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ABSTRACT

This study presents a systematic computing analysis of financial models, precisely focusing on the Black-
Scholes and Monte Carlo derivative equations, to evaluate American options. American selections are exercised
at any time before expiration, posing unique challenges in financial modelling due to their complex early exercise
features. The Black-Scholes formulation gives a foundational framework for choice pricing, utilizing partial
derivative formulations to estimate the fair value of options under definite assumptions. Nevertheless, because
of its restriction, Monte Carlo computations are taken to give a better simulation scheme to overcome the posed
challenges by computing wider likely underlying price path assets. This study implements a computationa
approach to compare the efficacy of the Black-Scholes formulation and Monte Carlo methods in selected
American pricing. A numerical scheme for solving the Black-Scholes derivative systems and a variance
reduction technique for enhancing the effectiveness of Monte Carlo simulations are adopted. Our analysisl
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reveals that while the Black-Scholes model provides a useful approximation, Monte Carlo simulations deliver
more accurate and flexible results for American options, especially in scenarios with substantial volatility and
early exercise potential. The outcomes underscore the importance of sophisticated numerical methods in
financial engineering and highlight the trade-offs between analytical tractability and numerical precision.

Keywords: Comparability analysis; financial science; scientific computing; mathematical model; monte carlo
method.

1 INTRODUCTION

Finance is the fastest-rising and highly speedily varying
area in corporate organisation. Following its swift
variation, financial contemporary apparatuses are
now really intricate. As such, innovative scientific
formulations are indispensable for implementing and
pricing these novel monetary apparatuses. The finance
commercial world, earlier controlled by corporate
apprentices, is nowadays governed by computer
and mathematician experts. In the early 1970s,
Fisher Black, Robert Merton, and Myron Scholes
accomplished essential success in the financial
complex pricing tools by formulating a well-known
model called the Black-Scholes technique. In 1997,
the strength and essential of the modelled technique
was acknowledged globally when Robert Merton
and Myron Scholes were given an Economics Nobel
Prize. The Black-Scholes formulation demonstrated the
importance of mathematics in the finance field. This
led to the evolution and victory recorded in financial
engineering or financial mathematical fields.

The cell (put) option owner has no obligation but the
right to buy (sell) a primary benefit at the price exercise.
The European option may be practised or executed
at the expiration time only, but the American option
can be any time executed and practised until the
expiration time. A closed-form solution for the European
option is developed from the ideas in [1,2]. For the
American option, due to the early possibility practice,
the problem of pricing gives a complicated analytical
calculation. The scholars [3,4] presented that the
American valuation option establishes a boundary-free
problem for time changes in the boundary to maturity,
frequently referred to as boundary optimum exercise
[5,6]. Therefore, finance scientists have considered
approaches to correctly and rapidly find the boundary
optimum exercise. The techniques are fundamentally
different, i.e., approximating analytical schemes as
demonstrated by [7-9] and computational techniques as

illustrated by [10,11]. Wu and Kwok [12] find an explicit
and precise solution for the Black-Scholes model in
evaluating the Put American option through the Taylor
series of indefinitely several parameters. Their study
gives an exceptional outcome for the Put American
option valuations; meanwhile, it is complex to carry out
the numerical analysis and solution. The infinite totality
yields several computational errors.

Michael et a. [13] studied expanded the Wu and
Kwok [12] to American pricing option with wide-
ranging distribution procedures. The most common
computational scheme for the American pricing option
includes the finite difference technique by Brennan and
Schwartz [14], binomial scheme by Cox et al. [15],
Monte Carlo computing scheme by Glasserman [16],
least squares technique by Tilley [17], integral-equation
technique by Brandimarte [18], and the Laplace
transform procedure by Boyle et al. [19] are recursive
time-depended. The lifetime discretization of options
is the basis of their idea in calculating the backward
boundary optimal time exercise. Since recursive
time-dependent ways produced a repeated time step
calculation, it requires quick time computations and
lower pricing errors. Moreover, the front-fixing schemes
[12, 20] formulated use a quasilinear transformation
to solve the resultant quasilinear model and fix the
boundary. A Secant technique formulated by Wilmott et
al. [21] is required to provide a solution to a quasilinear
equation, and a boundary-moving procedure presented
by Geske and Johnson [22] changes the resultant
boundary-free linear partial derivative model into a
fixed-boundary linear sequence PDE model. Recently,
Han and Wu [23] developed a novel corrector-predictor
method for the Put American pricing option by applying
the Black-Scholes formulation. After that, Wilmott
et al. [21] presented an expansion of Han and
Wu [23] to provide a valuation for the Put American
option with volatility stochastic formulation. The
investigation adopts a numerical procedure to analyse
the effectiveness of the Black-Scholes formulation and
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Monte Carlo schemes for American pricing options.
Numerical procedures for solving the Black-Scholes
partial derivative models and variance reduction
techniques for enhancing the proficiency of Monte Carlo
simulations are adopted.

