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Abstract 
 

In this study, change detection in Out-patient and In-patient malaria cases in the Northern Region of 
Ghana was examined using time series intervention analysis. Data on monthly Out-patient and In-patient 
malaria cases obtained from the Northern Regional Health Directorate were modelled using Seasonal 
Autoregressive Integrated Moving Average with an Independent variable (SARIMAX) and 
Autoregressive Integrated Moving Average with an Independent variable (ARIMAX) models. The results 
revealed that SARIMAX (1, 1, 1)(1, 1, 1)12 was the best model for predicting Out-patient malaria cases 
while SARIMAX (1, 1, 1)(2, 1, 1)12 emerged as the best model for predicting the In-patient cases in the 
region. Diagnostic checks of the two models with the Ljung-Box test and Autoregressive Conditional 
Heteroscedasticity Lagrange Multiplier (ARCH-LM) test revealed that both models were free from 
higher-order serial correlation and conditional heteroscedasticity respectively. A chi-square goodness-of-
fit test also revealed that there was no significant difference between the predicted values from the models 
and the observed values for the year 2018. The study further revealed that the coefficients of the 
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intervention variable for the Out-patient and In-patient cases were both negative, which suggest that the 
intervention policy the government of Ghana implemented brought about a decline in the number of Out-
patient and In-patient cases in the region. 
 

 
Keywords: Out-patient; In-patient; SARIMAX; ARIMAX; ARCH-LM test; intervention. 
 

1 Introduction 
 
Malaria has been an important public health problem in sub-Saharan Africa (SSA) and the main cause of 
morbidity, mortality and permanent disability in non-immune children below five years of age and pregnant 
women. Malaria causes considerable pain and weakness among affected people, thereby affecting their 
performance at work and in many cases causing absenteeism from work or school among children. The 
consequences from severe malaria such as convulsions or brain dysfunction can hamper long-term 
development and performance of children in school (Multiple Indicator Cluster Survey) [1]. Due to the 
debilitating effects of malaria, scale-up of proven malaria prevention, control and treatment continue to be 
central to successive governments of Ghana, international, and local organizations and other stakeholders in 
the health sector. The interventions cover the area of improving multiple prevention (through indoor residual 
spraying, scale-up of the distribution of insecticide treated nets, intermittent preventive treatment for 
pregnant women, improving sanitation, increasing access to healthcare and improving data reporting). 
 
Myriad of researches have been carried out all over the world on malaria morbidity and mortality. Landoh et 
al. [2] examined morbidity and mortality due to malaria in Est Mono district, Togo, from 2005 to 2010 using 
chi-square test of independence and student’s t-test. In another study, Nyarango et al. [3] investigated the 
steep decline of malaria morbidity and mortality trends in Eritrea after the Roll Back Malaria Programme 
was implemented by employing Autoregressive Integrated Moving Average (ARIMA) models. Furthermore, 
Karema et al. [4] assessed the trends in malaria cases, hospital admissions and deaths following scale-up of 
anti-malarial interventions, 2000–2010, in Rwanda. Briet et al. [5] also carried out a research using 
Generalized Seasonal Autoregressive Integrated Moving Average (GSARIMA) models for count data with 
application to malaria time series with low case numbers in Sri Lanka. The models were applied to monthly 
malaria case time series in a district in Sri Lanka, where malaria had decreased drastically in recent years. 
Additionally, Osadolor et al. [6] employed the SARIMA intervention time series analysis to investigate the 
effect of malaria control intervention in the Kwazulu-Natal Province in South Africa. The intervention was 
the re-introduction of dichlorodiphenyltrichloethane (DDT) on confirmed malaria cases. The result showed 
an abrupt and permanent decline of malaria cases following the implementation of the intervention policy. 
Again, Anokye et al. [7] carried out a research on forecasting future malaria incidence in the Kumasi 
Metropolis, Ghana using ARIMA models. Trends of malaria prevalence was analysed and compared by 
years and months. It was revealed that July had the highest number of cases whereas January recorded the 
lowest number of cases. The predicted number of cases for the first and second halves of the year 2018 were 
61, 371.8 and 77,842.0 respectively. Also, Hassan and Bin [8] used the Box-Jenkins SARIMA model 
approach to investigate monthly malaria infections in the Kass Zone, South Darfur State, Sudan. An ARIMA 
forecasting model was obtained from the analyses to predict the monthly malaria infections. Furthermore, 
Alhassan et al. [9] researched on time series analysis of malaria cases in the Kasena Nankana Municipality, 
Navrongo, Ghana. They developed an ARIMA model that can adequately forecast future trends of malaria 
cases in the Municipality. Anwar et al. [10] also used time series ARIMA models to predict future trends in 
malaria incidence in Afghanistan. Two (2) predictive models were obtained that can accurately forecast 
malaria incidence in that country. Enhanced vegetation index was also found to have increased the predictive 
accuracy of the models in the long-term. Additionally, Ankamah et al. [11] used vector autoregression 
(VAR) to model the impact climatic variability malaria in Ghana. The study revealed that malaria is highly 
influenced by three (3) main climatic variables that include maximum temperature, rainfall and humidity. 
Again, Perez and Ceballos [12] conducted a study to develop an appropriate model that could predict the 
weekly reported malaria incidence in the Philippines using the Box-Jenkins method. Based on the results of 
their analysis, ARIMA (2, 1, 0) was selected as the model for predicting the weekly malaria incidence in the 
Philippines.  
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Despite the many researches that have been carried out on malaria all over the world, it is observed that no 
such investigation has been conducted in the Northern Region of Ghana using intervention analysis. This 
study will therefore employ the intervention analysis models developed by Box and Jenkins [13] to assess a 
change detection in Out-patient and In-patient malaria cases following the implementation of the malaria 
control intervention programme in the Northern Region of Ghana. 
 

