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Abstract: The robot vision model is the basis for the robot to perceive and understand the environ-
ment and make correct decisions. However, the security and stability of robot vision models are 
seriously threatened by adversarial examples. In this study, we propose an adversarial attack algo-
rithm, RMS-FGSM, for robot vision models based on root-mean-square propagation (RMSProp). 
RMS-FGSM uses an exponentially weighted moving average (EWMA) to reduce the weight of the 
historical cumulative squared gradient. Additionally, it can suppress the gradient growth based on 
an adaptive learning rate. By integrating with the RMSProp, RMS-FGSM is more likely to generate 
optimal adversarial examples, and a high attack success rate can be achieved. Experiments on two 
datasets (MNIST and CIFAR-100) and several models (LeNet, Alexnet, and Resnet-101) show that 
the attack success rate of RMS-FGSM is higher than the state-of-the-art methods. Above all, our 
generated adversarial examples have a smaller perturbation than those generated by existing meth-
ods under the same attack success rate. 

Keywords: robot vision model; adversarial example; artificial intelligence security; fast gradient 
sign method 
 

1. Introduction 
Nowadays, the robot vision model is widely used in the field of robot vision, such as 

image classification [1], target detection [2], speech recognition [3], autonomous vehicles [4], 
etc. Although the robot vision model has achieved success in the field of robot vision, it 
may suffer from security and robustness problems when feeding with adversarial exam-
ples. Adversarial examples are inputs to robot vision models that have been intentionally 
designed by adding small, imperceptible perturbations [5]. They will cause robot vision 
models to achieve erroneous results. Influenced by adversarial examples, autonomous ve-
hicles may experience disruptions in their driving state, which can lead to traffic safety 
issues. Militarily, when using UAVs to detect unknown areas, the adversarial examples 
will lead to UAV target-identification errors. Apart from these, adversarial examples have 
a serious impact on the security of all kinds of intelligent system software based on deep 
neural networks. Memristive chaotic circuits based on CNNs may also be affected [6]. 
Therefore, the generation method of adversarial examples (adversarial attack method) has 
gained much attention from researchers. Based on adversarial examples, we can design 
adversarial defense methods [7–10] and develop secure and robust intelligent systems. 

Currently, adversarial attack methods can be divided into three categories: (1) the 
gradient-based methods, (2) the optimization-based methods, and (3) the generative ad-
versarial network (GAN)-based methods. The most typical gradient-based method is 
called the fast gradient sign method (FGSM), which was proposed by Goodfellow et al. [11] 
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in 2015. It computes adversarial examples by maximizing the loss function of the attacked 
neural network model with the gradient ascent optimizer. Since it can generate adversar-
ial examples efficiently, much research effort has been paid, and many variants have been 
proposed, including the basic iterative method (BIM, also known as I-FGSM) [12], mo-
mentum iterative fast gradient sign method (MI-FGSM) [13], etc. The optimization-based 
methods [14] directly optimize the distance between the real samples and adversarial ex-
amples subject to the misclassification of adversarial examples. The problem with this 
method is that the added perturbation cannot be constrained properly and may result in 
invalid adversarial examples [13]. The GAN-based methods [15,16] generate adversarial 
examples based on generative adversarial networks. These methods train (i) a feed-for-
ward generator network that generates perturbations to create diverse adversarial exam-
ples and (ii) a discriminator network to ensure that the generated examples are realistic; 
once the generator network is trained, it can generate perturbations efficiently for any in-
stance, so as to potentially accelerate adversarial training as defenses. Experiments show 
that the adversarial examples constructed via the generative adversarial networks have a 
high attack success rate in the case of defense. However, these kinds of methods are re-
source-intensive and time-consuming. 

