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Abstract 
Aim: In this review paper we propose a method to make an early diagnosis of 
the Alzheimer’s Disease (AD), the most common form of neurodegenerative 
dementia. Background: Glymphatic System (GS) is the main means of eli-
minating waste substances in the central nervous system (CNS); if it does not 
work properly, waste substances accumulate in CNS until to cause AD. Basal 
Forebrain is the most important component of a much broader system of 
cholinergic cells distributed throughout the Central Nervous System (CNS). 
This structure regulates attention, learning and memory and its destruction is 
considered responsible for the cognitive AD alterations. The characteristics of 
AD patients, that interest us most, are the lack of Acetylcholine, and the Orexin 
excess; we think that the hypothalamus produces more Orexin to stimulate 
cholinergic cells, indispensable for a correct CNS functioning. We want to 
identify these patients by detecting the Orexin excess. Early Diagnosis Model. 
Of course we could take a cerebrospinal fluid sample and dose Orexin but 
this method is risky and painful for the patient’s health, therefore unsuitable 
for large numbers of patients. We propose a fairly simple method for the ear-
ly diagnosis of AD: if we temporarily eliminate the Orexin excess, with Dual 
Orexin Receptor Antagonist (DORA), i.e. Suvorexant, we can intercept the 
Orexin increase and demonstrate the decrease in Acetylcholine with a Func-
tional Magnetic Resonance or a Polysomnography, many years before the AD 
symptoms occur. 
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1. Background 

Alzheimer’s Disease (AD) is the most common form of degenerative dementia 
[1], characterized by widespread neuron destruction, a sharp decrease in Ace-
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tylcholine in patients’ brain, and the accumulation of a protein called beta-amyloid 
(βA) in the extracellular environment and of anomalously phosphorylated Tau 
protein, within neurons. Especially important in AD are the Basal Forebrain Cho-
linergic (BFC) neurons, whose destruction is considered the main cause of the pa-
tients’ memoryloss. We know that the genetic mutations responsible for the ge-
netic forms of AD often interfere with the correct function of the main cleaning 
mean of our Central Nervous System(CNS), and the Glimphatic System (GS) [2] 
[3] [4]. We think that this happens in the sporadic forms of AD, also, for other 
reasons, which often involve the breaking of the Blood-Brain-Barrier integrity, 
above all, aging [5]. 

2. The CNS Clearance and the Glymphatic System 

The waste products, deriving from the cellular activity of neurons, are partly 
eliminated within the same cells by intracellular clearance mechanisms; the sub-
stances that are not eliminated inside the neurons, are expelled in the extracellu-
lar matrix and eliminated through the Glymphatic System, the main instrument 
for removing extracellular waste substances in the CNS [6]. 

3. Intracellular Clearance Mechanisms 

The main AD genetic alterations slow the clearance mechanisms that, within 
neurons, are performed by the Ubiquitin-Proteasome System (UPS) or by auto-
phagy, a process by which superfluous or potentially dangerous cytoplasmic ma-
terial is delivered to lysosomes for degradation. We know three types of auto-
phagy: 
­ Microautophagy, in which the cytosolic material is directly engulfed by lyso-

some invaginations. 
­ Chaperone-Mediated Autophagy (CMA), in which chaperone proteins lead 

the waste to the lysosome. 
­ Macroautophagy (autophagic-lysosomal network or ALN), which involves 

the seizure of cytosolic material in autophagosomes that provide their con-
tent to lysosomes for digestion [7] [8] [9]. 

The laboratory findings show that in Alzheimer’s Disease, UPS, CMA and 
ALN, are compromised, often due to gene alterations in APOE4, PS1, PS2, APP, 
PICALM, TREM2, among the main recognized genes responsible for Alzheimer 
cases [10]. 

Naturally the substances not removed by the endocellular mechanisms are 
expelled by neurons, in the extracellular environment. 

