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Abstract 

 
Tangle is a concept in graph theory that has a dual relationship with tree-width which is well-known graph 

width parameter. Ultrafilter is a fundamental notion in mathematics. In this concise paper, we will reconsider 

the relationship between Tangle and Ultrafilter in digraph. 

 

 
Keywords: Tangle, directed tangle; ultrafilter; directed ultrafilter; directed tree-decomposition; directed 

linear-branch-decomposition. 

 

1 Introduction 
 

Tangles, fundamental constructs in graph theory, are intricately linked with tree-width, a widely recognized 

metric for gauging the complexity of a graph. This connection has catalyzed significant scholarly interest, 

leading to a rich body of research as evidenced by references [1,2-11,12,13-19]. Similarly, ultrafilters have 

found utility across a diverse range of engineering disciplines, attracting attention from a broad spectrum of 
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researchers, as indicated by references [1,20,21,22,23-32,33-35,36,37,38]. This widespread engagement 

underscores the perceived value of ultrafilter studies.  

 

In this paper, we aim to reexamine the relationship between Tangles and Ultrafilters within the context of 

directed graphs. 

 

2 Preliminaries 
 

In this section, we present the fundamental definitions necessary for this paper. We consider a directed graph, 

often referred to as a digraph and denoted as G, in our context. We define an edge e as crossing from subgraph A 

to subgraph B if its tail resides in V(A) but not in V(B), and its head is situated in V(B) but not in V(A). A 

directed separation of a digraph G is represented as a pair (A, B) of subgraphs of G, satisfying the condition that 

their combined vertex set is V(A) ∪ V(B) = V(G). This separation can be characterized by the absence of cross 

edges, either from A to B or from B to A. The order of this separation is determined by the size of V(A ∩ B). 

Throughout this paper, we will use the variable k to represent a natural number. 

 

2.1 Directed Tangle  
 

The paper [39] provided “a proof of the Directed Tangle Tree-Decomposition Theorem”. Furthermore, the paper 

[39] introduced “a method for constructing a directed tree-decomposition for any integer k, specifically designed 

to effectively distinguish all directed tangles with an order of k”. And note that in recent times, there has been a 

growing interest in the graph width parameter in directed graphs [40-44]. Below, you will find the definition of 

a Directed Tangle.  

 
Definition 1 [39]: Let G be a digraph. A set T of directed separations of order less than k in a digraph G is called 

a tangle of order k if: (DT1) For every directed separation (A, B) of G of order less than k, T contains either (A, 

B) or (B, A). (DT2) If (A1, B1), (A2, B2), (A3, B3) ∈ T, then V(A1 ∪ A2 ∪ A3) ≠ V(G). 

 

2.2 Directed ultrafilter 
 
First, we provide an explanation of Filters in Boolean Algebras. The definition of a filter in a Boolean algebra 

(X,∪,∩) is given below.  

 
Definition 2: In a Boolean algebra (X,∪,∩), a set family F ⊆ 2X satisfying the following conditions is called a 

filter on the carrier set X. 

 
(FB1) A, B ∈ F ⇒ A ∩ B ∈ F, 

(FB2) A ∈ F, A ⊆ B ⊆ X ⇒ B ∈ F, 

(FB3) ∅ is not belong to F. 

 
In a Boolean algebras (X,∪,∩), A maximal filter is called an ultrafilter and satisfies the following axiom (FB4): 

(FB4) ∀A ⊆ X, either A ∈ F or X / A ∈ F. 

 
In the context of directed graphs, we provide a definition for ultrafilters. The term "Directed Ultrafilter" is an 

extension of the definition of an Ultrafilter on a Boolean algebra to a directed graph. It's important to note that a 

Directed Ultrafilter is synonymous with a co-maximal Directed Ideal. 

 
Definition 3: Let G be a digraph. A set F of directed separations of order less than k in a digraph G is called a 

Directed Ultrafilter of order k if: 

 
(F1) For every directed separation (A, B) of G of order less than k, either (A, B) or (B, A) is an element of F. 

(F2) If (A1, B1) ∈ F, A1 ⊆ A2, and (A2, B2) of G of order less than k, then (A2, B2) ∈ F. 