In this study, we focus on the gradient-based methods. Compared with other meth-
ods, the gradient-based methods are resource-saving and time-efficient. However, since 
the principle behind the gradient-based methods is the gradient ascent algorithm, just like 
the gradient descent algorithm, a large learning rate will cause the gradient of the objective 
function to grow too fast and miss the global optimal solution. A low value will lead to 
extra iterations and low efficiency. The improper learning rate will cause the problems of 
large perturbation and low attack success rate. To address this problem, Geoffrey Hinton 
[17] introduced an adaptive learning rate calculation method, root-mean-square propaga-
tion (RMSProp). This method performs a learning rate correction strategy and the expo-
nentially weighted moving average (EWMA) during the gradient update, which can mit-
igate the problem of rapid gradient growth and keep it efficient. Inspired by the RMSProp 
algorithm, we efficiently propose an improved RMSProp-based fast gradient sign method, 
RMS-FGSM, to attack robot vision models. RMS-FGSM generates adversarial examples in 
an iterative manner. At each iteration, an adaptive learning rate is used to update adver-
sarial examples. Our learning rate is computed based on the EWMA algorithm, which 
smoothes the change of gradients by considering historical data. Since our method can 
mitigate the problem of the gradient’s steep growth, adversarial examples can be updated 
along a stable optimization direction, and the optimal value is highly likely to be achieved; 
that is, adversarial examples with imperceptible perturbations and a high attack success rate. 

The experiments in this study are carried out with several common classification 
models in robot vision and the environment of Python 3.9, torch 1.13.1, and TorchVision 
0.14.1. Two commonly used datasets, MNIST [18] and CIFAR-100 [19], were used. To val-
idate the method, we attacked LeNet [20], Alexnet [1], and Resnet-101 [21]. Experimental 
results persuasively verify that RMS-FGSM has better performance than other advanced 
attack methods. Above all, the perturbation of the adversarial examples generated using 
RMS-FGSM is smaller than other methods under the same attack success rate. 

The rest of this study is arranged as follows. Section 2 introduces related work, in-
cluding the FGSM, BIM, MI-FGSM, and NI-FGSM algorithms. The attack algorithm RMS-
FGSM is described in Section 3. In Section 4, we present and analyze the experimental 
results. And the last section concludes the study. 
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2. Related Work 
In recent years, many gradient-based attack algorithms have been proposed. The pro-

cess of adversarial attacks can generally be defined as follows: let M be a pre-trained neu-
ral network, which can output predicted label y for an input sample x, that is, M(x) = y. 
J(x, W, y) denotes the loss function of M, where W is the set of weights of model M. Since 
model M is pre-trained (W is available), we can rewrite J(x, W, y) as J(x, y). The goal of 
adversarial attacks is to seek an example 𝑥𝑥∗ = 𝑥𝑥 + 𝜂𝜂 such that 𝑀𝑀(𝑥𝑥∗) ≠ 𝑀𝑀(𝑥𝑥). The noise 
𝜂𝜂 added to x* should be imperceptible. To this end, the Lp norm of 𝜂𝜂 is required to be less 
than an allowed value 𝜖𝜖 as ‖𝑥𝑥∗ − 𝑥𝑥‖𝑝𝑝 ≤ 𝜖𝜖, where p could be 0, 1, 2, and ∞. 

2.1. Fast Gradient Sign Method 
The fast gradient sign method (FGSM) is a one-step gradient-based approach that 

finds an adversarial example x* by maximizing the loss function J(x, y), which can be for-
malized as: 

)),((maxarg yxJ
x

 (1) 

In order to solve the above problem, the FGSM uses the gradient ascent algorithm, 
which computes the adversarial noise 𝜂𝜂 based on Equation (2): 

y))J(x,sign( x∇⋅= εη  (2) 

where ∇x denotes the gradient of loss function J w.r.t. x, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∙) is the sign function, and 
ε is the perturbation factor. The FGSM employs the 𝐿𝐿∞ norm to validate generated ad-
versarial examples; that is, ‖𝜂𝜂‖∞ ≤ 𝜖𝜖 should be satisfied. 

The FGSM algorithm modifies the image only once based on the gradient calculation, 
which is time-efficient. However, due to the manually set improper learning rate, in case 
of the same attack success rate, the perturbation added to the adversarial examples gen-
erated using this method will be larger than those of other methods, which will violate 
the imperceptible requirement. 

2.2. Basic Iterative Method 
In 2016, Kurakin proposed a FGSM-based basic iterative method (BIM, also known 

as I-FGSM) to rapidly generate adversarial examples. Different from the one-step attack 
of the FGSM, the BIM iteratively applies the fast gradient multiple times with a small step 
size 𝛼𝛼 as shown in Equation (3): 

))},,(({ ***
1 yxJsignxClipx txtt θα ∇⋅+=+  (3) 

where 𝑥𝑥𝑡𝑡∗ denotes the adversarial example obtained at the t-th iteration. In order to make 
the generated adversarial examples satisfy the 𝐿𝐿∞ bound, the BIM uses the 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶{∙} func-
tion to clip 𝑥𝑥𝑡𝑡∗ into the 𝜖𝜖 vicinity of x. 