2 THE BLACK-SCHOLES
FORMULATION

Following the derivative of lognormal dynamics, the
Merton, Myron Scholes, and Fischer Black assumptions
are developed for the European pricing option
formulation. Additional assumptions were made as:

• The stock rate of return probability is lognormally
distributed with the same return free-risk and
mean,

• Transaction taxes or costs ignored,

• There is no arbitrage risk-free occur,

• During the option life dividends do not exist,

• The interest risk-free rate in time is constant and
known,

• The return variance life option is fixed,

• There is continuous trading of asset with
continuous varying price.

Given the stock price as

dS = µSdt+ σSdW (1)

where W is the Wiener process, σ dentes volatility,
and µ defines trend. The call option is f and other
contingent derivative presents S where f is a function t
and S. Thus, by Ito’s lemma

df =

[
∂F

∂S
µS +

∂F

∂t
+

1

2

∂2F

∂S2
σ2S2

]
dt+

∂F

∂S
σSdW (2)

Equations (1) and (2) in discrete for

∂S = µS∂t+ σS∂W

∂f =

[
∂F

∂S
µS +

∂F

∂t
+

1

2

∂2F

∂S2
σ2S2

]
∂t+

∂F

∂S
σSdW (3)

The underlying Wiener procedure for S and f are equal and can be removed through right choice of portfolio for
the derivative and stock. A portfolio is chosen as:

+
∂f

∂S
: shares and − 1 : derivative

It is a derivative of short holder and share long amount of ∂f/∂S. Define Θ to be the portfolio value to have

Θ =
∂f

∂S
S − f. (4)

The portfolio value is the change in ∂Θ with time variance of ∂t is describes as:

∂Θ =
∂f

∂S
δS − ∂f. (5)

Using model (3) in model (5) gives

∂Θ =

[
−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2

]
∂t (6)
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By the removal of the term ∂W , the portfolio less-risk. A return must then earn equivalent to other free-risk
securities. Hence,

δΘ = rΘ∂t (7)

where the interest free-risk rate is r. Applying (4) and (6) on (7) results to[
1

2

∂2f

∂S2
σ2S2 +

∂f

∂t

]
∂t = −r

[
∂f

∂s
S − f

]
∂t. (8)

To have,
1

2

∂2f

∂S2
σ2S2 + rS

∂f

∂S
+
∂f

∂t
= fr (9)

This gives Black-Scholes-Merton derivative model.

Solving model (9) results to an European pricing option analytical, which is exercised at the due time and not
applicable for early exercise pricing. Therefore, the European boundary constraints option can be used on model
(9).

2.1 The Black-Scholes Model Solution
The condition for payoff is given as max(S −N, 0) = f(S, t = T ). The boundary upper and upper constraints are
consider as c(S,K, t), C(S,K, t) ≥ −Ke(t−T ) + St and c(S, t,K), C(S, t,K) ≤ St. These are the satisfied PDE
constraints

Let τ = T − t, where T denotes time expiration and t is time; thus, mode; (9) becomes

∂f

∂τ
=
σ2

2
S2 ∂

2f

∂S2
+
∂f

∂S
rS − fr (10)

Let
∂f

∂S
=

1

S

∂f

∂y

and

∂2f

∂S2
= − 1

S2

∂f

∂y
+

1

S2

∂2f

dy2
(11)

If y = lnS,, new notation is introduced

w(y, τ) = erτf(y, τ)
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Using (11), the diffusion PDE Black-Scholes model gives

∂w

∂τ
=
σ2

2

∂2w

∂y2
+
[
r − σ2

2

]∂w
∂y

(12)

with a basic normal solution as:

φ(y, τ) =
1

σ
√

2πτ
exp

[
−

[(r − σ2

2
)τ ]2 + y

2σ2τ

]
(13)