2 Materials and Methods 
 
This study was carried out in Ghana using data on monthly Out-patient and In-patient cases on malaria 
obtained from the Northern Regional Health Directorate. The data ranged from January 2004 to December 
2018 with the pre-intervention period being January 2004 to December 2007 and the post-intervention 
period being January 2008 to December 2018. The analysis was done using the data from January 2004 to 
December 2017 while that of 2018 was used for cross validation. The data was modelled using Seasonal 
Autoregressive Integrated Moving Average (SARIMA) and ARIMAX models. The modelling was preceded 
by preliminary tests to determine the presence or absence of seasonality and unit roots in the data. 
 

2.1 Unit root test 
 
Stationarity is a vital aspect of time series analysis. Several approaches have been developed to test for the 
stationarity or non-stationarity of a time series data which include both graphical and quantitative 
approaches. In this study, we employed the Augmented Dickey-Fuller (ADF) [14] test to test for unit roots. 
The presence of a unit root indicates that the time series is not stationary and needs to be differenced. 
 
2.1.1 Augmented Dickey Fuller (ADF) test 
 
The ADF test tests the null hypothesis that a unit root is present in a time series sample. It has the advantage 
of handling a larger and more complicated set of time series models. The test is based on the regression of 
the observed variable ��  on its one-period lagged value ����, sometimes including an intercept and a time 
trend. The ADF model is given as: 
 

∆�� = � + �� + ����� + ��∆���� + ⋯ + ����∆������ + ��                                                                   (1)  
                    
Where ∆  is the difference operator, implying that ∆�� = �� − ���� , � = � − 1 , �  is a constant, �  the 
coefficient on time trend series, ��∆���� + ⋯ + ����∆������  is the sum of the lagged values of the 

dependent variable  ∆��  and p is the lag order of the Autoregressive (AR) process. The ADF test is 
concerned with the value of the parameter �. If � = 0, it presupposes that the series contains unit root and 
hence non-stationary. The test statistic for the ADF test is given by: 
 

Fτ =
��

SE(��)
                                                                                                                                                         (2) 

 

Where �� is the least square estimate and SE(��) is the standard error estimate of ��. If the calculated value of 
the test statistic is greater than the critical value, we reject the null hypothesis of � = 0. 
 

2.2 Seasonal ARIMA (SARIMA) model 
 
Identification of relevant models and inclusion of suitable seasonal variables is necessary when a time series 
data exhibit periodic pattern. The SARIMA model therefore has the advantage of capturing both seasonal 
and non-seasonal components. The general notation for the order of a SARIMA model is ARIMA(�,
  �, �(�, �, �)� and can be expressed using the backshift operator as: 
 

�(�)Φ(��)(1 − �)�(1 − ��)��� = θ(�)Θ(��)��                                                                                  (3) 
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�(�) = 1 − ��� − ����−. . . −����                                                                                                         (4) 

 
Φ(��) = 1 − ���� − �����−. . . −�����                                                                                                 (5) 
 
θ(�) = 1 − ��� − ����−. . . −����                                                                                                           (6) 

 
Θ(��) = 1 − ���� − �����−. . . −�����                                                                                                  (7) 

 
Where �� represents the time series data at period t, � denotes the backshift operator, �� is a sequence of iid 
variables with mean zero and variance �� , s is the seasonal order, ��  and ��  are the non-seasonal and 

seasonal AR parameters respectively, ��  and ��  are respectively the non-seasonal and seasonal Moving 
Average (MA) parameters, p, d and q denote the non-seasonal AR, Integrated (I) and MA orders respectively 
and P, D and Q, respectively represent the seasonal AR, I and MA orders. 
 

