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ABSTRACT 
 

The ash yield from the combustion of a mixture of Africa star apple and tropical almond seeds shells 
(biocomposite biomass) with ammonium dihydrogen phosphate as an additive in a furnace was 
optimized using I-Optimal Design under the Combined Methodology of the Design Expert Software. 
The data obtained were analysed statistically using Analysis of Variance (ANOVA), Artificial Neural 
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Network (ANN) for the prediction of ash yield and Principal Component Analysis (PCA) to determine 
the coefficient of determination (R²) between variables. Proximate analysis was used to evaluate 
Moisture Content (MC), Fixed Carbon Content (FCC), and Volatile Matter (VM) values while the 
Higher Heating Value (HHV) of the mixtures that gave the highest and lowest ash yields was 
evaluated numerically. The optimum conditions of process variables for the compositions of tropical 
almond, African star apple, and ammonium dihydrogen phosphate, as well as the temperature, were 
30%, 60%, 10% and 704 oC, respectively leading to a minimum ash yield of 24.8%. The 
mathematical models for the ash using the I-optimal design indicate a good fit to the Quadratic 
model with a R² of 0.9999. The ANN model agreed significantly with the experimental results with an 
R² of 0.9939.  The VM, FCC, MC, AC and HHV of the highest ash yield were 11.00%, 2.34%, 
3.20%, 33.80% and 4487.747  𝐾𝐽/𝑘𝑔  , respectively. The study established the suitability of 
optimisation tool to develop solid fuel mixtures for possible use in grate furnaces and its efficiencies. 
 

 

Keywords: Ash yield; biomass; I-optimal design; optimization; solid fuel. 
 

1. INTRODUCTION  
 

Biomass has been identified as one of the 
renewable energy resources to replace 
traditional fossil fuels in the aspect of carbon 
credit [1-2]. Agricultural waste and herbaceous 
biomass are not limited and can be made use of 
both in small domestic stoves and large-scale 
power industries. However, raw biomasses may 
not be directly suitable for thermal conversion, as 
a result of low heating values, low energy 
volumes, and difficulty in storage and 
transportation [1-2]. However, biomass fuels are 
rich in alkali metals which when used in biomass 
combustion systems show some negative 
influences causing alkali-elated operational 
problems, including fouling, sintering, super-
heater corrosion, and bed agglomeration [3]. 
Problems such as slagging, fouling, and surface 
corrosion of heat exchange equipment are often 
caused by alkali metals during biomass 
combustion, which prevent the clean utilization of 
biomass energy. Comparing other methods used 
in solving ash-related problems, the addition of a 
mineral-based additive is an important solution 
due to its easy operation. Addition of the 
additives during the densification process in the 
conversion mechanism in the pyrolysis makes 
the ash fusion phenomenon improve effectively. 
Contributing to the formation of high temperature 
melting calcium potassium phosphate, 
phosphorous tends to dominate over silicon 
elements for alkali capture [1-2]. In biomass, 
Potassium (K) is the dominating type of alkali 
metal because, in the growth of plants, it is the 
essential element [3]. Phosphorus-rich additives 
have positive effects on potassium held in ash 
and could alleviate the ash melting problems 
effectively. 
 

During the burning of biomass in air, potassium 
interacts in complex transformation reactions 

together with other ash-forming elements that 
may form potassium salts, silicates, and 
phosphates residue in the ash and are released 
into the gas phase through a sublimation process 
of KCL [3]. Previous studies have given good 
guidance and solution to solving ash-related 
issues that are caused by alkali metals through 
the addition of different phosphate-based 
additives [4]. Often, in previous studies, little 
attention has been devoted to the effect of 
phosphorus on the migration and transformation 
of alkali metals. So, this brings about the study in 
controlling mechanism of ammonium phosphate-
based additives on migration and transformation 
of alkali metals being studied [4]. 
 