Hence, equation (13) results to:

w(y, z) =

∫ ∞
−∞

φ(y − ξ, τ)w(ξ, 0)dξ (14)

Introducing the payoff constraint to have the basic solution for equation (13) as:

w(y, τ) =
1

σ
√

2πτ

∫ ∞
−∞

max(eξ −K, 0)exp
[ [y − ξ + (r − σ2

2
)τ ]2

2σ2τ

]
dξ

=
1

σ
√

2πτ

∫ ∞
lnK

(eξ −K, 0) exp
[
−

[(r − σ2

2
)τ − ξ + y]2

2σ2τ

]
dξ (15)

The normal variable distribution function is presented as

K(x) =
1√
2π

∫ x

−∞
e−

u2

2 du (16)

We can express (15) as

w(y, τ) =
1√

2σ2τπ

∫ ∞
lnK

exp
[
− (A− ξ)2

2τσ2

]
eξdξ

− N√
2σ2τπ

∫ ∞
lnK

exp
[
− (A− ξ)2

2τσ2

]
dξ (17)

where A = y + (r − σ2

2
)τ = lnS + (r − σ2

2
)τ. The RHS second term of (17) can be simplified to have

z =
(A− ξ)√
σ2τ

(18)

then dξ gives
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dξ = −
√
σ2τdz

The limit ξ =∞ and z = −∞, are taken for (17) using (18),

z =
A− lnK√

σ2τ
=

(r − σ2

2
)τ + lnS − lnK
√
σ2τ

≡ d2 where ξ = lnK (19)

Carry out variable from ξ to z changes, the equation (17) second term gives

K√
2π

∫ d1

d2

e−z
2/2dz = − K√

2πx

∫ 1

∞
e−z

2/2dz

The equation (17) first term integral results to

exp
[
− (A− ξ)2

2τσ2

]
eξ

= exp
[
− A2 − 2(τσ2 +A)ξ + ξ2ξ2

2τσ2

]
= exp

[
− A2 − (τσ2 +A) + (τσ2 +A)2 − 2(τσ2 +A)ξ + ξ2

2τσ2

]
= exp

[
− [−(τσ2 +A) + ξ]2

2τσ2
+A+

1

2
τσ2

]
= eA+ 1

2
τσ2

exp
[
− [−(τσ2 +A)]2 + ξ

2τσ2

]
(20)

By the A description,

eA+ 1
2
τσ2

= eτr+y = Seτr (21)

Use (20, 21) on the equation (17) first term gives

1√
2σ2τπ

Seτr
∫ ∞

lnK

exp
[
− [−(τσ2 +A) + ξ]2

2τσ2

]
dξ. (22)

By variable changes,

1√
2π
Serτ

∫ d1

−∞
e−

z2

2 dz = SerτK(d1) (23)
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The last line of (15) can be written as;

w(y, τ) = erτSN
[ ln( S

K
) + (r + σ2

2
)τ

σ
√
τ

]
−KN

[ ln( S
K

) + (r − σ2

2
)τ

σ
√
τ

]
(24)

this implies that

C = −KNe−τr(d2) +NS(d1) (25)

where

d1 =
τ(σ

2

2
+ r) + ln( S

K
)

τ
√
τ

and d2 = d1 −
√
σ2τ . (26)

Thus, the time zero pricing for Black-Scholes model of a paying stock non-dividend European call option .
By using P = −S +Ke−Tr + c., The analytical put European model is obtained as

P = −NS(−d1) +KNe−τrN(−d2). (27)

The analytical put and call European model have
become very popular in the financial world since it is
easily used to determine European options.

3 The American Option
For the call American option, the holder has the choice
and not responsibility to buy a prescribed asset price
from the start time to the expiry time; hence, the
American option has higher values potentially.

Given S in between P (S, t) < max(E − S, 0) for
an option exercise, there exist a arbitrage privilege
with free-risk profit of E − S − P . Therefore, it can
be concluded that constraints must be imposed when
permitting early exercise.

V (S, t) ≥ max(S − E, 0)

The American option-valuation is complex than its
counterpart European option-valuation since the option
value only needs to be determined. A unique

specification of American option-valuation is done by
the conditions

• the value for the option is equal or higher than
the function of the payoff;

• an inequality is used to replace Black-Scholes
model;

• a S continuous function for option value exist
and;

• the delta option ( ∂V
∂S

) is continuous.

