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ABSTRACT 
 

Building an effective online course requires an understanding of learning analytics. The study 
assumes significance in the COVID 19 pandemic situation as there is a sudden surge in online 
courses. Analysis of the online course using the data generated from the Moodle Learning 
Management System (LMS), Google Forms and Google Analytics was carried out to understand the 
tenants of an effective online course. About 515 learners participated in the initial pre-training needs 
& expectations’ survey and 472 learners gave feedback at the end, apart from the real-time data 
generated from LMS and Google Analytics during the course period. This case study analysed 
online learning behaviour and the supporting learning environment and suggest critical factors to be 
at the centre stage in the design and development of online courses; leads to the improved online 
learning experience and thus the quality of education. User needs, quality of resources and 
effectiveness of online courses are equally important in taking further online courses.  
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1. INTRODUCTION 
 

The online courses have gained popularity over 
the last decade and are currently surging ahead 
in the pandemic situation of COVID 19. The 
premier higher educational institutions are 
providing quality education through blended 
approaches i.e. traditional as well as online 
education either synchronously or 
asynchronously. These online courses are 
offered as Web-based Learning, Webinars 
and Virtual Classrooms, Video-based 
Learning, Collaborative Learning, Custom 
eLearning, Mobile Learning etc. The Massive 
Open Online Courses (MOOCs) are a new model 
for online courses that have quickly gained 
interest and support among universities in recent 
years.  
 
Availability of quality and voluminous data and 
advancements in computing techniques and 
availability of analytical tools [1] necessitated 
research on understanding the learning 
behaviours. These studies focused on data that 
involved students' online learning behaviours, 
study performance, demographics and course 
selection information. Also considered 
intervention practices to improve students' study 
performance, offering personalised feedback and 
improving student retention which led to 
improved productivity and effectiveness in 
learning and teaching [2]. Learning Analytics is 
going to play an important role in the field of 
education in future [3] and they become part of 
the classroom evaluation process [4] helps to 
understand in-depth learners’ activity, for 
improving the online learning experience. The 
personalized metacognitive feedback based on 
learning analytics [5] and performance through 
prescriptive learning dashboards as instructional 
aid [6] improves students’ engagement in an 
online course.  However, learners’ needs and 
expected outcomes determine their engagement 
in different activities over the Learning 
Management System which is reflected in the 
learning behaviours. The activity-based learning 
behaviours viz. trajectory behaviour, social 
behaviour, resource learning behaviour, 
evaluation and reflection behaviour are 
influenced by subjective thinking and also limited 
by the environment [7], apart from the learners’ 
engagement, assessment methodologies, 
learners’ motivation etc. [8]. Despite these, the 
major drawback in online courses is a significant 
drop in completion rates. The 
organisations/practitioners need to understand 
the implications of the learning analytics research 

in online learning environments and which helps 
to design and develop the online courses. 
Orientation towards monitoring/analysis and 
prediction/intervention, learning behaviour and 
learning level data has received much attention 
in analysing the online learning behaviour [9]. 
The paradox between quantum leap in online 
courses and the effectiveness of the online 
courses needs to be understood thoroughly to 
improve the quality and relevance of online 
courses. This necessitates a case study by 
employing appropriate tools that capture online 
learning behaviour. With this background, an 
attempt is made in this study to understand the 
online learning behaviour and associated 
changes for enhancing the quality of online 
learning. 
 

2. METHODOLOGY  
 
The case study is an intensive study of a single 
unit to understand a larger class of (similar) units 
[10]. This provides an opportunity to gain a deep 
holistic view of the research problem and may 
facilitate describing, understanding and 
explaining a research problem or situation. This 
study was conducted in the lines of the six-stage 
case study process and integrated additional 
relevant guidelines from the wider 
methodological literature [11,12]. The case study 
was carried out with the participants of MOOCs 
on Dynamics of Teaching-Learning organised by 
ICAR National Academy of Agricultural Research 
Management and with prior ethical approval. The 
pre-training needs/expectations at the beginning 
of the course and the feedback at the end of the 
course i.e. after one month, are captured through 
a google form which contained the items on the 
profile of participants, online learning 
environment (interest, duration, effective platform 
etc.), preferences for MOOCs, temporal changes 
in perceptions concerning expectations and 
outcome; perceived effectiveness of internet 
connectivity, preferred modes of engagement 
and formats for delivery of content, use of social 
media, quality of resources etc.  
 