Chrysophyllum albidium (African star apple) is a 
tropical fruit widely distributed in West, East and 
Central Africa. It belongs to the family of 
Sapotaceae and is widely demanded because of 
its sweet succulent fruits and medicinal value [5-
6]. African star apple fruit is a seasonal fruit and 
is usually available from December of a year to 
April of another year. It is oval with pale orange 
thick skin and contains about five seeds. The 
seeds are characterised with semi-hard shells 
and they are often discarded indiscriminately in 
the environment coupled with the fruits’ high 
(30%) postharvest losses. Thus, a huge amount 
of biomass is generated as solid wastes from this 
fruit annually [5]. 
 

The Terminalia catappa (Tropical almond) is a 
large tree often characterised by spreading 
branches and It is widely planted throughout the 
tropics, especially along sandy seashores, for 
shade, ornamental purposes, and edible nuts. 
The tropical almond is a medium to large tree of 
25–40 m (82–130 ft) in height and at maturity, 
the trunk attains a diameter of about 50–150 cm 
(20–60 in).  Between one and five fruits, which is 
a sessile, laterally compressed, ovoid to ovate, 
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smooth-skinned drupe, usually develop on the 
basal part of the flower spike. The tasty kernels 
or nuts of tropical almonds have traditionally 
been incorporated, albeit in modest quantities, 
into the diet of people in coastal areas 
throughout much of the Asia-Pacific region. The 
nuts may be consumed fresh shortly after 
extraction from the shell or else preserved by 
smoking and consumed up to a year later. The 
fibrous and tough shells are often discarded at 
the bottom of the parent tree in most places and 
litter the environment. The two agrowastes were 
selected in this study for their potentials as 
renewable solid fuel with a less adverse effect on 
the combustion system Ammonium dihydrogen 
phosphate (ADP) is part of a large family of 
crystals with 𝑀𝐻2𝑋𝑂4 (where, M=K, Na,𝑁𝐻4

+, X= 
As, P) [7]. It is also known as mono-ammonium 
phosphate. It is used widely in industries such as 
flame retardant, fertilizers, feed, food, and water 
treatment [8]. 
 
Artificial neural networks (ANN) models use a 
non-physical modeling approach that correlates 
the input and output data to form a process 

prediction model. ANN is a universal function 
approximator that can approximate any 
continuous function to an arbitrary precision even 
without a priori knowledge on the structure of the 
function that is approximated [9]. ANN models 
have proven their potential in the prediction of 
various process factors in energy-related 
processes [10,11,12,13]. ANN has to be 
designed and implemented in a way that the set 
of input data results into a desired output (either 
direct or by using a relaxation process). ANN-
based solutions have provided excellent 
results/insides into very complex problems in 
forecasting, data-mining, task scheduling, or 
optimised resource allocation problems. On the 
other hand, Principal component analysis (PCA) 
is a multivariate technique that analyzes a data 
set in which observations are described by 

several inter‐correlated quantitative dependent 
variables. Its primary target is to extract the 
important information, represent it as a set of 
new orthogonal variables called principal 
components, and then display the pattern of 
similarity of the observations and the variables as 
points, graphically [14].   

 

 

 

a  b  

 

 

c  D 
 

Fig. 1. (a) African Star Apple fruit (b) African Star Apple seed (c) Tropical Almond fruit and (d) 
Ammonium dihydrogen phosphate salt 
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The research aimed to optimise ash yield from 
the combustion of bicomposite biomass materials 
(Africa star apple and tropical almond seeds) 
using ammonium di-hydrogen phosphate as an 
additive in a furnace. The specific objectives 
were optimization of ash yield from the 
combustion of bicomposite biomass (Tropical 
Almond and African Star Apple) mixture, 
Modeling ash yield using Artificial Neural 
Network (ANN) and Principal Component 
Analysis (PCA) as well as characterization and 
estimation of the higher heating value of the 
biomass materials using proximate analysis. 
 

2. METHODOLOGY  
 
2.1 Materials Processing  
 
The Tropical almond and the African star apple 
seeds that were used in this study were obtained 
from local markets in Ogbomoso, Oyo State, 
Nigeria. These materials were washed severally 
with water and thoroughly rinsed with distilled 
water to remove any soluble materials attached 
to the biomass. The materials were kept in open 
trays for several days to get air-dried samples 
and to avoid the biological decay of wet samples. 
The air-dried samples were milled with a special 
shredder designed for leafy materials and then 
sieved to pass through a screen of 250 μm 
openings. The milled and sieved samples were 
stored in air-tight sample bottles to avoid further 
interaction with air.  
 