Holding a call American option to maturity is optimal
since no payment of dividend on the underlying asset.

3.1 The Put American Optimal Price
Exercise

Let the Put American option be denoted by V (S, t),
asset price is given as S and current time is t. Black
and Scholes [2] gives the put and call value option V in
partial derivative model as:
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∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+
∂V

∂S
rS − V r = 0, (28)

where interest free-risk rate is r and underlying volatility asset is defined as S. Eq. (28) is described Black-Scholes
model; thus, σ and r and constant. Equation (28) is the Black-Scholes financial derivative. For put American and
European options, there exist far-field boundary constraint

lim
S→∞

V (S, t) = 0 (29)

this implies put option is worthless as the underlying price asset is getting increase unlike European option. A
asset critical price Sr(t) is given, which is equal or below its optimal exercise of the put American option. With
optimal price exercise, according to Wilmott et al. [21], the boundary constraint of the optimal price exercise
defined as S = Sr(t) is given as

{
V (Sr(t), t) = −Sr(t)−X
∂V
∂t

(Sr(t), t) + 1 = 0, or a continuous ∂V
∂t

on S = Sr(t),
(30)

for which option strice price is X. From mathematical perspective, free value boundary model is constituted,
where the location of the boundary formed the solution part of the model. Though, in terms of V , the governing
derivative model is linear but made nonlinear due to the unknown boundary constraint. The unknown product
function 1

Sr

∂v
∂s

dSf

dt
, which exist in the partial derivative model gives a better measure for nonlinearity strength. The

put value option been equal to the payoff setup functions ends the condition

V (S, T ) = max{X − S, 0}, (31)

where the option expiration time is T . As such, equations (28)-(31) give a derivative system, which the solution
resulted in an American option value before expiration of time T at any price S.

To appropriately solve the system, non-dimensionl variables are introduced to have a dimensionless system

S′ =
S

X
, V ′ =

V

X
, τ ′ =

σ2

2
(T − t) =

σ2

2
.τ.

The dimensionless system with prime dropped becomes
−V γ − ∂V

∂τ
+ Sγ ∂V

∂S
+ S2 ∂2V

∂S2 = 0,
∂V
∂S

(Sr(τ), τ) = −1,
V (S, 0) = max{1− S, 0},
limS→∞ V (S, τ) = 0,
V (Sr(τ), τ) = −Sr(τ) + 1,

(32)

where relative interest rate to the volatility price asset is γ ≡ 2r
σ2 . The dimensionless derivative system (32) depicts

a family of two-parameter solution. The solutions are the relative interest rate, γ and total dimensionless time,
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τexp = σ2

2
.T , for option initial time t = 0 to the expire time T . Due to the introduced expire time γ as the difference

between times T and t, an terminal constraint (31) gives an initial constraint (32). Consider a new function U(S, τ)
described as

U =

{
S − 1 + V, if Sr ≤ S < 1,
V, if S ≥ 1, (33)

The derivative model (32) can be presented in two equations and boundary constraints
S2 ∂2U

∂S2 + γS ∂U
∂S
− ∂U

∂τ
− Uγ = γ,

U(Sf (τ), τ) = 0, if Sf ≤ S < 1,
∂U
∂S

(Sf (τ), τ) = 0,
U(S, 0) = 0,

(34)

 S2 ∂2U
∂S2 + γS ∂U

∂S
− ∂U

∂τ
− Uγ = 0,

limS→∞ U(S, τ) = 0, if S ≥ 1,
U(S, 0) = 0,

(35)

As presented, the constraints in (34) and (35) now appeared easier to handle than that of (31). The moving
boundary constraints S = Sr(t) is homogeneous because the derivative model of (34) is non-homogeneous,
which facilitates considerable solution step. To establish V as a contentious function V (S, τ), its derivatives are
needed on the boundary S = 1, which resulted into matching interfacial constraints

lim
S→1+

U = lim
S→1−

U, (36)

1 + lim
S→1+

∂U

∂S
= lim
S→1−

∂U

∂S
, (37)

where 1+ and 1− respectively indicate S is approaching 1 from the right and left. Taking Laplace transform of
the systems (34)-(37) for the optimal price exercise Sr(t) and option price U(S, τ), the existence conditions for
Laplace transform are satisfied as given by Karatzas [24]. All quantities shall be denoted in the Laplace space as:

LU(S, τ) =

∫ ∞
0

e−pτU(S, τ)dτ = U(S, p), LSr(τ) =

∫ ∞
0

e−pτSr(τ)dτ = S̄f (p).