Google Analytics is also preferred as it provides 
time-series data and comes with the guarantee 
of Google technology [13].  The Google 
Analytics, integrated with eLearning platform 
(https://elearning.naarm.org.in/) built on 
MOODLE environment, provided the data about 
age groupings, internet access (browsers, 
device-based internet usage), channel grouping, 
online traffic, session duration, bounce rates, 
page views etc. 

https://elearning.naarm.org.in/
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Descriptive statistics were used for the analysis 
of the data. The paired t-test was used to 
compare the pre and post knowledge scores of 
the MOOCs participants. About 515 learners 
responded to the initial pre-training needs & 
expectations’ survey and 472 learners gave 
feedback at the end. The participants of the 
survey included young and aspiring in-service 
faculty of various Universities with an ambition to 
become effective teachers/managers of teaching. 
About 69 per cent of the participants were males 
and 31 per cent females. The maximum number 
of participants (51%) had the highest qualification 
as PhD, followed by Post Graduation (45%) and 
Graduation (4 %). The majority of the participants 
(54.26%) belonged to the agriculture stream and 
the remaining from the non-agriculture stream 
(45.76%) which included Engineering, Arts, 
Science, Management and other domains.  The 
majority of the registered users belonged to the 
25-34 years age group (47.39%) followed by 18-
24 years (17.36%), 35-44 years(14.17%), 45-54 
years’ groups (9.39%) and above 65 years 
(3.54%) etc. Online courses are more preferred 
by the young group of 25-34 years. 
 

3. RESULTS AND DISCUSSION 
 

The present study analysed different parameters 
of changes in levels of perception, online 
learning behaviour and performance etc. 
 

3.1 Learners’ Perceptions  
 
3.1.1 Preferences for online courses 
 
About seventy per cent of the participants opted 
for the online course as it is having relevance to 
the job followed by their interest (58.47 %). Other 
reasons attributed were the career progression 
and brand value of ICAR-NAARM. In 
professional higher educational institutions, a 
mechanism for developing the teaching skills, 
especially at entry-level, is seldom available. 
These MOOCs attracted mainly young faculty 
who are either in the initial stages of their career 
or yet to start a career in the teaching profession 
(postgraduate and doctoral students) (Fig. 1).  
 
3.1.2 Changes in expected and actual 

outcomes 
 
The expectations (at the beginning) and the 
outcome (at the end) were captured on 10 items 
- convenience of learning, flexible learning, 
improved quality of learning resources, learning 
from peers and others, strengthening of 

networking, provision for earning a certificate 
from home, enrichment in knowledge, 
development of skills, a favourable attitude and 
motivation to teach effectively etc. A 
considerable change was observed among 
users’ perceptions over time (four weeks). A 
significant and positive change of up to ten per 
cent was observed on items viz. favourable 
attitude, flexible learning, the convenience of 
learning and provision for earning a certificate 
from home at the end of the course, over the 
expectations (Fig. 2). However, the remaining 
items viz. motivation to teach effectively, 
improved quality of learning resources, 
development of skills, strengthening of 
networking and learning from peers and other 
resources had high expectations which were not 
converted into positive outcomes. The 
expectations and the outcome on five 
parameters i.e. flexible learning, improved quality 
of learning resources, enrichment in knowledge, 
motivation to teach effectively and favourable 
attitude were almost matching.  Academic 
analytics and educational data mining are 
enabling gathering, analysing, and presenting 
student data, which sooner or later faculty have 
to use in the course design and as evidence for 
implementing new assessments and lines of 
communication between instructors and 
students. For those who practice the scholarship 
of teaching and learning, the concepts of 
academic analytics, data mining in higher 
education, and course management system 
audits and the data generated is very much 
useful [14]. The course design considered the 
needs and expectations of users, topics modified 
based on the needs, content developed in user 
desired formats. The Moodle LMS is integrated 
with an assessment tool (online test) to assess 
the performance before and after the 
administration of the course.  
 

3.1.3 Online Learning Behaviour  
 

a) Access to Digital Devices 
 

The availability and accessibility of online 
learning devices, platforms, connectivity, 
tools etc., play a significant role in online 
learning. The devices used to access the 
learning resources were tracked and 
analysed through the embedded Google 
Analytics in the learning management 
system. The preferred devices and the 
actual usage of devices were significantly 
different among MOOC learners. The 
preferred tools and accessed tools for 
MOOCs are indicated in Fig. 3. Most of the 



 
 
 
 

Raju et al.; AJAEES, 39(10): 381-390, 2021; Article no.AJAEES.74528 
 
 

 
384 

 

users preferred desktop (89.30 %), mobile 
(10.30 %) and tablet (0.40 %) for course 
access. 
  
But during course delivery, the participants 
used desktop (65.00 %), mobile (33.00 %) 
and tablet (1.38 %) to access MOOCs. 
Desktops were preferred over smartphones 
as the majority of participants were new to 
online courses. But later, the trend reversed 
in actual usage. The use of mobile phones 
increased due to the suitability of the 

content to the mobile environment and 
handy to use smartphones became 
available everywhere and at any time. A 
decline in usage of tablets across the globe 
was evident in this case study also. Regular 
feedback (85.44%), examinations (85.24%), 
assignments (81.75%), online interaction 
with course teachers (81.36%) discussion 
forums (76.50%) and offline interaction with 
course teachers (67.18%) were found to be 
the most preferred modes for online 
learners. 