4. Extracellular Clearance Mechanism: Glymphatic System 

The main tool for removing extracellular waste substances is Glymphatic System 
[2] [3] [4] [6]. The clearance of soluble proteins, waste products and extracellu-
lar fluid excess is achieved through the convective flow of the interstitial fluid, 
facilitated by the presence of channels called aquaporins (AQP), located in the 
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astrocyte membrane [11], which play acrucial role in water flow regulation in 
and out of cells. AQPs facilitate cell’s water permeability up to 30 times [12]. The 
main AQP types, expressed in the CNS, are: aquaporin-1 (AQP1), which is ex-
pressed by the epithelial cells of the choroid plexus, and aquaporin-4 (AQP4), 
which is expressed by astrocytes [13] [14]. 

The AQP4 in astrocytes is present above all in their terminal processes (end 
feet) that cover the encephalic vessels. Up to 50% of the surface of these feet is 
occupied by AQP4 [11] and the glinfatic system is critically based on astrocytic 
AQP4. 

Deficiencies in this pathway have been shown to contribute to AD, and a pe-
rivascular AQP4 reduced number is associated with AD diagnosis and pathology 
[15]. 

In case of glinfatic system deficiency, the clearance of the β-amyloid protein is 
altered [16] and thus that of Adenosine, present above all in the Basal Forebrain 
(BF) [17]. The key factor in the GS functioning, therefore in the pathogenesis of 
AD, is sleep. GS works up to 60% better during sleep and especially during the 
N3 phase of NREM (deeper sleep) [18]. Several studies have indicated that li-
mited sleep increases the level of β-amyloid and of Tau protein neurofibrillary 
tangles [19] [20] [21]. 

Sleep Deprivation (SD) simulates what can happen as a result of some factors, 
such astrauma, stress and, above all, aging, which can alter the control of the 
endoplasmicreticulum on protein quality and lead to an “Unfolding Protein Re-
sponse” (UPR), which causes the production of “Misfolding” proteins, i.e. poorly 
aggregated and hyperphosphory [22]. In SD, adenosine levels are greatly in-
creased (+140%) in the cholinergic BF; adenosine, a small purine molecule that 
constitutes the central element of adenosine triphosphate (ATP), the main ener-
gy source of all our cells, including neurons. 

This molecule is produced everywhere, in the CNS, but accumulates only in 
the basal Forebrain [23], where it inhibits cholinergic neurons by stimulating its 
A1 receptors; this induces drowsiness and reduces the waking state [24]. 

The Glymphatic system also plays an important role in the transport of extra-
synaptic glutamate excess, which, if not eliminated, can cause excitotoxicity, 
perhaps the most important cause of neuron loss in AD. Some drugs (e.g. me-
mantine) are effective (but not decisive) in the AD care [21]. 

The GS may encounter difficulties in functioning following Traumatic Brain 
Injury [25], in Depression [26], following general anesthesia [27], in Diabetes 
[28], following Stroke [29] and above all with the aging [30]. In all these cases 
there would be substance accumulation, both in the extracellular and in the intra-
cellular environment. 

5. Neurotransmitters 

A clearance system that does not function optimally will, above all, penalize the 
cells with high activity. Therefore, the cells of ARAS nuclei, which perform many 
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functions, even the most disparate, must present a remarkable metabolism. In 
fact, in addition to the Tau and Aβ proteins in AD, some of the most important 
neurotransmitters (NT) in our body, such as Serotonin, Norepinephrine, Hista-
mine and Dopamine and above all Acetylcholine are involved (reduced in quan-
tity) [31] [32] [33] [34] [35]. 

Orexin (OX) is an exception: the number of orexinergic neurons decreases 
with age [36], but the Orexin concentration in CSF of AD patients is increased 
[37] [38] [39] [40] [41]. 

6. Basal Forebrain Cholinergic System 

It constitutes the most important component of a much broader system of cho-
linergic cells distributed throughout the CNS, from the rostral portions of the 
Striato until, caudally, to the spinal motor neurons. This structure regulates 
phenomena such as attention, learning and memory and is implicated in the 
cognitive alterations present in different neurological pathologies such as AD. 
BFC neurons also project towards the preoptic nuclei (VLPO and MnPO) and 
Tubero Mammillari (TMN) of the Hypothalamus and, through these projec-
tions, participate in wake/sleep modulation [42] [43]. Cholinergic neurons present 
many Adenosine receptors [44]. 