Intuitively, the BIM is as easy to understand as the FGSM, concise, and efficient, and 
the attack effect is obviously better than the FGSM. The author asserted that this approach 
ensures an optimal pace for gradient ascent, and it is, at worst, equivalent to the FGSM. 
However, further research has indicated that the samples generated using the BIM lack 
transferability, resulting in a weak black box attack [22–24] effect. 

2.3. Momentum Iterative Fast Gradient Sign Method 
Dong et al. [25] incorporated the momentum term into the BIM and proposed the MI-

FGSM algorithm. As shown in Equation (4), it computes the cumulative gradient gt+1 by a 
weighted sum of gradients obtained in the past t-th iterations, where µ is a decay factor. 
Based on the cumulative gradient, it computes the adversarial example 𝑥𝑥𝑡𝑡+1∗  by adding a 
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small perturbation to 𝑥𝑥𝑡𝑡∗, as shown in Equation (5), where α is a step size. At each iteration, 
the current gradient ),( * yxJ tx∇  is normalized by the L1 distance of itself. 

1
*

*

1 ||),(||
),(

yxJ
yxJgg

tx

tx
tt ∇

∇
+=+ µ  (4) 

)( 1
**

1 ++ ∗+= ttt gsignxx α  (5) 

According to the principle of momentum in physics, the iterative calculation process 
of adversarial examples can be accelerated. In addition, with the help of momentum, the 
optimization process can go beyond local maxima and is more likely to reach a global 
maximum. Since the update direction becomes more stable, the MI-FGSM is more efficient 
and has better transferability [26,27] across different neural networks. However, this 
method may increase the gradient too rapidly and introduce a large perturbation to ad-
versarial examples. 

2.4. Nesterov Iterative Fast Gradient Sign Method 
Lin et al. [28] leveraged the Nesterov accelerated gradient (NAG) [29] and presented 

the NI-FGSM algorithm so that it can improve transferability. The NI-FGSM makes a jump 
in the direction of previously accumulated gradients before computing the gradients in 
each iteration. It substitutes 𝑥𝑥𝑡𝑡∗ in Equation (4) with 𝑥𝑥𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼 ∙ 𝜇𝜇 ∙ 𝑠𝑠𝑡𝑡 to leverage the look-
ing-ahead property of the NAG and build a robust adversarial attack. Such looking ahead 
property of the NAG can help to escape from poor local maxima easier and faster, result-
ing in the improvement in transferability. 

3. Our Technique 
3.1. Method Framework 

The process of the RMS-FGSM adversarial attack is shown in Figure 1; once the image 
dataset is input, preprocess the data and calculate the current gradient gt of the loss func-
tion. Next, compute the exponential average rt of the squared gradients with EWMA to 
prepare for the next step, and the parameter ρ is used as a weight parameter to control the 
acquisition of a historical cumulative squared gradient and a new squared gradient. Then, 
the learning rate 𝜏𝜏 is calculated, where the exponential average rt from the previous step 
controls the size of the learning rate. When gt increases, the learning rate decreases; con-
versely, when gt decreases, the learning rate increases to achieve the adaptive learning 
rate. Then, calculate the current perturbation value using the sign function and add it to 
the original example to generate a new adversarial example and proceed to the next iter-
ation. After the number of iterations reaches a fixed value T, we can obtain the optimal 
adversarial example, and the perturbation of the adversarial example is imperceptible for 
humans. Finally, the adversarial example is input into the attacked neural network model, 
which will lead to the wrong classification results. 
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Figure 1. The overall framework of our method. 

3.2. Fast Gradient Sign Method Based on Adaptive Learning Rate 
The fast gradient sign method (FGSM) is able to generate adversarial examples effi-

ciently based on the gradient ascend approach. However, as shown in Equation (2), a fixed 
learning rate ε is used to compute the perturbation, which may lead to slow convergence 
or even failure to converge. Additionally, a fixed learning rate may fail to adapt to differ-
ent samples, which may result in insufficient updates for some samples to reach optimal 
solutions. Above all, the missing of the optimal solution may introduce a large perturba-
tion to adversarial examples and decrease the attack success rate. Although some im-
proved variant methods such as I_FGSM and MI_FGSM have been proposed, they also 
employ a fixed step size 𝛼𝛼 as shown in Equations (3) and (5). In order to further improve 
the performance of the gradient-based adversarial attack methods, we propose the RMS-
FGSM, which utilizes the adaptive learning rate calculation method RMSProp. 