2.2 Experimental Design 
 
The I-optimal Design under Combined 
Methodology embedded in the design expert 
software (12) was employed to optimize the 
mixture and process factors. The minimum and 
the maximum level of the components (tropical 
almond, Chrysophyllum albidium and ammonium 
dihydrogen phosphate) set for the software are in 
the range of 0-100% (Table 1). The experimental 
design generated twenty-two (22) experimental 
runs. These were used to investigate the effects 
of temperature on the mixture components of the 
ash to be produced. 
 

2.3 Determination of Ash Yield in the 
Mixture of Tropical Almond, 
Chrysophyllum Albidium and 
Ammonium Dihydrogen Phosphate  

 
The tropical almond, Chrysophyllum albidium 
and ammonium dihydrogen phosphate mixtures 

were ashed according to the ASTM E1755-01 
(ASTM, 2005). The sample mixture (5 g) was put 
in crucibles which were placed in the muffle 
furnace at the preset and selected temperatures 
(600-900 ) for 2 h. The crucibles were then 
retrieved and placed in the desiccators to cool for 
1 h. The Oven-Dry-Weight (ODW) and the 
percentage ash content were determined 
according to Eqns. 1 and 2, respectively. The 
ash yield obtained for each run was inputted into 
the software for further statistical analysis such 
as analysis of variance (ANOVA) and 
assessment of the quality of fit of the models 
generated using the tool in the Design-Expert 
Software environment [15-16]. 
 

ODW=
𝑊𝑒𝑖𝑔ℎ𝑡𝑎𝑖𝑟−𝑑𝑟𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒×100 𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒

100
          (1) 

 

%Ash =
𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒+𝑎𝑠ℎ−𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒

𝑂𝐷𝑊
          (2) 

 

2.4 Neural Network Modelling (ANN) 
 
Neural Network Toolbox V15.0 of MATLAB 
mathematical software was used to predict the 
ash yield of biomass during the combustion 
process. The process was identified in this study 
to be significantly influenced by a main process 
variable which is temperature. Multiple Layer 
Perceptron (MLP) based on feed-forward ANN 
was applied to build the predictive model for the 
pilot plant. The network consists of four (4) input 
layers, six hidden layers, and one output layer. 
The inputs for the network are flamboyant pod, 
groundnut shell, kaolin, and temperature. Output 
is the percentage ash yield. 
 

2.5 Principal Component Analysis 
 
Data were entered into MATLAB (version 15) 
and a PCA was conducted on the 20 runs, using 
a direct (oblique) rotation. The aim was to obtain 
a parsimonious solution by explaining the 
variation in the original data set using a few 
underlying components (Tabachnick & Fidell 
2014). Using pairwise deletion for missing data, 
item-to-subject ratios met the recommendations 
for sample size. Reliability tests of Kaiser–
Meyer–Olkin (KMO) measure of sampling 
adequacy and communality values justified the 
use of PCA. 
 

2.6 Determination of Biomass Mixture 
Properties  

 

The properties of tropical almond, Chrysophyllum 
albidium and ammonium dihydrogen phosphate 
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mixtures that were determined according to 
ASTM (2007) are moisture content, volatile 
matter, fixed carbon content and Heating value 
was estimated. 
 
2.6.1 Percentage of volatile matters (VM) 
 
The crucible was oven-dried to constant weight, 
filled 5 g of the mixture and heated in the muffle 
furnace at a temperature (600 - 800  ℃  ) 
according to the experimental design, for 60 
mins. the crucible and its content were cooled in 
the desiccator and then weighed to determine its 
volatile matter according to Eqn 3. 
 

% VM =
Xo−X  

Xo
× 100           (3) 

 
Where  Xo is the sample weight after oven-drying 
and 𝑋 is the sample weight after heating in the 
furnace. 
 