2.3 Regression with ARIMA errors 
 
ARIMA models with input variables are referred to as regression with ARIMA errors or ARIMAX model. 
The model combines a regression model with an ARIMA model. The regression component describes the 
explanatory relationship of the variables whereas the ARIMA component deals with the autocorrelation in 
the residuals of the regression model. An ARIMAX model is given by: 
 

�� = �� + ���� + ����+. . . +���� +
θ(�)Θ(��)

�(�)Φ(��)(1 − �)�(1 − ��)�
��                                          (8) 

 

2.4 Criterion for model selection 
 
It is imperative for model selection criteria to be carried out since there is the possibility of two or more 
models to compete in the selection of the best model. The Akaike Information Criterion (AIC), the Akaike 
Information Criterion corrected (AICc) and the Bayesian Information Criterion (BIC) were employed in this 
study to select the most adequate model [15]. The best model is the one with the smallest AIC, AICc or BIC 
values, given a set of candidate models. The AIC, AICc, and BIC are generally given by; 
 

AIC = 2� − 2��(�)                                                                                                                                          (9) 
 

AICc = AIC +
2�(� + 1)

� − � − 1
                                                                                                                              (10) 

 

BIC = log(��
�) +

�

�
log(�)                                                                                                                            (11) 

 

Where k represents the number of parameters in the model, L denotes the maximised value of the likelihood 
function, n is the number of observations in the data and ��

� is the error variance. 
 

2.5 Model diagnostics 
 
After a model has been built, it is important to diagnose the model in order to ensure that it truly reflects the 
real time series observations. When these checks are done the model can be used to make meaningful 
generalisations or to draw inferences. The Ljung-Box and ARCH-LM tests were employed in this study to 
diagnose the adequacies of the developed models. 
 

2.5.1 Ljung-Box test 
 
The Ljung-Box test was developed by Ljung and Box [16] as a diagnostic tool to examine autocorrelations 
of the residuals of a fitted model. It tests the null hypothesis that autocorrelations up to say order k equal 
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zero, which indicates that the values are random and independent over time. The test therefore assumes that 
the residuals do not contain serial correlation up to order k and is considered as a portmanteau test. The 
Ljung-Box test was therefore used to determine the presence or absence of serial correlation in the data up to 
a given order, say k. The test statistic is given by; 
 

�� = �(� + 2) �
��

�

� − �

�

���

                                                                                                                            (12) 

 
Where ��

� represents the residual autocorrelation at lag k, n is the number of residuals and h is the number of 
lags being tested. 
 
We reject the null hypothesis if ��  is greater than the chi-square table value. The model is therefore 
considered adequate when the p-value associated with �� is large.  
 
2.5.2 ARCH-LM test 
 
The ARCH-LM test developed by Eagles [17] is a standard approach used to notice autoregressive 
conditional heteroscedasticity. It tests the null hypothesis that no ARCH exists up to order k in the residuals. 
A researcher is therefore likely to be challenged with the issue of conditional heteroscedasticity when fitting 
models. This problem occurs when the residuals do not have a constant variance. Therefore, the assumption 
of constant variance must be met in order to obtain an adequate model. This study therefore employed the 
ARCH-LM test due to its undisputed advantage in detecting autoregressive conditional heteroscedasticity. 
The test statistic is given as: 
 

LM = ���                                                                                                                                                         (13) 
 
Where n is the number of observations and �� is the coefficient of determination of the auxiliary residual 
regression. This is given by: 
 

��
� = �� + ������

� + ������
� +. . . +������

� + ��                                                                                        (14) 
 
Where ��  is the residual. The null hypothesis is rejected when the p-value is greater than the level of 
significance and hence we conclude that there is no heteroscedasticity in the model residuals. 
 

