUC Treatment AUC Reference

1 784.3 878.2 2131.4 3030.1
2 304.2 211.7 1107.9 798.6
3 307.3 259.6 806.2 696.1
4 156.7 307.8 509.9 833.7
5 745.6 1036.2 2784.0 3015.6
6 295.1 443.1 1391.2 1159.5
7 89.6 120.1 248.1 584.8
8 321.1 329.8 672.4 960.7
9 310.8 316.1 1105.8 1048.4
10 475.4 617.8 1321.8 1797.4
11 228.6 249.2 638.1 725.1
12 241.3 314.1 908.2 1003.9
13 78.7 166.8 225.7 280.2
14 351.5 455.0 860.0 960.9
15 341.7 406.5 1020.8 1208.3
16 221.3 240.9 588.4 715.8
17 443.5 378.8 1026.8 910.6
18 275.2 278.4 984.0 801.8
19 273.6 209.6 629.0 577.5
20 341.1 212.4 1056.1 662.9
21 262.3 162.1 694.6 414.0
22 178.1 212.1 420.9 572.0
23 470.1 394.2 1304.7 1101.4
24 372.6 567.0 1133.2 1433.7
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2.5 More powerful tests

From the previous analysis, we know that there are various procedures for testing (2.1), and a natural question
arises, which one is better? Unfortunately, even though the FDA suggests using 100(1−2α)% to test bioequivalence,
the procedure is not the best. In fact, it should be remarked that TOST has been criticized by many authors.
On the one hand, TOST yields a biased test, on the other hand, the power of TOST is quite low. In practice,
we would like a hypothesis test to be more likely to reject H0 if θ ∈ Θc

0 than if θ ∈ Θ0, that is, β(θ2) ≥ β(θ1)
for every θ1 ∈ Θ0 and θ2 ∈ Θc

0. The following definition summarizes the tests summarizing this property.

Definition 2.4. Let α be the significance level. A hypothesis test H0 : θ ∈ Θ0 versus Ha : θ ∈ Θc
0 with power

function β(·) is said to be unbiased if and only if

β(θ) ≤ α, θ ∈ Θ0 and β(θ) ≥ α ∈ Θc
0.

Unfortunately, even using a 100(1−2α)% confidence interval approach, TOST is still a biased test. Furthermore,
it has also been shown that TOST is conservative and inefficient under an asymptotic setup. Much attention
has been paid to equivalence testing problem in (2.1) for decades, to mention but a few, [18], [19], [20], [16],
[21], [22], [23]. See [24], [25] for a comprehensive review. Even though many methodologies have been proposed
to test bioequivalence, the theoretical results are limited. Except some special models, like normal distribution
with known variance, no finite sample optimality theory is available for tests of equivalence. To the best of our
knowledge, the work by [26] is the first theoretical result where the asymptotic optimality theory is established.
Since the optimality theory is beyond the scope of the paper, we only show two examples to give the author
some intuitions about optimal testing of equivalence.

Example 2.8 (Normal Distribution with Known Variance). Suppose X1, . . . , Xn are i.i.d. N (µ, σ2), where σ
is known. Consider the hypothesis testing: H0 : |µ| ≥ θ versus Ha : |µ| < θ. Then the uniformly most powerful
level-α test is rejecting H0 is n1/2|X̄n| ≤ ψ(α, n1/2θ, σ), where ψ(α, θ, σ) satisfies

φ(
ψ − θ
σ

)− φ(
−ψ − θ
σ

) = α,

and φ(·) is the cdf of standard normal distribution.

However, the uniformly most powerful test does not exist is σ is unknown. The next example generalizes
the results to the exponential family.