7. Orexin 

The cellular bodies of neurons expressing the orexin/hypocretin neuropeptides, 
present only in the lateral hypothalamus and in the contiguous perifornical area, 
provide diffuse projections towards the basal forebrain which increase the cor-
tical Acetylcholine release [45] [46] [47]. Orexin has a strong and direct excita-
tory effect on BFC neurons, contributes to cortical activation associated with 
wakefulness [48] [49], more than all the other NTs that promote wakefulness 
[50] [51] and works in concert with cholinergic ones [48] [52]. 

8. Discussion, Pathogenetic Hypothesis and Early Diagnosis  
Model 

If the GS does not work well, as with aging, diabetes, lack of sleep etc., at the 
Basal Forebrain level, there is an increase in adenosine, which inhibits choliner-
gic cells. Acetylcholine production is expected to decrease but the hypothalamus 
produces more Orexin and stimulates the remaining cholinergic cells to produce 
enough Acetylcholine to make CNS work properly. When the cholinergic cells 
number decreases too much, the AD symptoms begin. Orexin determines the 
vigil and there is a sleep mechanism alteration with daytime sleepiness, due to 
the excess of Adenosine and nocturnal vigil, caused by the excess of Orexina. 
The GS becomes less and less effective causing a further Acetylcholine deficien-
cy, in a vicious circle that leads to the AD. Adenosine, β-Amyloid and TAU pro-
tein are not disposed of by the glymphatic system and accumulate: this causes 
further loss of BFC, the Ach decreases further and the OX increases further: the 
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AD. Thus, in AD, while many neurons die and all other ARAS Neurotransmit-
ters decrease in quantity, the OX increases and we can use this detail for an early 
diagnosis. The OX increase is a very important fact because it causes an accelera-
tion of the neurodegeneration (due to sleep loss) and is AD specific. This is 
probably the reason for which AD is the main neurodegenerative disease, and we 
can use this increase to make an early diagnosis of the disease. The orexinergic 
“compensation” of Ach deficiency can mask the disease for years but could allow 
us to intervene for an early diagnosis. 

Early Diagnosis Model: Of course we could take a cerebro-spinal fluid sample 
and dose Orexin but this method is risky and painful for the patient’s health, 
therefore unsuitable for large numbers of patients. 