2.5.3 Jarque-Bera (JB) test 
 
Normality is a common assumption in many statistical analyses. Hence testing the normality of a distribution 
has become a standard feature in many statistical works (Jula) [18]. This study therefore employed the JB 
test to confirm the normality of the data. The JB test is very useful when the sample size is large (greater 
than 2000). The test statistic is given as: 
 

�� = �[
��

�
+

(���)�

��
]                                                                                                                         (15) 

 
Where n= sample size, S= coefficient of skewness and K= coefficient of kurtosis 
 
The JB test has a chi-square distribution with two degrees of freedom. Hence, we reject the null hypothesis 
of normality if �� > �� calculated value. 
 

3 Results and Discussion 
 
The ADF test was employed to determine whether or not the two time series data were both stationary. 
Using the ADF test with only a constant term and a constant with quadratic trend, revealed the presence of 
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unit roots in the two series since in both cases, the p-values were greater than the 0.05 level of significance 
as illustrated in Table 1. 
 

Table 1. ADF test for Out-patient and In-patient cases 
 

Case Constant Constant + Quadratic Trend 
 Test statistic P-value Test statistic  P-value 
Out-patient -0.8780 0.7958 -2.2981  0.6798 
In-patient -0.8158 0.8142 1.9758  0.8263 

 
The periodic spikes in the ACF plots of both the Out-patient and In-patient series shown in Figs. 1 and 2 
gave an evidence of seasonality in both series. Thus, in order to stabilise the variance, the two time series 
data were transformed logarithmically. The transformed series were then differenced both seasonally and 
non-seasonally and then tested for stationarity. For both the Out-patient and In-patient series, the ADF test 
revealed that the transformed seasonal and non-seasonal differenced series were stationary since each had a 
p-value less than the 5% significance level as illustrated in Table 2. 
 

 
 

Fig. 1. ACF and PACF plots of Out-patient cases 
 

Table 2. ADF test for seasonal and non-seasonal differenced of Out-patient and In-patient cases 
 

Case Constant Constant+ Quadratic Trend 
 Test statistic P-value Test statistic  P-value 
Out-patient -4.5070  .0001 -4.4587  .0074 
In-patient -4.3826  .0001 -4.2476  .0149 

 

3.1 Estimating the SARIMAX model for the out-patient 
 
The ACF plot in Fig. 3 shows significant spikes at the non-seasonal lag 1 and seasonal lag 12 with 
significant spikes at other non-seasonal lags. The PACF plot also has significant spikes at the non-seasonal 
lags 1 and 2 and seasonal lags 12, 24, and 36. Using the lower significant lags of both the ACF and PACF 
and their respective seasonal lags, tentative SARIMAX models were fitted with an independent variable as 
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the intervention variable in order to obtain the best model as shown in Table 3. The SARIMAX model is 
also referred to as regression with ARIMA errors. Among these possible models, SARIMAX (1, 1, 1)(1, 1, 
1)12 was adjudged the best since it had the least AIC, AICc and BIC values as compared to the other models. 

 

 
 

Fig. 2. ACF and PACF plots of In-patient cases 
 

 
 

Fig. 3. ACF and PACF plot of differenced series for Out-patient cases 

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

lag

ACF for IN

+- 1.96/T^0.5

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

lag

PACF for IN

+- 1.96/T^0.5

-0.4

-0.2

 0

 0.2

 0.4

 0  10  20  30  40  50  60

lag

ACF for sd_d_l_OUT

+- 1.96/T^0.5

-0.4

-0.2

 0

 0.2

 0.4

 0  10  20  30  40  50  60

lag

PACF for sd_d_l_OUT

+- 1.96/T^0.5



 
 
 

Dokurugu et al.; AJPAS, 6(3): 61-73, 2020; Article no.AJPAS.54310 
 
 
 

68 
 
 

Table 3. Tentative SARIMAX models for Out-patient cases 
 

Model AIC AICc BIC 
SARIMAX (1, 1, 1)(1, 1, 1)12 -53.2994* -52.9515* -39.9352* 

SARIMAX (2, 1, 1)(1, 1, 1)12 -51.3490 -51.0012 -35.3120 
SARIMAX (1,1 ,1)(2, 1, 1)12 -51.3324 -50.9846 -35.2954 

SARIMAX (2, 1, 1)(2, 1,1)12 -49.4036 -49.0558 -30.6983 

*: Means best based on the selection criteria 
 
The selected model, SARIMAX (1, 1, 1)(1, 1, 1)12 can be expressed in terms of the backshift operator based 
on the parameters of the model shown in Table 3 as: 
 

ln OUT    = −0.1467� +
(1 + 0.8666�)(1 + 0.817���)

(1 − 0.4997�)(1 − 0.0368���)(1 − �)(1 − ���)
��                           (16) 

 
Where D= Dummy. 
 