Let 𝑓𝑓(𝑥𝑥;𝑊𝑊, 𝑏𝑏) = 𝑦𝑦 be a neural network model, such as the Alexnet for image classi-
fication tasks. W and b are the weight matrix and offset vector, respectively. When feeding 
with an image sample x, the model will output prediction result y. In the training process 
of neural networks, we always construct a loss function of the network 𝐿𝐿(𝑓𝑓(𝑥𝑥;  𝑊𝑊, 𝑏𝑏), 𝑦𝑦) 
and reduce the training of neural networks to an optimization problem as follows: 

))),,;(((minarg
,

ybWxfL
bW

 (6) 

In order to resolve the optimization problem, a frequently used approach is the gra-
dient descent, which calculates the optimal W and b along the direction of the gradients 
∇𝑊𝑊𝐿𝐿(𝑓𝑓(𝑥𝑥;  𝑊𝑊, 𝑏𝑏),𝑦𝑦)  and ∇𝑏𝑏𝐿𝐿(𝑓𝑓(𝑥𝑥;  𝑊𝑊, 𝑏𝑏), 𝑦𝑦) , respectively. During this process, a labeled 
training dataset 𝐷𝐷 =
{(𝑥𝑥, 𝑦𝑦) | 𝑥𝑥 𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠 𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖𝑎𝑎𝑠𝑠𝑖𝑖 𝑠𝑠𝑎𝑎𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖, 𝑦𝑦 𝑠𝑠𝑠𝑠 𝑖𝑖ℎ𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑠𝑠𝐶𝐶𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝐶𝐶𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑐𝑐𝑎𝑎𝑖𝑖𝑠𝑠𝑐𝑐𝑠𝑠 𝐶𝐶𝑎𝑎𝑏𝑏𝑖𝑖𝐶𝐶}  will be 
used. 

Different from the above training process, the white-box adversarial attack methods 
assume that the neural network model 𝑓𝑓(𝑥𝑥;𝑊𝑊, 𝑏𝑏) is pre-trained. Therefore, the weight 
matrix W and offset vector b are both available. The purpose of the adversarial attack is to 
generate difference-inducing input samples. Formally, given an image sample x with a 
label y, an adversarial attack aims to generate an adversarial example x* by adding an 
imperceptible perturbation to x, such that 𝑓𝑓(𝑥𝑥;𝑊𝑊, 𝑏𝑏) ≠ 𝑦𝑦. This problem can be addressed 
by maximizing the loss between label y and the prediction 𝑓𝑓(𝑥𝑥;𝑊𝑊, 𝑏𝑏). Formally, we have 
the following optimization problem (we neglect W and b because they are available): 
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))),(((maxarg yxfL
x

 (7) 

In this study, we address the problem with the gradient ascent algorithm. Different 
from the FGSM and its variants, the RMS-FGSM calculates the adversarial examples based 
on an adaptive learning rate given by RMSProp. RMSProp is a variant of the gradient 
descent algorithm used to adjust model parameters. The most distinctive feature of 
RMSProp is that it can adaptively adjust the learning rate of different parameters by com-
bining the first-order and second-order moments. By utilizing the smooth nature of the 
square root function, it can avoid the problems of drastic changes and unstable behavior 
in the parameter space. The RMS-FGSM computes adversarial examples in an iterative 
manner as follows: 

)),(( * yxfLg txt ∇=  (8) 

2
1 )1( ttt grr ρρ −+⋅= −  (9) 

σ
ϕτ
+

=
tr

 (10) 