Example 2.9 (One-parameter Exponential Family). Suppose X1, . . . , Xn are i.i.d. generated from the following
one-parameter exponential family

fθ(x) = exp{η(θ)Y (x)− ξ(θ)}h(x),

where η(θ) is an increasing function of θ only, h(x) is a function of x only, and Y (·) has monotone likelihood
ratio in (X1, . . . , Xn). Then the uniformly most powerful level-α test for the equivalence hypothesis testing
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 ≤ θ ≤ θ2 is

T (X1, . . . , Xn) =


1 if c1 < Y (X1, . . . , Xn) < c2

γi if Y (X1, . . . , Xn) = ci, i = 1, 2

0 if Y (X1, . . . , Xn) < c1 or Y (X1, . . . , Xn) > c2,

where γ1, γ2, c1, c2 are determined by β(θ1) = β(θ2) = α.

3 Conclusion

The paper discusses the significance of bioequivalence studies, which compare the biological equivalence of two
different formulations of a drug. These studies are conducted in clinical settings with human subjects to compare
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the pharmacokinetic profiles of the two formulations. Acceptance criteria for bioequivalence are generally based
on statistical methods that evaluate the similarities between the two formulations. The paper explains the
theory of intersection-union tests and how they can be used to determine bioequivalence. The TOST (two
one-sided tests) approach is the standard approach to bioequivalence testing and has been shown to maintain a
size-α test by rejecting the null hypothesis only if both one-sided hypotheses are rejected. The paper provides
insights into the theory behind bioequivalence testing, including the use of geometric mean, the non-symmetry
of bioequivalence limits around 1, and the product of bioequivalence limits equaling 1. The paper also discusses
the connection between the 100(1 − 2α)% confidence interval approach and 100(1 − α)% confidence interval
approach. Future work will address the imperative issue of multiplicity control in bioequivalence studies. The
demonstration of bioequivalence between two drugs typically involves two pharmacokinetic parameters: the
area under the concentration-time curve (AUC) and maximum concentration (Cmax). since the decision rule for
bioequivalence often requires equivalence to be achieved simultaneously on both parameters, this consideration
becomes paramount in advancing the robustness and reliability of bioequivalence testing methodologies.
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Appendix

A Proof of Theorem 2.1

Proof. The proof of (1) can be accomplished by direct calculations. It can be shown that

exp(X̄) = exp(n−1
n∑
i=1

Xi) = exp{log[exp(

n∑
i=1

Xi/n)]} = exp{log[

n∏
i=1

exp(Xi/n)]}

= (

n∏
i=1

exp(Xi))
1
n = (

n∏
i=1

X∗)
1
n = GM(X∗).

To prove (2), we let FX∗(x∗) = 1
2

[
1 + erf

(
log(x∗)−µ√

2σ

)]
be the cumulative distribution function of the lognormal

distribution, where erf(x∗) = 2
π

∫ π
2

0
exp

(
− x∗2

sin2 θ

)
dθ is the complementary error function. For simplicity, we let

the median of X∗ equals %, that is, Median(X∗) = %. Then, from the definition of median, we have FX∗(%) = 0.5,
thus % = F−1

X∗(0.5). Therefore, it follows that

% = F−1
X∗(0.5) = exp

[
σ
√

2 · erf−1(2p− 1) + µ
]∣∣∣
p=0.5

,

where erf−1(·) is the inverse of the complementary error function satisfying erf−1(0) = 0, thus, the median of
X∗ equals exp(µ). In fact, it can be also seen that the logarithm function is a monotonous increaseing function,
therefore, the median of X∗ is the exponential of the median of log(X∗). Since log(X∗) is normal distributed,
thus, median of X∗ equals exp(µ).