It is observed from Table 4 that the p-values of the parameters of the selected model for the seasonal and 
non-seasonal AR and MA components were highly significant at the 5% level of significance. The model 
thus appears to be the best model among the proposed models. 
 

Table 4. Estimated parameters for SARIMAX (1, 1, 1)(1, 1, 1)12 

 
Variable Coefficient Standard error z-statistic P-value 
Dummy -0.1467 0.1307 1.1220 .0262 
� 0.4997 0.1350 0.2692 .0007 
Φ 0.0368 0.1367 3.7020 .0002 
� 0.8666 0.0860 -10.0765 .0000 
� 0.8170 0.1723 -4.5563 .0000 

 
The selection of the best model among competing models to fit a data in time series analysis depends heavily 
on the performance of the residuals of the model. In ARIMA modelling, it is assumed that the residuals of a 
good model follow a white noise process. This means that the residuals must have zero mean, constant 
variance and uncorrelated. It was observed from the diagnostic plot in Fig. 4 that the standardised residuals 
of the model have zero mean and constant variance. Further, the ACF plot of the model residuals revealed 
that not less than 95% of the residual autocorrelations lie within the significance bounds indicating that they 
are uncorrelated. In addition, the Ljung-Box statistic clearly shows that the p-values of the test statistic 
exceed the 5% level of significance for all lag orders which suggests that there is no significant departure 
from white noise for the residuals. 
 
An ARCH-LM test was carried out to test for the assumption of constant variance and zero mean in order to 
further confirm the information depicted in Fig. 4. The ARCH-LM test results showed that there was no 
ARCH effect in the residuals of the selected model. Also, the JB test for normality was carried out to test for 
the normality of the model residuals and it was clearly shown that the model residuals were normally 
distributed.  It can therefore be concluded that the selected model, SARIMAX (1, 1, 1)(1, 1, 1)12 was the best 
model since it satisfied all the diagnostic conditions. 
 

Table 5. ARCH-LM test of residuals of SARIMAX (1, 1, 1)(1, 1, 1)12 

 
Lag Chi-squared Df P-value 
12 42.667 12 .5765 
24 50.925 24 .8046 
36 53.039 36 .8989 

JB Test: Chi-square=18.574, p-value=.4783 
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A chi-square goodness-of-fit test was carried out to cross validate the model. This was done to determine 
whether there is a significant difference between the monthly expected numbers of Out-patient cases and that 
of the observed values for the year 2018. The test produced a chi-square calculated value of 14.436 and a 
critical value of 19.675 at 11 df and 5% significance level. We therefore accept the null hypothesis of no 
significance difference between the observed and the expected values since the calculated value is less than 
the critical value and conclude that there is no significant difference between the predicted values from the 
model and the observed values for the year 2018. 
 

 
 

Fig. 4. Diagnostic plot of SARIMAX (1, 1, 1)(1, 1, 1)12 
 

3.2 Estimating the SARIMAX model for the In-patient 

 

The ACF plot in Fig. 5 shows significant spikes at the non-seasonal lag 1 and seasonal lag 12, with 
significant spikes at other non-seasonal lags. Also, the PACF plot has significant spikes at the non-seasonal 
lags 1 and 2 and seasonal lags 12 and 24. 
 

Table 6. Tentative SARIMAX models for In-patient cases 
 

Model AIC AICc BIC 
SARIMAX (1, 1, 1)(1, 1, 1)12 38.7354 39.0833 52.0996 

SARIMAX (2, 1, 1)(1, 1, 1)12 39.3900 39.7378 55.4270 
SARIMAX (1,1 ,1)(2, 1, 1)12 37.9810* 38.3288* 52.0181* 

SARIMAX (2, 1, 1)(2, 1,1)12 38.9262 39.2741 53.6361 

*: Means best based on the selection criteria 
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Using the lower significant lags of both the ACF and PACF and their respective seasonal lags, a number of 
possible SARIMAX models (regression with ARIMA errors) were identified for the In-patient malaria cases. 
Comparing the AIC, AICc and BIC values of the various candidate models shown in Table 6, SARIMAX (1, 
1, 1)(2, 1, 1)12 emerged as the best model. 
 