)}({ **
1 ttt gsignxclipx ⋅+=+ τ  (11) 

where gt is the gradient of loss function 𝐿𝐿(𝑓𝑓(𝑥𝑥𝑡𝑡∗), 𝑦𝑦) w.r.t x at the t-th iteration. 𝑥𝑥𝑡𝑡∗ denotes 
the adversarial example achieved at the t-th iteration. Specifically, 𝑥𝑥0∗ = 𝑥𝑥, f(x) = y. In order 
to adjust the learning rate of adversarial examples, the RMS-FGSM computes an exponen-
tial average rt of the squared gradients based on the EWMA at each iteration according to 
Equation (9). This is essentially an exponentially decreasing weighted moving average, 
where the weight of each squared gradient decreases exponentially over time. The square 
of gt aims to eliminate the effect of the gradient sign. ρ is a constant that is typically set to 
0.9. It determines the speed of weight decay of historical gradients, with smaller values 
resulting in faster decay. The aim of the decay factor ρ is to decrease the influence of his-
torical gradients on the computation of the exponential average. Based on the exponential 
average, the RMS-FGSM calculates the learning rate 𝜏𝜏 according to Equation (10), where 
𝜑𝜑 represents the initial learning rate, and 𝜎𝜎 is usually set to 10−6 to prevent the denomi-
nator from being zero. As we can see, if the gradient is large, the learning rate will be 
suppressed; if the gradient is small, the learning rate will be increased. Different from the 
usual use case of RMSProp, the essence of our adversarial attack method is the gradient 
ascent rather than the gradient descent algorithm. Consequently, the RMS-FGSM updates 
the adversarial examples by adding (rather than subtracting) the computed perturbation 
𝜏𝜏 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑡𝑡) according to Equation (11). Additionally, in order to achieve imperceptible 
adversarial examples, we use the 𝑐𝑐𝐶𝐶𝑠𝑠𝐶𝐶{∙}  function to impose the bounding constraint 
‖𝑥𝑥∗ − 𝑥𝑥‖2 ≤ 𝜖𝜖. The algorithm stops when the specified number of iterations is reached; 
then, we obtain the adversarial examples. 

In conclusion, our approach has the following advantages: (1) Different adversarial 
examples have different learning rates, and the learning rate varies according to gradients 
during the iterative calculation process. This is completely different from the previous 
FGSM and variant algorithms with a fixed learning rate. (2) The problems of drastic 
changes and unstable behavior incurred by the fixed learning rate can be mitigated. (3) 
Based on the adaptive learning rate, it is more likely to achieve optimal adversarial exam-
ples while keeping a high convergence speed. (4) Our adversarial examples may have a 
small perturbation. (5) Since optimal adversarial examples with a small perturbation can 
be obtained, our approach may have a high attack success rate. (6) The high convergence 
speed makes our method time-efficient. 
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3.3. RMS-FGSM Algorithm 
The process of generating adversarial samples using the RMS-FGSM algorithm is as 

follows: 1. Given an original image x; 2. Input x to classifier f(x) and calculate its gradient 
gt of loss function w.r.t x.; 3. According to gt, compute an exponential average rt of the 
squared gradients based on the EWMA; 4. Calculate the adaptive learning rate 𝜏𝜏 accord-
ing to rt ; 5. Calculate the perturbation pixel by pixel, add it to x, and use the 𝑐𝑐𝐶𝐶𝑠𝑠𝐶𝐶{∙} func-
tion to prevent pixels from going out of range; 6. Repeat steps 2 to 5 until the specified 
number of iterations is reached. 

The outline of our the RMS-FGSM algorithm framework is shown in Algorithm 1. 

Algorithm 1: RMS-FGSM. 

Input: A classifier f with loss function L; original image x; ground-truth label y; decay rate ρ; number of iterations T; 
initial learning rate 𝜑𝜑; 
Output: Adversarial example x*; 
1: Initialize the variable r0 = 0; 𝑥𝑥0∗ = 𝑥𝑥; 
2: For t = 0 to T-1 do: 
3:  Input 𝑥𝑥𝑡𝑡∗ to classifier f ; 

4:  Calculate the current gradient: )),(( * yxfLg txt ∇= ; 

5:  Cumulative squared gradient: 2
1 )1( ttt grr ρρ −+⋅= − ; 

6:  Compute the adaptive learning rate: 
σ

ϕτ
+

=
tr

; 

7:  Add perturbation to the sample: )}({ **
1 ttt gsignxclipx ⋅+=+ τ ; 

8: End for 

9: return **
Txx = . 