The Laplace transform of the systems (34)-(37) give the respective ordinary derivative equations in terms of p with
the substitution of the initial constraints

−[pŪ − 0] + S2 d2Ū
dS2 + γS dŪ

dS
− γŪ = γ

p
,

Ū(pSf , p) = 0,
dŪ
dS

(pS̄f , p) = 0,

(38)

{
−[pŪ − 0] + S2 d2Ū

dS2 + γS dŪ
dS
− γŪ = 0,

limS→∞ Ū(S, p) = 0,
(39){

Ū(1+, p) = Ū(1−, p),
1
p

+ dŪ
dS

(1+, p) = dŪ
dS

(1−, p)
(40)

It is observed that under the Laplace transform derivation model of (38) and (39), the matching interfacial constraints
in (40) and the boundary far-field constraint of (39) are direct. Meanwhile, a Laplace transformation is carried out
on the boundary constraints of (34), which is demonstrated on the moving boundary Sr(τ), S in

LU(S, τ) =

∫ ∞
0

U(S, τ)e−τpdτ,

According to an approximate steady pseudo-state, if a slow movement optimal boundary exercise assumed and
compared to option price diffusion, S will remain constant in the Laplace transform and be replaced interfacial
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constraint S = Sr(τ) (i.e., LSr(τ) = LS ⇒ S
p

= S̄r). Also, the same argument is established for the second
moving boundary constraint of (38). From the Stefan classical model, the steady pseudo-state approximate
solution gives indefinite speed at t = 0, like the Stefan model exact solution (see Kemna and Vorst [25]). The
system derivative solutions of (38)-(40) is done as:

Ū =

{
D2S

q2 +D1S
q1 − γ

p(p+γ)
, if Sf ≤ S < 1,

D3S
q1 +D4S

q2, if S ≥ 1,
(41)

where the characteristic roots are given as q1 and q2 respectively for the corresponding homogeneous equation

q1,2 =
1− γ

2
±

√(
1− γ

2

)2

+ (p+ γ), (42)

and the unknown complex arbitrary constants are presented as D1, D2, D3 and D4, which are to be evaluated for
all conditions to be satisfied. Hence, equation (42) can be expressed as

q1,2 = m±
√
m2 + (γ + p) = m±

√
a2+p, (43)

where m = − (γ−1)
2

and a = γ+1
2

. If γ varied in (0,∞), a is positive while m is either negative or positive. In fact,
m takes value between ( 1

2
,−∞). Thus, m and a are associated as

a+m = 1, a−m = γ, a2 = γ +m2.

Taking an appropriate contour for the Laplace inverse transform, the q1 is the positive real part and the q2 is the
negative real part. As such, for the boundary far-field constraint (29) to be satisfied, D3 must be of zeroth order.
The satisfying other boundary constraints and the interface constraints of (38)-(40) results in algebraic equations

D1(pS̄f )q1 +D2(pS̄f )q2 = γ
p(p+γ)

,

D1q1(pS̄f )q1−1 +D2q2(pS̄f )q2−1 = 0,
D1(1)q1 +D2(1)q2 − γ

p(p+γ)
= D4(1)q2,

D1q1(1)q1 +D2q2(1)q2 = D4q2(1)q2 + 1
p
,

(44)

the solution yields a elegant and simple optimal price exercise formula in the Laplace space

S̄f =
1

p

[
γq2

γq2 − (p+ γ)

] 1
q1

, (45)

therefore, three unknown constants from U(S, τ) is to be evaluated for the option price. The optimal price exercise
Sf (τ) is obtained from the inversion of (45). Hence, the Laplace inverse transform gives

S̄f (τ) =
1

2πi

∫ µ+∞i

µ−∞i

epτ

p
·
[

(p+ γ)

γq2 − (p+ γ)

] 1
q1

dp,

=
1

2πi

∫ µ+∞i

µ−∞i

epτ

p
· exp


− log

[
1− (p+γ)

γ(b−
√
p+a2)

]
b+

√
p+ a2

 dp, (46)

to ensure that Re(q2) < 0 and Re(q1) > 0, it is sufficient to assume any µ, such that

µ > 0 (47)
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Following Cauchy’s residue theorem defined as