 
 

Fig. 5. ACF and PACF plot of differenced series for In-patient cases 
 
Using the backshift operator, the parameters of SARIMAX (1, 1, 1)(2, 1, 1)12 shown in Table 7 can be 
expressed as: 
 

ln Inp = −0.0262� +
(1 + 0.9334�)(1 + 0.2970���)

(1 − 0.6824�)(1 − 0.5098���)(1 − �)(1 − ���)
��                                  (17) 

 
Where D= Dummy, Inp= In-patient. 
 
From Table 7, it was observed that the p-values of the parameters of the selected model for the non-seasonal 
and seasonal AR and MA components were highly significant at the 5% level of significance. Thus, the 
model is regarded as the best model.  
 
We observed from Fig. 6 that the standardised residuals of the model have zero mean and constant variance. 
Further, the ACF plot of the model residuals revealed that not less than 95% of the residual autocorrelations 
lie within the significance bounds indicating that they are uncorrelated. In addition, the Ljung-Box statistic 
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clearly shows that the p-values of the test statistic exceed the 5% level of significance for all lag orders 
which implies that there is no significant departure from white noise for the residuals. 
 

Table 7. Estimated parameters for SARIMAX (1, 1, 1)(2, 1, 1)12 

 

Variable Coefficient Standard error z-statistic P-value 
Dummy -0.0262 0.0217 0.1193 .0091 
� 0.6824 0.0959 7.1160 .0001 
Φ 0.5098 0.2226 -2.290 .0022 
� 0.9334 0.0596 -15.6627 .0000 
� 0.2970 0.2351 -1.2631 .0021 

 

 
 

Fig. 6. Diagnostic plot of SARIMAX (1, 1, 1)(2, 1, 1)12 
 

On the assumption of constant variance and zero mean, an ARCH-LM test was carried out in order to further 
affirm the information depicted in Table 8. The results shown in Table 8 revealed that there was no ARCH 
effect in the residuals of the selected model. Also, the JB test for normality was conducted to test for the 
normality of the residuals of the model and it was affirmed that the residuals of the model were normally 
distributed. It can therefore be concluded that the selected model, SARIMAX (1, 1, 1)(2, 1, 1)12 was the best 
model since it satisfied all the diagnostic conditions.  
 

A chi-square goodness-of-fit test was carried out to cross validate the selected model to determine whether 
there is a significant difference between the monthly expected numbers of In-patient cases and that of the 
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observed for the year 2018. The results revealed a chi-square calculated value of 11.794 and a critical value 
of 19.675 at 11 degrees of freedom and 5% significance level. Hence, we accept the null hypothesis of no 
significant difference between the observed and the expected values since the calculated value is less than 
the critical value and conclude that there is no significant difference between the predicted values from the 
model and the observed values for the year 2018. 
 

Table 8. ARCH-LM test of residuals of ARIMAX (1, 1, 1)(2, 1, 1)12 

 
Lag Chi-squared df P-value 
12 11.6015 12 .9333 
24 28.7067 24 .7342 
36 23.3458 36 .9487 

JB Test: Chi-squared=14.4532, p-value=.5322 
 

4 Conclusion 
 
In this study, a change detection in Out-patient and In-patient malaria cases in the Northern Region of Ghana 
was assessed following the implementation of the malaria control intervention programme. The interventions 
covered the area of improving multiple prevention (through indoor residual spraying, scale-up of the 
distribution of insecticide treated nets, intermittent preventive treatment for pregnant women, improving 
sanitation, increasing access to healthcare and improving data reporting). It was observed from the results 
that the coefficients of the intervention variable for the Out-patient and In-patient cases were both significant 
(p=0.0262 and p value=0.0091 respectively) and negative (-0.1467 and -0.0262 respectively). This is an 
indication that on the whole, cases decreased by so much between 2008 and 2018 (post-intervention period). 
The decline in the number of cases presupposes that the intervention policy was fairly well implemented and 
its plans were also executed fairly well. However, the government of Ghana and other partners in the health 
sector need to explore other reliable and feasible intervention strategies to support the already existing ones 
with a long-term goal of eliminating the malaria incidence. There is also the need for continuous monitoring 
of the forecasting performance of these models, and review of interventions in order to make the use of these 
models more realistic. Additionally, this study needs to be replicated in other high endemic regions in the 
country in order to be more conclusive on the effectiveness of the intervention policy. 
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