 

 
 

Fig.  1. Users’ reasons for joining the MOOCs 
 

 
 

Fig. 2. Users’ Expectations and Outcome from MOOCs 
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Fig. 3. Device utilization by Online Learners (%) 
 

b) Variations in learners’ engagement 
 

The learners’ engagement in the sessions 
and bounce rates for different age groups 
is presented in Fig. 4. About 47 per cent of 
the users were in the age group of 25-34 
years and had the highest session 
participation (48%) with a high bounce rate 
of about 17 per cent. Whereas, the least 
bounce rate (3.7 %) was observed in the 
age group above 65 years. So, the online 
courses have attracted more the age group 
of 25-34 years, followed by 18-24 years 
and so on. Bounce rate is the users’ 
single-page visits (Fig. 4) (users only visits 
on the first page and immediately leave 
from the entrance page) [15]. Higher 
participation in sessions leads to high 
course completion rates. With a few 
exceptions among Higher Education 
Institutions of four European Universities, 
the academic staff sees learning analytics 
as a tool to understand the learning 
activities and providing feedback to 
students which helps in adapting the 
curriculum to meet learners' needs. The 
academic staff had consistently low 
expectations and a desire to act based on 
data that shows students being at risk of 
failing or underperforming [16]. The 
expertise of teachers who are trained and 
practising the pedagogy for the more or 
less homogenous group in the face to face 
type of instruction, utilised in online course 
delivery. The study also points out the 

understanding the online learning 
behaviour such as users profile, LMS, 
choices/preferences, engagement, 
pedagogy, effectiveness etc. which 
focuses on the need for online pedagogical 
implications. A study conducted in Spain 
concluded that students perceive the video 
as a very useful element and are very 
satisfied with it, although they perceive it 
as complementary material to textual 
material. The performance results of 
students showed that videos can improve 
the chances of passing the subject [17]. 
 

A high bounce rate was observed in the 3rd 
week (16.13%), followed by the 2nd week 
(16.09%), 4th week(16.07%) and 1st 
week(15.57%).  Bounce rates can be used 
to help determine the effectiveness or 
performance of an entry page at 
generating the interest of visitors. The high 
bounce rate in the third week may be due 
to the type and nature of the topics. 
 

c) Google Analytics Channels 
 

These are rule-based groupings based on 
traffic sources and by the default classified 
as Paid Search and Direct. This allows to 
quickly check the performance of each of 
the traffic channels. The traffic denotes the 
movement of a user to another domain, 
email, app, or any other channel to the e-
learning platform.  Every referral to a 
website also has a medium, which may be 
“organic” (unpaid search), “CPC” (cost per 
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click, i.e. paid search), “referral” (referral), 
“email” (the name of a custom medium you 
have created), “none” (direct traffic has a 
medium of “none”). 
(https://support.google.com/analytics/answ
er/1033173?hl=en). The traffic data of 
Google Analytics are classified into three 
channels i.e. Direct, Organic search and 
Referral. During the one-month MOOC 
programme, four channels were utilised by 
users viz. Direct (58.43%), Organic Search 
(39.07%), Referral (2.46%) and Social 
(0.04%).  However, the bounce rate was 
very high (46.43%) in referral channels 
than social, organic and direct channels 
(Table 1). This trend implied that, since the 
access to course content is through 
approved registration, the dedicated 
learners had only access to the content 
directly instead of referral mode, hence a 
low bounce rate in the direct channel 
(18.10%).  The integral development of 
learners in their learning and knowledge 
construction process is the very objective 
of any educational institution, which is 
achieved through accompaniment and 
continuous monitoring of students. 
Monitoring of students/learners online is 
best possible through digital platforms 
such as Learning Management System. 
Integration of analytical tools such as 
Google Analytics allows access to 
learners’ fingerprints, generating a large 
volume of data, that analysis allows a deep 
way of understanding their behaviour. The 
online users were continuously monitored 
through the built-in discussion forum, 

assignments that enable cross-learning. 
Regular course updates through email etc. 
provided.  The "referral" is like a 
recommendation from one website to 
another. Google Analytics helps to view 
these referrals, which then add to one’s 
understanding of how learners find your 
website and what they do once they get 
there. In the case of organic search, the 
bounce rate is less which may be due to 
less number of users or users who found 
the exact content. Therefore, the number 
of pages per session and the average 
duration is also more as compared to 
direct search and vice versa. Referral 
traffic can be a strong indicator for 
identifying external sources that are most 
valuable in helping MOOCs achieve their 
goals.  An entry page with a low bounce 
rate means that the page effectively 
engages visitors to view more pages and 
continue deeper into the website. High 
bounce rates typically indicate that the 
eLearning platform is to be improved for 
attracting the continued interest of visitors.  
 