4. Experiments 
4.1. Experimental Setup 

Datasets. We evaluate our method based on two commonly used datasets, MNIST 
and CIFAR-100. The MNIST dataset is a subset of the NIST (National Institute of Stand-
ards and Technology) dataset. It has a total of 70,000 images, including 60,000 in the train-
ing set and 10,000 in the test set. Each image is a 28 × 28 pixel image of 0–9 gray scale 
handwritten digits with white text on a black background. The CIFAR-100 dataset is a 
small dataset for recognizing pervasive objects. Consisting of 60,000 32 × 32 pixel images, 
it has 100 classes, and each class contains 600 images with 500 training images and 100 test 
images. The 100 classes in CIFAR-100 are divided into 20 superclasses. Each image has a 
“fine” label (the class it belongs to) and a “coarse” label (the superclass it belongs to). 

Implementation details. A set of different epsilon values (EPS) represents the initial 
learning rate in the BIM, MI-FGSM, NI-FGSM, and RMS-FGSM, and it is actually the per-
turbation factor in the FGSM method. Our experimental results are based on the L2 norm 
and non-target attack. The decay factor ρ in our RMS-FGSM is set to 0.9, and the number 
of iterations T in the BIM, MI-FGSM, NI-FGSM, and RMS-FGSM is set to 10. Our experi-
ments run on a machine with an Intel Core i7-8700K CPU, 32 GB memory, and an Nvidia 
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GeForce GTX 1080Ti graphics card (11 GB memory). We use Python 3.9, Torch 1.13.1, 
TorchVision 0.14.1, and related libraries. 

Evaluation metrics. For the performance evaluation and comparison, we use three 
different metrics, including the perturbation value (l2) calculated for different initial learn-
ing rates, average attack success rate (Avg asr), and average perturbation value (Avg per). 

4.2. Experimental Method 
Several common classification models in robot vision are used for our experiments. 

In order to verify the advantages of the proposed method, we designed two experiments 
to verify that the proposed method is superior to other methods in terms of effectiveness 
and imperceptibility. (1) In experiment 1, we set MNIST as the dataset and the LeNet 
model as the experimental model. Firstly, a set of different epsilon values (0, 0.05, 0.1, 0.15, 
0.2, 0.25, 0.3, 0.35, and 0.4) were used as the initial learning rate to generate adversarial 
examples on the MNIST with the FGSM, BIM, MI-FGSM, NI-FGSM, and RMS-FGSM al-
gorithm, respectively. Then, we analyzed the experimental results to compare the effec-
tiveness and imperceptibility of the adversarial examples generated by these different 
methods with different initial learning rates. (2) In experiment 2, we set CIFAR-100 as the 
dataset and Alexnet and Resnet-101 as the experimental models. Generate adversarial ex-
amples on both models using the same methods as in experiment 1. And analyze the ex-
perimental results to compare the effectiveness and imperceptibility of the adversarial ex-
amples generated using these different methods on different models. 

4.3. Adversarial Attack Based on MNIST 
We first perform a white-box attack on the LeNet network using different meth-

ods, including the FGSM, BIM, MI-FGSM, NI-FGSM, and RMS-FGSM algorithms, to 
demonstrate the effectiveness of our method. Table 1 presents the results of experiment 1 
on the MNIST dataset. In addition, we also calculate and plot the prediction accuracy of 
LeNet with the FGSM and RMS-FGSM methods under different epsilon values in Figure 
2, which represents the proportion of test samples that predicted correctly over all test 
samples. 

Table 1. The experimental results of experiment 1 based on MNIST and LeNet 1. 

EPS Input La 
FGSM BIM MI-FGSM NI-FGSM RMS-FGSM 

Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 

0 
 

1 
 

1 0 
 

1 0 
 

1 0 
 

1 0 
 

1 0 

0.05 
 

2 
 

2 1.374 
 

5 0.876 
 

7 0.884 
 

4 0.816 
 

8 0.745 

0.1 
 

3 
 

8 2.753 
 

8 0.982 
 

9 0.975 
 

7 0.828 
 

7 0.776 

0.15 
 

4 
 

9 4.081 
 

9 1.078 
 

9 0.978 
 

6 0.854 
 

5 0.792 

0.2 
 

5 
 

2 5.517 
 

8 1.146 
 

6 1.042 
 

9 0.873 
 

8 0.804 

0.25 
 

6 
 

0 6.878 
 

0 1.177 
 

4 1.078 
 

8 0.883 
 

9 0.801 

0.3 
 

7 
 

2 8.149 
 

5 1.216 
 

8 1.106 
 

3 0.907 
 

2 0.806 
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0.35 
 

8 
 

5 9.591 
 

6 1.223 
 

5 1.149 
 

9 0.915 
 

6 0.813 

0.4 
 

9 
 

2 10.969 
 

1 1.275 
 

4 1.178 
 

2 0.902 
 

5 0.809 

Avg asr 72.6% 84.5% 86.4% 89.6% 91.6% 

Avg per 5.479 0.997 0.932 0.775 0.705 
1 La: the true label of the original image; Adv: the generated adversarial example image; Ar: the 
prediction label given using the model. 