6∑
j=1

∫
Cj

epτ S̄f (p)dp = 2πi

n∑
k=1

Resp=pk{e
pτ}S̄f (p)

= 2πi

n∑
k=1

Resp=pk


epτ

p
exp


− log

[
1− (p+γ)

γ(b−
√
p+a2)

]
b+

√
p+ a2


 , (48)

One simple isolated pole epτ exist when p = 0. As given by Broadie and Glasserman [26], an optimal perpetual
price exercise residue epτ is determined. In relation to the derivation, the integrand residue of (46) is obtained as:

I3 + I5 = 2ie−a
2r

∫ ∞
0

e−ρτ

ρ+ a2
· Im

exp

− log
(

1 +
(b−i√ρ)

γ

)
b− i√ρ

 dρ, (49)

In (49), Im{·} denotes complex function imaginary part. On dividing equation (49) on both sides by 2π and use
the outcome on equations (46) and (48), an analytical optimal price exercise formula is gotten Sr

Sf (τ) =
γ

(1 + γ)
+
e−a

2τ

ρ

∫ ∞
0

e−ρτ

a2 + ρ
e−f1(ρ) sin[f2(ρ)]dρ, (50)

where

f1(ρ) =
1

(ρ+ b2)

[
b ln

(√
ρ+ a2

γ

)
+
√
ρ tan−1

(√
ρ

a

)]
,

f2(ρ) =
1

(b2 + ρ)

[
√
ρ ln

(√
a2 + ρ

γ

)
− b tan−1

(√
ρ

a

)]
,

3.2 The Put American Price Option
The respective D1, D2 and D4 can be determined once S̄r(p) is known from (17) and expressed in Laplace term
p as

D1= 1
(S̄rp)q1

· q2
(q2−q1)

· γ
(γ+p)p

=
[
1− γ+p

(m−
√
a2+p)γ

]
· m−
√
a2+p

2
√
a2+p

· − γ
(γ+p)p

.
(51)

D2= 1
(S̄rp)q2

· q1
(q1−q2)

· γ
(γ+p)p

=
[
1− γ+p

(m−
√
a2+p)γ

] q2
q1 ·
√
a2+p+m

2
√
a2+o

· γ
(γ+p)p

.
(52)

D4=D2 +D1 − γ
(γ+p)p

,

= γ
(γ+p)p

·

{
−
[
1− γ+p

(m−
√
a2+p)γ

]
· m−
√
p+a2

2
√
p+a2

+

[
1− γ+p

(b−
√
a2+p)γ

] q2
q1

·
√
a2+p+m

2
√
a2+p

− 1

}
.

(53)

As such, U(S, τ) is expressed as

U(S, τ) =
1

2πi

∫ ∞i+µ
µ−∞i

γeτp

(γ + p)p
F1(p)dp, (54)
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for Sr(τ) ≤ S ≤ 1 and,

U(S, τ) =
1

2πi

∫ ∞i+µ
µ−∞i

γeτp

(γ + p)p
F2(p)dp, (55)

for S > 1

In equation (54) and (55), F2(p) and F1(p) are determined by applying equations (51) to (53) on (41) to have

F1(p)= 1
2

(
1− b√

a2+p

)
·
[
1− γ+p

(b−
√
a2+p)γ

]
· Sq1

+ 1
2

(
1− b√

a2+p

)
·
[
1− γ+p

(
√
p+a2+b)γ

] q2
q1

· Sq2 − 1.

(56)

F2(p) =

{
1
2

(
1− m√

a2+p

)
·
[
1− γ+p

(m−
√
a2+p)γ

]
+ 1

2

(
1− m√

a2+p

)
·
[
1− γ+p

(
√
p+a2+m)γ

] q2
q1

− 1

}
· Sq2 ,

(57)

3.3 The American Options Partial Derivative Equation
For the calls American valuation, a transformation is introduced. The Black-Scholes price model of a deterministic
asset paying dividend V yields D, interest rate r and volatility σ are illustrated as:

Vt +
1

2
σ2S2Vss + SVs(r −D)− V r = 0 (58)

Here, the call option underlying asset is denoted as S. The early American option exercise gives an optimal
boundary exercise model, which is considered as a boundary free problem in the PDE setting. The domain
(0, B̃(t))× [0, T ) for the equation (58) and the boundary constraints are taken as:

V (S, T ) = S ∈ (0, B̃(T )),max(S −K, 0), (59)