Let f(x∗) = 1

x∗σ
√

2π
exp

(
− (ln(x∗)−µ)2

2σ2

)
be the pdf of lognormal distribution. Consider the expected value of

X
∗ 1
n

i , [X
∗ 1
n

i ]. It follows that

[X
∗ 1
n

i ] =

∫ ∞
0

1

x∗σ
√

2π
x∗

1
n exp

(
− (ln(x∗)− µ)2

2σ2

)
dx

=

∫ ∞
−∞

1

σ
√

2π

1

exp(t)
exp(t)1/n exp

(
− (t− µ)2

2σ2

)
exp(t)dt (A.1)

=

∫ ∞
−∞

1

σ
√

2π
exp

(
−
{

(t− µ)2n− 2σ2t
}

2nσ2

)
dt

=

∫ ∞
−∞

1

σ
√

2π
exp

−
{
n
(
t− µ− σ2

n

)2

− σ4

n
− 2σ2µ

}
2nσ2

 dt

=

∫ ∞
−∞

1

σ
√

2π
exp

−n
(
t− µ− σ2

n

)2

2nσ2

 exp

(
σ4

n
+ 2µσ2

2nσ2

)
dt

= exp

(
µ

n
+

σ2

2n2

)∫ ∞
−∞

1

σ
√

2π
exp

−
(
t− µ− σ2

n

)2

2σ2

 dt, (A.2)
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where (A.1) uses the change of variable technique, i.e., x = exp(t). Note that 1

σ
√

2π
exp

−
(
t−µ−σ

2

n

)2

2σ2

 in (A.2)

is the pdf of a normal distribution with mean µ + σ2

n
variance σ2, thus

∫∞
−∞

1

σ
√

2π
exp

−
(
t−µ−σ

2

n

)2

2σ2

 dt = 1,

and therefore, [X
∗ 1
n

i ] = exp
(
µ
n

+ σ2

2n2

)
.

The result of (3) follows from

[GM(X∗)] = [

n∏
i=1

X∗i )
1
n ] =

n∏
i=1

[X∗i )
1
n ] =

n∏
i=1

exp

(
µ

n
+

σ2

2n2

)
= exp

(
µ+

σ2

2n

)
.

B Proof of Theorem 2.2

Proof. Let θ ∈
⋃k
i=1 Θi. Then θ ∈ Θi, for some i = 1, . . . , k and

Pθ(X ∈ R) = Pθ(X ∈
k⋂
i=1

Ri) ≤ Pθ(X ∈ Ri) ≤ αi ≤ sup
i=1,...,k

αi = α.

Since the above equation holds true for arbitrary θ ∈
⋃k
i=1 Θi, the defined IUT test is a level α test.

C Proof of Theorem 2.3

Proof. By Theorem 2.2, we know rejection region R =
⋂k
j=1 Rj yields a level-α test, that is

sup
θ∈
⋃k
j=1 Θj

Pθ(X ∈ R) ≤ α. (C.1)

Next, we are going to show that supθ∈⋃kj=1 Θj
Pθ(X ∈ R) ≥ α. Because θi ∈

⋃k
j=1 Θj , therefore,

sup
θ∈
⋃k
j=1 Θj

Pθ(X ∈ R) ≥ lim
l→∞

Pθl(X ∈ R)

= lim
l→∞

Pθl(X ∈
k⋂
j=1

Rj)

≥ lim
l→∞

k∑
j=1

Pθl(X ∈ Rj)− k + 1,

where the last inequality follows from Bonferroni’s inequality. By condition (1) and (2), we can get
∑k
j=1 Pθl(X ∈

Rj) = k − 1 + α. Thus,

sup
θ∈
⋃k
j=1 Θj

Pθ(X ∈ R) ≥ k − 1 + α− k + 1 = α. (C.2)

Combine (C.1) and (C.2), we prove that the size of IUT with rejection region R =
⋂k
j=1 Rj is exactly α.
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D Proof of Theorem 2.4

Proof. Because TOST belongs to IUT, by Theorem 2.2, we know the size of TOST is at most α. Consider a
parameter point θl = µT − µR = θU , then we have

lim
l→∞

Pθl(X ∈ R2) = PθU (X ∈ R2) = PθU (TU < −t1−α,r) = α,

Furthermore,

lim
l→∞

Pθl(X ∈ R1) = PθU (X ∈ R1) = PθU (TL > t1−α,r)→ 1, as σ2 → 0,

therefore, the conditions in Theorem 2.3 hold true. Thus, the size of TOST is exactly α.