Hanazawa T and Kamijo Y [53] have administered suvorexant to four AD pa-
tients, all four patients with nocturnal delirium successfully fell asleep rapidly, 
suggesting that the resolution of delirium may be related to the effects of suvo-
rexant on sleep dysregulation. In all four cases, suvorexant drastically resolved 
delirium symptoms and improved their sleep. The nocturnal delirium recurred 
almost immediately following the discontinuation of suvorexant. The effect of 
suvorexant on nocturnal delirium was thus suggested to be reproducible. The 
medical history of these patients, showed a progressive and gradual decline in 
cognitive function, neuroimaging results including computed tomography of the 
brain, cognitive tests, and laboratory data all satisfied the DSM-5 criteria for AD 
with a high level of evidence. The administration of suvorexant for the purpose 
of managing nocturnal delirium, in several elderly patients with dementias other 
than AD, had no effects at all. Then the administration of suvorexant allows us a 
differential diagnosis between AD and other similar neurodegenerative diseases 
[53]. We know that the orexin, besides being important for the maintenance of 
wakefulness, is fundamental for the stabilization of the wakefulness-sleep switch 
[54]; and we also know that nocturnal delirium depends on Acetylcholine defi-
ciency [55] [56] [57] [58] [59] and that by administering an anticholinergic we 
can cause hallucinations and delirium (Atum M, 2020), while, with the adminis-
tering an acetylcholinesterase inhibitor, which increases the amount of Acetyl-
choline, we can stop these hallucinations and delirium [60]. So if we administer 
a Dual Orexin Receptor Antagonist (DORA) and the delirium ceases it means 
that this patient has Ach deficiency and, of course, excess of Orexina. DORA 
eliminates the excess of Orexina and the patient sleeps: hallucinations and deli-
rium are due to the complex: too much Orexina, that does not make the patient 
sleep and little Acetylcholine, which, during insomnia, causes delirium. During 
sleep (NREM sleep) it is normal, however, that there is little Acetylcholine. If we 
administer a DORA, to an awake patient, the effects of Orexin will be zeroand, if 
that patient is an asymptomatic Mild Cognitive Impairment, the Ach will show 
its real levels, low. We can administer a DORA to the suspect patient and per-
form an instrumental check: e.g. a Functional Magnetic Resonance Imaging 
(fMR). If the BFC does not have a sufficient amount of Acetylcholine its O2 con-
sumption will be significantly reduced and we will see it in the neuroimaging 
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that will present signs of impaired hippocampus function and of other CC areas, 
particularly related to cholinergic innervations. In case of doubt we can perform 
the same analysis, after a few time, without DORA and compare the two results 
[61]. Furthermore, in the AD patient, the DORA administration will increase 
both the amount of total sleep and the NREM [62] [63]. REM sleep, instead, will 
decrease, both in quantity (time) both, above all, in quality, due to the inability 
of BFC cells to support it, proportionally to the gravity of the situation, with 
disappearance of posterior dominant alpha rhythm and the diffuse slowing in 
EEG, specifically a reduction of power in the alpha (8 - 15 Hz) and beta (16 - 31 
Hz) bands and an increase in the theta (4 - 8 Hz) and delta (0.5 - 4 Hz) bands 
[64] [65]. This because the BFC system, which is impaired in Alzheimer’s dis-
ease, is more crucial for the activation of REM sleep EEG than it is for wakeful-
ness 110 - 120 [66] [67]. The phenomena related to sleep, in AD, are very early 
and present for the entire duration of the disease [68] [69]. We could make a 
first Polysomnographic (PSG) check on the “suspect patient”, evaluate the vari-
ous parameters and above all the quantity and quality of the REM. Perform a 
second PSG after DORA administration to the patient and rechecking the values 
obtained, especially the REM, again [64] [65] [67] [70]. If we administer DORA 
during waking state and subject the patient to AD tests (Mini Mental State Ex-
amination, Clock Drawing Test etc.) its performance will be poor, similar to 
those of a patient frankly AD or MCI, Finally, to be sure of the diagnosis we can 
make more invasive examinations (e.g. Cerebrospinal Fluid control). 

After making a diagnosis, as early as possible, we must first try to investigate 
the possible causes: ageing, genetics, diabetes, depression, stroke, etc. and try to 
intervene on these. We must try to restore optimal functioning of the Glym-
phatic System by acting on the lifestyle, especially with regard to the quantity 
and quality of sleep. The use of drugs such as Suvorexant itself which [71], by 
eliminating the effect of OX excess will improve sleep and, therefore the function 
of the Glymphatic system, and also some antihistamines such as Pitolisant, an 
H3 receptor agonist/inverse antagonist of histamine, which has been shown to 
be effective in AD, probably improving sleep [72]. We can improve the action of 
Ach with cholinesterase inhibitors (if Ach increases, less Ox will be produced 
and sleep will improve [73]. All this will improve the clearance made by the 
Glymphatic System which will reduce the amount of Aβ, Tau etc. taking care, in 
fact, of the causes of the AD. Furthermore, the patient can keep himself con-
stantly under control by monitoring his sleep.  

The ethiopathogenetic AD model we presented is very simple and shared by 
many other authors: the cleaning system (GS) in our CNS does not work prop-
erly and the waste accumulates. There is a great loss of neurons, especially of 
cholinergic ones, while the Orexin production increases. Despite many similari-
ties, the increase in Orexin is not present in other neurodegenerative diseases. 
We can demonstrate the decrease of Acetylcholine by eliminating the excess of 
Orexina with specific drugs and make an early diagnosis, even many years before 
the symptoms of this disease, Alzheimer’s, appear. 
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9. Conclusion 

We strongly believe in the pathophysiological model we propose because it ex-
plains many characteristics of this disease, but if it were wrong, the system for 
early diagnosis, that we have devised, would work anyway. The administration 
of Suvorexant, in asymptomatic patients, allows us an early diagnosis, a differen-
tial diagnosis and a more targeted therapy, both with Suvorexant itself and with 
cholinesterase inhibitor drugs. This model of early diagnosis is not invasive; it is 
very simple, very fast and to our knowledge; there are no better ones. 
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