2.6.2 Determination of moisture content  
 

The crucible was placed in the muffle furnace at 
600 ℃  for 60 mins before placing it in a 
desiccator for 15 mins, The dried crucible weight 
was noted before being filled with 5 g of the 
sample mixtures and the sample weight in 
addition to the weight of the crucible was 
recorded. The crucible that contained the sample 
dried in the furnace at temperatures of 600-800 
°C for 2 days. The crucible was put in a 
desiccator for 20 min and its weight was 
recorded. The expression for moisture contents 
is given by Equation 4. 
 

% MC =
C1−C2 

C1−C0
× 100                       (4) 

 
where; C0  is the crucible weight (g), C1  is the 
crucible weight and sample before dry in the 
oven (g); and C2 is the crucible weight and 
sample after drying  
 
2.6.3 Determination of ash content  
 

The crucible with the sample in it was placed into 
the muffle furnace and gradually heated to 600-
800oC and kept inside the furnace for a period of 
1 h. The crucible was removed and put in a 

desiccator to cool to room temperature. It was 
then weighed and the difference in weight is the 
ash content, determined using Equation 5. 
 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑠ℎ = (𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑎𝑠ℎ)
− 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 

 %𝑎𝑠ℎ = (
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑠ℎ

𝑜𝑟𝑖𝑔𝑛𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒
) × 100         (5) 

   
2.6.4 Determination of carbon content 
 
Fixed carbon content was calculated as the 
difference between 100 and the sum of volatile 
matter and ash contents. The expression for 
fixed carbon contents is given by Eqn 6. 
 
% FC = 100 − (VM + A)                                      (6) 
 
where; VM is the percentage of volatile matter 
(%), A is the percentage of ash 
 
2.6.5 Determination of heating value  
 
This is the calorific value of the heat generated 
by a given sample. Good material for burning 
must possess a high heating value. The heating 
value was calculated using the formula.  
 
𝐻𝑉 =  2.326 (147.6𝐶 +  144𝑉) 𝐾𝐽/𝑘𝑔             (7) 
 
Where: HV = heating value (kJ/kg), C = 
percentage fixed carbon (%), V = percentage 
volatile matter (%) 
 
2.6.6 Determination of volatility 
 
The sample was placed on the evaporating dish 
after the moisture content analysis, then 
transferred into the crucible and placed in a 
muffle furnace at 550℃  for 30 mins. The dish 
and sample were cooled in a desiccator and 
weighed. To calculate the total volatile contents 
concentration with the equation.  
 

𝑣 = (𝑅 − 𝐴)
100

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
            (8) 

 
Where, R: the weight of the crucible and sample 
before ignition and A: the weight of the crucible 
after ignition.  

 
Table 1. Components, factor and their levels experimental design 

 

Component Name Minimum Maximum 

A Chrysophyllum Albidium 30 50 
B Terminalia Catappa 40 60 
C Ammonium di-hydrogen phosphate 5 10 
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3. RESULTS AND DISCUSSION 
 

3.1 Ash Yield 
 

The optimization results of the mixture of Tropical 
Almond, African Star Apple and Ammonium Di-
hydrogen Phosphate at varying temperatures 
based on the I-Optimal Design (Table 2), showed 
that the ash yield ranged between 24.8% and 
37.6% for twenty-two (22) runs. Experimental 
Run 19 [African star apple (38%), Tropical 
Almond (54%), ammonium di-hydrogen 
phosphate (8%), and temperature (600 ℃)] gave 
the maximum (33.8%) ash yield, experimental 
run 11 [African star apple (45%), Tropical 
Almond (50%), ammonium di-hydrogen 
phosphate (5%), and temperature (747 ℃)]  gave 
average (28.0%) ash yield while  Experimental 
run 7 [African star apple (37%), Tropical almond 
(56%), ammonium di-hydrogen phosphate (5%) 
and temperature (752 ℃ )] gave minimum 
(24.8%) ash yield. 
 