B̃(T ) = max

(
K,

Kr

D

)
(60)

V (0, t) = 0, (61)

V (B̃(t), t) = −K + B̃(t), (62)

Vs(B̃(t), t)− 1 = 0, (63)

3.4 American Call with Dividends
From the Black-Scholes equation, the American option value C(S, t) satisfies

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ S(r −D0)

∂C

∂S
− rC = 0, (64)

This remains for non-optimal exercise. The payoff constraint is

max(S − E, 0) = C(S, T ) (65)
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Also, the option exercised can take place at any period; as such,

max(S − E, 0) ≤ C(S, t) (66)

provided the boundary optimal exercise S = Sr(t)

C(Sr(t), t) = −E(Sr(t), t)
∂C

∂S
+ Sr(t) = 1 (67)

If the boundary optimal exercise occur therefore (64) is valid when max(S − E, 0) < C(S, t) due to the fact that
max(S − E, 0) is not the Black-Scholes model solution. (64) can be replaced by an inequality

S(r −D0)S
∂C

∂S
+

1

2
σ2S2 ∂

2C

∂S2
+
∂C

∂t
− rC ≤ 0 (68)

The inequality is valid if max(S − E, 0) < C(S, t).

3.5 Call Dividends Analysis
Here, the simplification of dividend payments with Black-Scholes model is carried out by taking that the dividend
payments and interest rate satisfy 0 < D0 < r. Therefore, equations (64) to (66) are transformed to dimensionless
form by introducing the variables

S = Eex, t = T − τ
1
2
σ2
, C(S, t) = Ec(x, τ)− E + S (69)

the result is
∂c

∂τ
=
∂2c

∂x2
+ (k′ − 1)S

∂c

∂x
− kc+ f(x) (70)

where k = r
1
2
σ2 , k′ = r−D0

1
2
σ2 for −∞ < x,∞ and τ > 0. The function c(x, 0) gives the initial formation

max(1− ex, 0) = c(x, 0) (71)

The function is resulted from f

f(x) = k − (k − k′)ex (72)

Taking that free boundary occur, x = xr(t), at the boundary to obtain

c(xr(τ), τ) = (xr(τ), τ)
∂c

∂τ
(73)

From equation (73), at expiration time gives

∂c

∂τ
= f(x) (74)

For f(x) > 0, x0 > x > 0, and c is positive. Give x0 < x when f(x) < 0, then c is negative; as such, when x > 0,
c > 0 therefore constraint is not satisfied.
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4 MONTE CARLO TECHNIQUE
The idea of Monte Carlo computation into finance was introduced by Boyle. The Monte Carlo numerical technique
is used when closed-form solution is not available. The approach is a better pricing dependent path option. Monte
Carlo computational scheme employes the valuation risk results; in risk-neutral world, expected payoff is computed
by adopting a sampling technique. The major Monte Carlo simulation techniques are as follows:

• Compute an asset underlying path with the risk-neutralization constraint in between the time horizon.

• The payoff discounted is equivalent to the interest free-risk path rate.

• The approach is repeated for higher simulation numbers of sample path.

• The cash flow discounted average over the sample value option paths is determined.

A Monte Carlo computation uses approach for random sampling outcome processes according to the stock price
[6]

dS = µSdt+ σSdW (t) (75)

where stock price is S and Wiener process is dWt. Given that δS is the stock price increment in the time interval
of δt, then

δS

S
= µδt+ σZ

√
δt (76)

where Z ∼ N(0, 1), expected risk-neutral return is µ and stock price volatility is σ, which can be expressed as

S(t+ δt)− S(t) = µS(t)δt+ σS(t)Z
√
δt (77)

At time t+δt the value of S is computed taking from the S initial value, then at time t+2δt the value of S calculated
and so on. A random N sample from a normal distribution for complete trial calculations is done in S. Its give
better accurate simulation of lnS than S by using Ito’s lemma to modify the asset price procedure

d(lnS) = σdW (t)−
(
σ2

2
− µ

)
dt

so that

ln(t+ δt)S − lnS(t) = σZ
√
δt−

(
σ2

2
− µ

)
δt

or

S(t+ δt) = S(t) exp

[
σZ
√
δt−

(
σ2

2
− µ

)
δt

]
(78)
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The Monte Carlo computation is specifically useful when there is payoff financial derivatives depending on the path
and life asset underlying option. For instance, considering a maturity time T of Asian Stock price options defined
as