(F3) If (A1, B1) ∈ F, (A2, B2) ∈ F, and (A1 ∩ A2, B1 ∪ B2) of order less than k, then (A1 ∩ A2, B1 ∪ B2)  ∈ F 

(F4) For any directed separation (A, B) such that V(A) = V(G), we have (A, B) ∈ F. 
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3 Cryptomorphism between Directed Tangle and Directed Ultrafilter 

 
In this section, we demonstrate the cryptomorphism between Directed Tangle and Directed Ultrafilter. From this 

theorem, it becomes evident that the Directed Ultrafilter has a profound relationship with Directed tree-width.  

 

Theorem 1. Let G be a digraph. T is a Directed Tangle of order k in a digraph G iff F = {(A,B) | (B,A) ∈ T }  is a 

Directed Tangle of order k in a digraph G. 

 

Proof of Theorem 1:  

 

To establish Theorem 1, we need to demonstrate that if T is a Directed Tangle of order k, then F is a Directed 

Ultrafilter of the same order, and conversely. We will rely on the definitions and conditions outlined in the 

preliminary section to construct this proof. Let us denote directed separations as (A, B), and define F as F = 

{(A,B) | (B,A) ∈ T}. 

 

Conditions (F1) and (F4) are evidently satisfied. 

 

To establish that F complies with (F2), we begin with an element (A1, B1) in F, indicating that (B1, A1) is in T. 

Now, let A1 ⊆ A2 and contemplate a separation (A2, B2) of order less than k. According to the definition of 

tangles, specifically axiom (DT1), T either contains (A2, B2) or (B2, A2). If T contains (A2, B2), it contradicts the 

assumption that (B1, A1) is in T, as this would violate (DT2). Therefore, T must contain (B2, A2), which implies 

that (A2, B2) is in F, thus satisfying condition (F2) for ultrafilters. 

 

To ensure that F fulfills (F3), consider (A1, B1) and (A2, B2) in F, implying that (B1, A1) and (B2, A2) are in T. 

Now, contemplate a new separation (A1 ∩ A2, B1 ∪ B2) of order less than k. Following a similar line of reasoning 

as for (F2), we conclude that this separation meets the conditions to be in F, thereby confirming that F satisfies 

condition (F3). 

 

The reverse proof follows a similar approach in the opposite direction and is omitted for brevity. 

 

In conclusion, we can establish that T is a Directed Tangle of order k if and only if F = {(A,B) | (B,A) ∈ T} is a 

Directed Ultrafilter of order k, successfully substantiating Theorem 1. This proof is completed. 

 

4 Future Tasks: Directed Linear-Branch-Decomposition 

 
In this paper, we have explored the cryptomorphism between Directed Tangles and Directed Ultrafilters. 

 

The reference [41] defines the directed branch-decomposition. Inspired by this, we propose the concept of a 

"Directed linear-branch-decomposition" and aim to explore its characteristics. For the notation and definitions 

used in the subsequent description, please refer to reference [41]. 

 

Definition 4. For any digraph D, let fD be the function fD : 2E(D)→ℕ defined as fD(X)=“ |SV
X ∪ SV

E(D)\X|. A layout 

of f(D) on E(D) is called a directed branch decomposition of D. A tree is a caterpillar if its non-leaf vertices 

form a single path. The directed linear-branch-decomposition is a specialized form of directed branch 

decomposition where the underlying tree T is constrained to be a caterpillar.  The directed linear branch width of 

D is defined as the width of the layout of f(D) on E(D), with the restriction that the decomposition tree is a 

caterpillar. 

 

5 Conclusion 

 
We intend to further investigate the properties of the aforementioned directed linear branch width. Moreover, we 

hypothesize that a concept, potentially the directed linear tangle, may exhibit a duality with the directed linear 

branch width. Our research in this area will be ongoing. 
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Furthermore, a range of graph width parameters has been established, as indicated in references [34,45,46]. We 

aim to explore the properties that manifest when these parameters are extended to directed graphs. 

 

Disclaimer 
 

This paper is an extended version of a preprint document of the same author. 

The preprint document is available in this link: 

https://www.researchgate.net/publication/374112335_Ultrafilter_in_digraph_Directed_Tangle_and_Directed_U

ltrafilter  

[As per journal policy, preprint article can be published as a journal article, provided it is not published in any 

other journal]. 
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