3.1 Model Formulation and Statistical 
Analysis 

 

The quadratic models generated by the software 
(DOE) for accurate prediction of ash yield for the 

mixture of Tropical Almond, African Star Apple, 
Ammonium Di-hydrogen Phosphate, at various 
particle sizes and temperatures in terms of coded 
factors are expressed in Equation 9. The 
equation in terms of coded factors can be used 
to make predictions about the response for given 
levels of each factor. By default, the high levels 
of the mixture components and process factors 
are coded as +1, the low levels of the mixture 
components are coded as 0, and the low levels 
of the process factors are coded as -1. The 
coded equation is useful for identifying the 
relative impact of the factors by comparing the 
factor coefficients 
 
𝐴𝑠ℎ 𝑦𝑖𝑒𝑙𝑑 =  55.45𝐴 +  40.65𝐵 +  259.99𝐶 +
 82.58𝐴𝐵 − 409.58𝐴𝐶 + 29.93𝐴𝐷 −
 377.15𝐵𝐶 +  2.33𝐵𝐷 +  9.29𝐶𝐷 +  493.76𝐴𝐵𝐶 −
105.95𝐴𝐵𝐷 −  285.08𝐴𝐶𝐷 −  23.26𝐵𝐶𝐷 −
 78.37 𝐴𝐷^2 −  42.45𝐵𝐷^2 −  408.35𝐶𝐷^2 +
 868.04𝐴𝐵𝐶𝐷 +  298.36𝐴𝐵𝐷^2 +
 1019.58𝐴𝐶𝐷^2 +  807.36𝐵𝐶𝐷^2 −
 2066.5𝐴𝐵𝐶𝐷^2                     (9) 
 
Where; A= Chrysophyllum Albidium, B= 
Terminalia Catappa, C= Ammonium Dihydrogen 
Phosphate. 

 
Table 2. Result of design experimental run for mixture, factor and ash yield response 

 

Run  Component   Factor  Response  

A:Chrysophyllum 
albidium 

B:Terminalia 
catappa 

C:Ammonium Di-
hydrogen 
Phosphate 

D: 
Temperature 
(K) 

Ash Yield 
(%) 

1 35 60 5 600 37.6 
2 43 47 10 600 34.4 
3 50 45 5 795 25.2 
4 34 56 10 752 29.4 
5 44 48 8 800 29.6 
6 35 60 5 702 30.2 
7 37 58 5 800 24.8 
8 33 60 7 653 27.8 
9 31 60 9 800 30.6 
10 39 51 10 800 29.4 
11 45 50 5 747 28.0 
12 50 41 9 696 33.6 
13 50 45 5 646 28.4 
14 47 48 5 600 35.2 
15 31 60 10 704 24.8 
16 30 60 10 605 36.4 
17 39 54 7 700 26.2 
18 50 40 10 790 28.2 
19 38 54 8 600 33.8 
20 40 50 10 650 29.0 
21 41 49 10 699 30.4 
22 50 42 8 600 32.8 
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3.2 Analysis of variance (ANOVA) for Ash 
yield 

 
Statistical analysis embedded in DOE software 
was used to evaluate the analysis of variance. 
Numerical optimization of the analysis of 
variance of the data obtained for ash yield was 
presented in Table 3. Inference for linear 
mixtures uses Type I sums of squares, mixture 
Component coding is L_Pseudo. The Sum of 
squares is Type III – Partial. The Model F-value 
of 872.25 implies the model is significant. There 
is only a 2.67% chance that an F-value this large 
could occur due to noise. P-values less than 
0.0500 indicate model terms are significant. In 
this case, A, B, C, AB, AC, AD, BC, ABD, AD², 
BD², CD², ABCD, ABD², ACD², BCD², and 
ABCD² are significant model terms. Values 
greater than 0.1000 indicate the model terms are 
not significant. 
 

3.3 Model Graph for Response on the 
Interactive Effect of the Process 
Parameters 

 

A circular contour of response surfaces indicates 
that the interaction between the corresponding 
variables is negligible. An elliptical or saddle 
nature of the contour plots indicates that the 
interaction between the corresponding variables 
is significant. The three-dimensional (3D) model 
graphs for the ash yield are based on the 
process parameters illustrated in Fig. 2. The 
curvature natures of the 3D surface plots show 
mutual interactions among the mixtures (Tropical 
Almond, African Star Apple, and Additives) 
investigated as they affect the ash yield. The 
outcomes validate that the quadratic equation is 
appropriate [15-16]. 