SjT = S exp
[
σZ
√
T −

(
σ2

2
− µ

)
T
]

(79)TheevaluatedCallAsianvalueoptionisC = 1
M

∑M
j=1 e

−Tr max[SjT −
St, 0](80)

where trial numbers is M and j = 1, 2, 3, ...,M , this is an unbiased price derivative evaluation. When M is high,
the limit central theorem gives an estimation realistic interval based on the discounted payoff of sample variance.
If discounted payoffs mean is µ̄ and standard deviation is ω, then ω√

M
is the estimated standard error. A price f

confidence interval of 0.95% for the derivative is taken as:

µ̄− 1.96ω√
M

< f < µ̄+
1.96ω√
M

(81)

with the normally distributed assumption for f .

5 COMPARISON OF SCIENTIFIC COMPUTATIONS
Scientific calculation is the science computing, and it is major aspect of this study. The interest on a relative balance
between computer science and the modern and classical computational mathematics elements. To compare the
results of the standard numerical approximations discussed above, we computed some examples of call options.

Example 1:
Depicts the two schemes performance against the put European Black-Scholes price with K = 50, r = 0.05, σ =
0.25, T = 3.

Table 1. A Verification of the put european black-scholes price

S Black-Scholes Monte-Carlo Implicit Euler
10 33.0363 33.0345 33.0369
20 23.2276 23.2291 23.2300
30 14.7739 14.7748 14.7749
40 8.7338 8.7374 8.7348
50 4.9564 4.9559 4.9563
60 2.7621 2.7602 2.7612
70 1.5328 1.5324 1.5325
80 0.8538 0.8543 0.8537

Table 1 displays the option price variation with the asset
price underlying, S. The outcomes illustrate that the two
schemes are mutually consistent, effective, and agree
with the values of Black-Scholes. Meanwhile, it may
not be essential is applying such numerical schemes in
practice where explicit formula exist.

6 RESULTS AND DISCUSSION

The study presents scientific computing for derivatives
valuing where analytical solution do not exist. This
adopted the uses of Monte Carlo numerical scheme
for an American price option. The Monte Carlo
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computation has to do with a simple random variable
numbers with diverse paths that a derivative could
take in a neutral-risk society. The free-risk-discounted
interest rate and payoff are determined for each
paths. The discounted payoffs average arithmetic
is the derivative estimated value. The implicit finite
implicit difference approach more complex but has good
because the user do not need to take any particular
caution for convergence.

In practice, the accuracy and derivative characteristics
determined the applied evaluation technique to be
adopted. The Monte Carlo computation works on the
life derivative from the beginning to the end forwardly. It
may be employed for the derivative of the European-
style and can adapt to high complexity deals of the
payoff. It is adaptively proficient as the underlying
variable numbers is raised. Moreover, one major
setbacks in utilizing Monte-Carlo computation is that it is
complex to implement for early American-style, though
it performs better for path-dependent European-style
pricing.

7 CONCLUSION
This research provides a comprehensive analysis of
the application of the Black-Scholes and Monte Carlo
derivative model methods in the American options
context. The analysis underscores the complexity
inherent in the American option modeling, majorly as
a result of their early exercise characteristics, which
is not completely taking care by the Black-Scholes
standard equation. Through an advanced Monte Carlo
simulations, this research evaluates the performance
and accuracy of this computational approaches in
pricing American options. Key outcomes from the
analysis can be summarized: The Black-Scholes model
offers a foundational and relatively straightforward
approach to option pricing, its assumptions and
limitations become evident when applied to American
options; Monte Carlo simulations, with their ability
to handle a wide range of potential price paths and
complex boundary conditions, demonstrate superior
accuracy and flexibility; The comparative analysis
highlights that although the Black-Scholes model
remains a vital tool in financial engineering, Monte
Carlo simulations provide a more robust and adaptable
framework for American option pricing.

In summary, the research contributes valuable insights
into the strengths and limitations of diverse scientific

computing techniques in option pricing. It underscores
the importance of selecting appropriate models and
methods based on the specific characteristics of the
financial instruments being analyzed. Future work
could explore hybrid approaches that integrate the
analytical strengths of the Black-Scholes equation with
the computational precision of Monte Carlo simulations,
potentially offering even more effective solutions for
pricing American options.
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