E Proof of Theorem 2.5

Proof. By the definition of acceptance region, we have

sup
θ=θ0

P(X /∈ A(θ0)) = sup
θ=θ0

P(Tθ0 = 1) ≤ α,

which is the same as

1− α ≤ inf
θ=θ0

P(X ∈ A(θ0)) = inf
θ=θ0

P(θ0 ∈ C(X)).

Since the above statements hold true for all θ ∈ Θ, thus

inf
θ0∈Θ

inf
θ=θ0

P(θ0 ∈ C(X)) ≥ 1− α,

which implies C(X) = {θ : X ∈ A(θ)} is a level-α confidence set for θ.

F Proof of Theorem 2.6

Proof. If µT − µR = 0, then µT − µR ∈ [L(X), U(X)] for all X, thus the coverage probability of [L(X), U(X)]
is 1 in this case. So it is only need to consider the case when µT − µR 6= 0.

When µT − µR > 0, the event {µT − µR ≥ min{0, (X̄T − X̄R)− t1−α,rσ̂∆X̄}} is the whole sample space, thus

P
(
{µT − µR ≥ min{0, (X̄T − X̄R)− t1−α,rσ̂∆X̄}}

)
= 1.

And if µT − µR > 0, the event {µT − µR ≤ max{0, (X̄T − X̄R) + t1−α,rσ̂∆X̄}} is the same as event{
µT − µR ≤ (X̄T − X̄R) + t1−α,rσ̂∆X̄

}
, so the coverage probability equals

P (µT − µR ∈ [L(X), U(X)]) = P
(
µT − µR ≤ max{0, (X̄T − X̄R) + t1−α,rσ̂∆X̄}

)
= P

(
µT − µR ≤ (X̄T − X̄R) + t1−α,rσ̂∆X̄

)
= P

(
X̄T − X̄R − (µT − µR) ≥ −t1−α,rσ̂∆X̄

)
= 1− α.

Similarly, when µT − µR < 0, the event {µT − µR ≤ max{0, (X̄T − X̄R) + t1−α,rσ̂∆X̄}} is the whole sample
space, thus

P
(
{µT − µR ≤ max{0, (X̄T − X̄R) + t1−α,rσ̂∆X̄}}

)
= 1.
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If µT − µR < 0, the event {µT − µR ≥ min{0, (X̄T − X̄R)− t1−α,rσ̂∆X̄}} is the same as event{
µT − µR ≥ (X̄T − X̄R)− t1−α,rσ̂∆X̄

}
, so the coverage probability equals

P (µT − µR ∈ [L(X), U(X)]) = P
(
µT − µR ≥ min{0, (X̄T − X̄R)− t1−α,rσ̂∆X̄}

)
= P

(
µT − µR ≥ (X̄T − X̄R)− t1−α,rσ̂∆X̄

)
= P

(
X̄T − X̄R − (µT − µR) ≤ t1−α,rσ̂∆X̄

)
= 1− α.

Combine everything above, the proof is completed.

G Proof of Theorem 2.7

Proof. By definition, we have

P(L(X) ≤ θ) = 1− α1,P(U(X) ≥ θ) = 1− α2.

Consider the events A and B defined as A = {X : L(X) ≤ θ},B = {X : U(X) ≥ θ}. Therefore, the interaction
of A and B is A

⋂
B = {X : L(X) ≤ θ ≤ U(X)}. It follows that

P
(
A
⋃
B
)

= P (L(X) ≤ θ or U(X) ≥ θ) ≥ P (L(X) ≤ θ or L(X) ≥ θ) = 1.

Since P (A
⋃
B) ≤ 1, we have P (A

⋃
B) = 1. The result follow from that

P
(
A
⋂
B
)

= P(A) + P(B)− P
(
A
⋃
B
)

= 1− α1 − α2.
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