Normal Plot of Residuals (Fig. 3a) the normal 
probability plot of the residuals indicates whether 
the residuals follow a normal distribution, thus a 
straight line indicates good accuracy of the 
regression model as shown, (Figs 3a) is a plot of 
Normal is compared with the Externally 
Studentized Residuals (Figs 3b), it helps to 
explain the degree of fit of compositions of 
different runs generated by the software. 
Residual vs predicted (Figs 3c) shows the plot of 
the residuals versus the ascending predicted 
response values. It tests the assumption of 
constant variance. Predicted vs actual (Figs 3d) 
is a plot of the residuals versus the experimental 
run order. It explains the variations between the 
predicted and the actual values, runs fall on the 
straight line with no scattered. Both figures check 
for lurking variables that may have influenced the 
response during the experiment. The randomized 
scatter of the plot shows the accuracy and 
consistency of the model. Contour plot of the 
ratio of African star apple, Tropical almond and 
Ammonium di-hydrogen phosphate was given by 
DOE, and it shows the degree of the 
relationships of African star apple, Tropical 
almond and Ammonium di-hydrogen phosphate 
against Ash yield. 
 
Adeq Precision measures the signal-to-noise 
ratio and a ratio greater than 4 is required [17], 
thus the ratio of 102.243 (Table 4) indicates an 
adequate signal and this implies that the model 
can be used to navigate the design space. 
Negative Adjusted R² appears when the Residual 
sum of squares approaches the total sum of 
squares and it means insignificance of 
explanatory variables, although the results may 
be improved with the increase in sample                  
size.   

 

 

 
Fig. 2. 3D plots for Ash yield 
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Table 3. Statistical analysis of crossed linear models 
 

Source Sum of Squares Df Mean Square F-value p-value  

Model 287.45 20 14.37 872.25 0.0267 significant 
Linear Mixture 2.76 2 1.38 83.77 0.0770 significant 
AB 3.53 1 3.53 213.98 0.0435 significant 
AC 8.39 1 8.39 509.30 0.0282 significant 
AD 3.86 1 3.86 234.05 0.0416 significant 
BC 13.15 1 13.15 798.00 0.0225 significant 
BD 0.0496 1 0.0496 3.01 0.3327 significant 
CD 0.0157 1 0.0157 0.9510 0.5080 significant 
ABC 2.52 1 2.52 153.10 0.0513 significant 
ABD 2.76 1 2.76 167.25 0.0491 significant 
ACD 2.46 1 2.46 149.59 0.0519 significant 
BCD 0.0306 1 0.0306 1.86 0.4029 significant 
AD² 6.84 1 6.84 415.10 0.0312 significant 
BD² 7.44 1 7.44 451.33 0.0299 significant 
CD² 10.02 1 10.02 608.29 0.0258 significant 
ABCD 3.79 1 3.79 230.11 0.0419 significant 
ABD² 7.78 1 7.78 472.07 0.0293 significant 
ACD² 9.43 1 9.43 572.56 0.0266 significant 
BCD² 15.58 1 15.58 945.38 0.0207 significant 
ABCD² 7.22 1 7.22 437.92 0.0304 significant 
Residual 0.0165 1 0.0165    
Cor Total 287.47 21     
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Fig. 3. (a) Normal Plot of Residual, (b) Residuals vs Run, (c) Residuals vs Predicted and (d) 
Predicted vs. Actual 
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3.4 Artificial Neural Network 
 
The superiority of artificial neural networks as a 
modeling tool essentially lies in their ability to 
represent the non-linearity in bioprocesses 
efficiently coupled with the capability of learning 
from historical data [18]. The model performance 
was examined by using the coefficient of 

determination or 𝑅2 . The 𝑅2  is a statistical 
measure that explains the amount of variance 
between the target values and the predicted 

results. The 𝑅2 values varied in the range of 0.89 

to 0.94 for the ANN model; however, the 𝑅2 
values were below the standard for the ANN and 

the model varied in the range of 0.26 to 0.99 for 
the testing subset. The comparison for the 
performance of artificial neural network models 
(Fig. 4) shows results of the prediction were 
compared with different points and scatter plots. 
A scatter plot is a graph of points that show the 
relationship between experimental and prediction 
data. It is a convenient way to present the 
correlation between two variables. Some of the 
model predictions deviated from the diagonal 
line. The Mean Square Error (MSE)                     
indicated that the best validation performance 
which is 82.9794 occurred at epoch 4                 
(Fig. 5).   