 
(a) (b) 

Figure 2. The prediction accuracy in the FGSM (a) and RMS-FGSM (b) methods when attacking the 
LeNet model. Accuracy represents the proportion of test samples that predicted correctly over all 
test samples; the lower prediction accuracy of the model indicates the higher attack success rate of 
the adversarial method. As EPS increases, the accuracy in RMS-FGSM decreases faster than that in 
FGSM and tends to converge. 

As we can see from Table 1, as the EPS increases, the l2 of the adversarial examples 
with the FGSM also increases. The EPS is actually the perturbation factor of Equation (2) 
in the FGSM. At the same time, the l2 values in the BIM, MI-FGSM, and NI-FGSM methods 
are slowly increasing, while the l2 in the RMS-FGSM has been maintained at around 0.8. 
From the images, the perturbation of the adversarial examples in the FGSM can be easily 
recognized by humans, but the perturbations in the BIM, MI-FGSM, NI-FGSM, and RMS-
FGSM methods are small. Furthermore, we also calculate the average attack success rate 
(Avg asr) and average perturbation value (Avg per) in these methods. The results show 
that the FGSM, BIM, MI-FGSM, and NI-FGSM methods obtain average attack success rates 
of 72.6%, 84.5%, 86.4%, and 89.6%, respectively, and the average attack success rate of the 
RMS-FGSM reaches 91.6%, which is the highest of these methods. The average perturba-
tion value of the RMS-FGSM is 0.705, which is also the lowest among the methods. 

In Figure 2, we can confirm that the accuracy of the model gradually decreases as the 
EPS increases in the FGSM method. However, the accuracy of the model in the RMS-
FGSM is not affected by the initial learning rate, and finally maintains at about 0.01, which 
is much lower than the accuracy in the FGSM. This means that the RMS-FGSM is able to 
find the global optimal solution using the exponentially weighted moving average and 
adaptive learning rate, and it is not affected by the initial learning rate. 
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4.4. Adversarial Attack Based on CIFAR-100 
In experiment 2, we also perform a white-box attack with the methods in experi-

ment 1, but we use the CIFAR-100 dataset on Alexnet and Resnet-101, respectively. 
Tables 2 and 3 show the results of experiment 2 on the CIFAR-100 dataset and two differ-
ent models. 

Table 2. The experimental results of experiment 2 based on CIFAR-100 and Alexnet. 

EPS Input La 
FGSM BIM MI-FGSM NI-FGSM RMS-FGSM 

Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 

0 
 

11 
 

11 0 
 
11 0 

 
11 0 

 
11 0 

 
11 0 

0.05 
 

23 
 

83 1319.89 
 
52 2168.72 

 
43 2749.18 

 
71 2883.94 

 
7 2331.99 

0.1 
 

38 
 

58 2631.59 
 
57 2373.98 

 
55 2950.84 

 
66 3004.96 

 
36 2422.59 

0.15 
 

42 
 

28 3959.67 
 
94 2584.86 

 
67 2989.19 

 
4 3041.01 

 
46 2425.45 

0.2 
 

51 
 

39 5278.10 
 
47 2832.27 

 
13 3055.10 

 
48 3076.21 

 
39 2422.92 

0.25 
 

65 
 

48 6439.86 
 
55 3084.59 

 
73 3024.25 

 
52 3103.83 

 
60 2392.04 

0.3 
 

74 
 

29 7917.18 
 
74 3113.83 

 
85 3078.15 

 
22 3064.81 

 
65 2413.65 

0.35 
 

88 
 

41 9239.20 
 
54 3152.67 

 
93 3126.84 

 
32 3105.91 

 
83 2433.23 

0.4 
 

96 
 

3 10,304.54 
 
79 3088.63 

 
66 3093.78 

 
52 3093.25 

 
45 2424.46 

Avg asr 72.4% 83.5% 90.2% 92.8% 94.6% 

Avg per 5232.22 2488.83 2674.14 2708.21 2140.7 

Table 3. The experimental results of experiment 2 based on CIFAR-100 and Resnet-101. 