 
Table 4. Fit statistics 

 

Std. Dev. 0.1284  R² 0.9999 

Mean 30.26  Adjusted R² 0.9988 
C.V.% 0.4242  Predicted R² -0.3770 
   Adeq Precision 102.2429 

 

 
 

Fig. 4. Artificial neural network 
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Fig. 5. Plot of optimised iteration 

 
3.5 Principal Component Analysis 
 
The principal component analysis produces two 
items of basic information for interpreting results. 
The first one is the correlation coefficients 
between the original variables and the principal 
components which are used in interpreting the 
meaning of the principal components. The 
second one is each principal component is 
associated with an eigenvalue which converts to 
the proportion of the variation explained by the 
principal component. The component loadings 
are the correlation between the original variables 
and constructed principal components. This chart 
graphically displays the absolute values of the 
component loadings. It lets you quickly interpret 
the correlation structure. By looking at which 
variables correlate highly with a component, you 
can determine what underlying structure it might 
represent. These plots display scatter plots of the 
loading values. The points on the plots represent 
the variables. These plots allow you to see which 
variables are similar and which are different (Fig. 
6). The scatter plots range from -10 to + 11 0n 
the x-axis and -6 to +7 on the y-axis. 
 

3.6 Proximate Analysis of Composite 
Fuel 

 
Proximate analysis of the High and Low African 
Star Apple shell, Tropical almond and ammonium 
di-hydrogen phosphate mixture based on the 
percentage of Ash yield. High Sample shows that 
the volatile matter, carbon content, moisture 
content, ash contents, and Higher heating value 
were 11.00%, 2.34%, 3.20%, 33.80% and 
44.87  𝑀𝐽/𝑘𝑔  while Low Sample volatile matter, 
carbon content, moisture content, ash contents, 

and Higher heating value were 7.00%, 2.14%, 
6.40%, 24.8% and 30.79𝑀𝐽/𝑘𝑔 (Table 5) shows 
the proximate analysis of the selected fuel 
mixtures (Run 19 and Run 7) based on ash yield. 
The results show that the moisture content, 
volatile matter, ash contents, and carbon content 
for Run 19 (38:54:8) were 3.20%, 11.00%, 
33.80% and 2.34%, and run 7 (37:56:5) were 
6.40%, 7.00%, 24.8% and 2.14% respectively. It 
was observed that the carbon content and ash 
content in run 19 (2.34%) was lower compared to 
run 7 (2.14%) while the volatile matter in run 19 
(11.00%) was higher than that of run 7 (7.00%). 
The lower carbon content is due to the 
interaction of ammonium di-hydrogen phosphate 
additives in the fuel mixtures. The moisture 
content in run 19 (3.20%) was low compared to 
that of run 7 (6.40%). 
 
The results in Table 6 revealed the fact that the 
proximate analysis results of samples changed in 
very wide ranges. That is, the high value of 
volatile content (11.00%) and the low value of 
volatile content (7.00%). Compositions of 
biomass mixture of high are 38% African star 
apple, 54% Tropical almond, 8% of ammonium 
di-hydrogen phosphate at 6000𝐶 and low is 37% 
African star apple, 56% Tropical almond, 10% 
ammonium dihydrogen phosphate at 7520𝐶. On 
the other hand, the high value of carbon content 
(2.34%), while the low value of carbon content 
(2.14%). This confirms that the fuel quality of the 
high biomass mixture is poor. Besides, the lower 
limit and the upper limit of carbon content 
indicate that the high value of carbon content is 
more than twice the low one. In addition to this, 
the lowest and the highest values of ash yields 
were determined as 24.8% and 33.8% for 
biomass compositions, respectively. In addition 
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to low carbon content, the high ash yield also 
confirms the poor fuel quality of biomass 
material. On the other hand, these yields of 
ashes also revealed that the most important 
variations in results took place in the ash yields 
since some of the biomass species are waste 
materials that are rich in ash forming inorganics, 
while woody biomasses do not contain a high 
amount of inorganics.  
 
The carbon content in this study for both high 
and low mixture is low compared to previous 
studies that have higher values, though the ash 
content for this study has a higher value 
compared to past studies, this study has 33.80% 

for high and 28.4% for a low while [19] got 1.11% 
and [20,21] got 0.6% respectively. The difference 
in the results would have been a result of the 
additive added to this present study. The higher 
ash content may be beneficial as the ash can be 
used as a catalyst in thermal conversion 
technologies [22]. However, varying properties 
may not be due to the blending and particle sizes 
only, but a combination of interacting factors 
such as growing condition, climate, soil, and so 
on. The high heating value of this study 44.87 
MJ/kg and 30.79MJ/kg were obtained for high 
and low sample mixtures respectively, which is 
higher than the values obtained for other 
samples. 

 

 
 

Fig. 6. Principal component analysis model graphs 
 

Table 5. Comparative study for proximate analysis 
 

Sample (mixture) This Study Olatunji et al., 
[19] 

Demirbas, [20] [21] 

High Low 

Volatile content (%) 11.00 7.00 80.93 80.3 
Carbon content (%) 2.34 2.14 11.26 15.8 
Moisture content (%) 3.20 6.40 6.70 3.3 
Heat value (𝑀𝑀/𝑀𝑀) 44.87 30.79 25.07 18.2 
Ash (%) 33.80 28.4 1.11 0.6 

 
Table 6. Other tables for comparison 

 

Biomass 
Materials 

Measured 
HHV 

(𝑴𝑱/𝒌𝒈) 

Proximate Analysis (%) References 

Ash Volatile 
Content 

Carbon 
Content 

Rice hulls 14.89 20.60 63.60 15.80 [23] 
Rice straw 15.09 18.67 65.47 15.86 (Yin, 2011) 
Sugarcane 17.33 11.27 73.78 14.95 [23] 
Wheat straw 17.51 8.90 71.30 19.80 [23] 
Streeter tall 
wheatgrass 

17.90 8.00 73.80 18.20 [23] 

Eucalyptus log 17.99 0.37 82.78 8.05 [23] 
Almond hulls 18.89 6.13 73.80 20.07 [24] 
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4. CONCLUSION 
 
[The influence of ammonium di-hydrogen, 
phosphate additive on ash characteristics of 
Tropical Almond and African Star Apple upon 
combustion was investigated in this study. 
Problematic elements in the ash yield can be 
controlled and captured optimally with the use of 
the appropriate additives. Experimentally, the 
use of the appropriate proportion of ammonium 
di-hydrogen phosphate additive, tropical almond, 
and African star apple and particle size has led to 
reducing ash yield from 37.60 to 24.8%. The 
optimum conditions of process variables such as 
tropical almond, African star apple, ammonium 
di-hydrogen phosphate, and temperature 
realized were 31%, 60%, 10% 704oC, 
respectively. Statistical analysis indicates the ash 
yield from the mixtures of tropical almond, 
African start apple and ammonium di-hydrogen 
phosphate additives is best described by the 
Quadratic model. The R² of 0.9999 and the 
Adjusted R² of 0.9988 shows reasonable 
agreement; i.e., the difference is less than 0.1. A 
ratio greater than 4 is desirable. The ratio of 
102.243 indicates an adequate signal. The model 
obtained in this work may be utilized in further 
design works of greater magnitude. The model 
obtained has potentials for predicting efficient 
and effective mixture proportions of additives and 
biomass for the recovery of the least ash content 
in a furnace. The correlation R for training, 
validation, testing, and overall performance are 
1, 0.26209, -0.012564, 0.99939 respectively 
using artificial neural network models] 
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