EPS Input La 
FGSM BIM MI-FGSM NI-FGSM RMS-FGSM 

Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 Adv Ar l2 

0 
 

15 
 

15 0 
 

15 0 
 

15 0 
 

15 0 
 

15 0 

0.05 
 

29 
 

86 1318.59 
 

96 2246.92 
 

7 2860.22 
 

96 2918.59 
 

78 2298.88 

0.1 
 

36 
 

45 2629.47 
 

73 2414.55 
 

67 2967.01 
 

67 2967.01 
 

33 2507.00 

0.15 
 

45 
 

13 3951.65 
 

76 2599.35 
 

37 3003.38 
 

18 3058.88 
 

61 2417.71 

0.2 
 

57 
 

81 5279.56 
 

83 2828.45 
 

29 3052.83 
 

10 3072.11 
 

80 2425.84 
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0.25 
 

68 
 

48 6598.16 
 

11 3023.82 
 

62 3103.63 
 

59 3103.83 
 

43 2402.16 

0.3 
 

75 
 

29 7883.54 
 

5 3089.71 
 

44 3099.17 
 

93 3100.97 
 

35 2422.22 

0.35 
 

84 
 

23 9231.48 
 

78 3096.01 
 

80 3103.81 
 

94 3106.59 
 

98 2461.51 

0.4 
 

92 
 

76 
10,459.6
2  

62 3112.46 
 

64 3109.20 
 

6 3101.57 
 

49 2400.20 

Avg asr 81.9% 97.3% 99.1% 99.6% 99.9% 

Avg per 5261.48 2499.03 2699.14 2714.39 2148.39 

From the experimental results in Table 2, when the EPS is 0.05, the l2 of the FGSM is 
1319.89, which is smaller than those of other methods. However, the l2 of the FGSM far 
exceeds those of other methods as the EPS changes, resulting in a large perturbation on 
the adversarial example images. The l2 in the BIM, MI-FGSM, and NI-FGSM methods 
slightly changes as EPS increases but stably remains around 2400 in the RMS-FGSM. In 
Table 2, we also observe that the RMS-FGSM has the highest average attack success rate 
of 94.6% on Alexnet, while the FGSM, BIM, MI-FGSM, and NI-FGSM methods obtain an 
average attack success rate of 72.4%, 83.5%, 90.2%, and 92.8%, respectively. The average 
perturbation value of the RMS-FGSM is 2140.7 on Alexnet, which has a smaller perturba-
tion on adversarial images. 

Then, Table 3 shows the results of experiment 2 on Resnet-101. It can be seen that the 
l2 of the FGSM increases rapidly as the EPS changes; there is also a slight increase for the 
BIM, MI-FGSM, and NI-FGSM methods, while the l2 of the RMS-FGSM is always main-
tained at a small value. In addition, the RMS-FGSM reaches a slightly higher average at-
tack success rate of 99.9% on Resnet-101 compared with 99.1% and 99.6% in the MI-FGSM 
and NI-FGSM. However, our attack method obtains a significantly lower average pertur-
bation value of 2148.39 compared with other methods. 

Such experimental results suggest that the RMS-FGSM finds the global optimum 
point in the process of generating adversarial examples and produces an imperceptible 
perturbation so that there is only an extremely small difference between the adversarial 
example and the original example. In addition, with the change in the initial learning rate, 
the perturbation value generated using the previous methods also fluctuates, while the 
perturbation value generated using our method remains at a small value. The experi-
mental results on two different models suggest that our RMS-FGSM method is more ef-
fective at misleading a white-box network. 

5. Conclusions 
In this study, we focus on the gradient-based method and improve the fast gradient 

sign method. The gradient-based method is a kind of efficient and typical attack approach. 
However, this kind of method is likely to suffer from the problems of large perturbation 
value and low attack success rate. In this study, we propose an adversarial attack algo-
rithm based on root-mean-square propagation. By integrating with the RMSProp, RMS-
FGSM is more likely to generate optimal adversarial examples, and a high attack success 
rate can be achieved. The experimental results convincingly verified that the performance 
of the RMS-FGSM is better than the other methods when generating adversarial examples 
on the MNIST and CIFAR-100 datasets. Furthermore, the adversarial examples generated 
using the RMS-FGSM have a smaller perturbation under the same attack success rate. 
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