Pages per session broadly gauge how 
compelling users find course content and 
the ease of access. On average, each 
trainee had an engagement of 13.59 pages 
per session which is a good sign of 
engagement in an educational context. It 
portrays that users were highly engaged 
and willing to explore more of the e-
learning site. This is an excellent way of 
measuring interest and curiosity in the 
course (Table 1).  

 

 
 

Fig. 4. User Engagement among age groups 
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Table 1. Channel wise sessions and bounce rates 
 

S. 

N

o 

Default 

Channel 

Grouping 

Users New 

Users 

Sessions Bounce 

Rate 

Pages/ 

Session 

Avg. 

Session 

Duration 

(sec) 

1 Direct 1473 

(58.43%) 

1118 5789 18.10% 13.05 903.99 

2 Organic 

Search 

985 

(39.07%) 

548 5922 11.69% 14.08 1037.30 

3 Referral 62 

(2.46%) 

45 84 46.43% 9.14 847.79 

4 Social 1 

(0.04%) 

0 46 10.87% 26.96 949.52 

 Total 2521 1711 11841 15.07% 13.59 970.44 

 

d) Sustaining Interest 
 

The week-wise traffic in terms of page 
views was also captured and analysed. 
Page views measure the total number of 
pages viewed, including repeated views of 
a single page. In Fig. 5, first week and last 
week page views were more as compared 
to remaining weeks which may be because 
participants explored more content during 
the starting of MOOCs. This means that 
the interest in learning is more and 
participants need to be more attentive 
towards completion of remaining modules, 
assignments and knowledge tests during 
last week. Sustaining uniform interest 
across all weeks is a major issue that can 

be addressed through more online 
engagement, interactivity, synchronous 
learning, discussion threads etc.  

 
The session duration is the direct measure 
of users’ engagement on the eLearning 
platform. The session times and the page 
views were directly proportional, which is 
depicted in Fig. 6. The page views 
significantly increased with an increase in 
session duration of more than 3 minutes. 
The more pronounced upward movement 
was noticed when the duration was about 
30 minutes. It was found that a session 
duration of 11-30 seconds had fewer 
session times and page views as 
compared to other session duration Fig. 6. 

 

 
 

Fig. 5. Weekly traffic on Learning Management System 
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Fig. 6. Users Session times and Page views 
 

Table 2. Paired t-Test for Pre and Post knowledge scores of MOOCs participant (n=157) 
 

Parameter Before MOOC After MOOC 

Mean 52.611 66.898 

Variance 234.803 155.053 

t statistic 1.65 (p-< 0.001) 

 
e) Learners Performance 

 
The performance of 157 learners who 
attended both examinations i.e. pre-
knowledge test and a post knowledge test 
were analysed using the paired t-test (Table 
2). The results indicated a significant 
increase in the knowledge level of MOOCs 
users at a one per cent level. The average 
knowledge score of the participants 
increased from 52.61 to 66.89 after 
participating in the MOOC. In future, all 
online courses, are expected to have an 
online component to some extent. 
Integration of technology into formal 
education has become a necessity 
especially during the pandemics like 
COVID19. The MOOCs undoubtedly holds 
promise as the mode of knowledge 
acquisition and future capacity building as 
most of the MOOCs learners had sustained 
interest even after two years of participating 
in MOOCs. To increase its positive impact, 

technology has to be simple to motivate 
learners and evaluation methods have to be 
properly strengthened to suit different 
scenarios. Consideration of online 
education as a means of scholarly 
development, improvement of self-esteem, 
increasing competition among institutions, 
models that cope with declining public 
funding, development of a digital 
marketplace for global higher education etc. 
are some of the critical factors attributed to 
the promotion of MOOCs [18]. 

 

4. CONCLUSION 
 

Learning analytics helps to understand learning 
paths and strategies to improve the learning 
management system continuously. This case 
study analysed user participation in MOOCs 
focussing on different aspects of learning 
behaviour, changes in the perceptions and actual 
situations and the effectiveness etc. The study 
identified the critical elements of an effective 
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online course viz. learners’ profile, online 
learning environment, preference for MOOCs, 
temporal changes in perceptions, access to 
digital devices for online learning, internet 
connectivity, learning management system, 
engagement of learners, online traffic 
dimensions, quality of resources learners’ 
performance etc. Consideration of these factors 
in the design and development of online courses 
leads to the improved online learning experience 
and thus the quality of education. The 
experiences of the present case study point out 
the development of the user-friendly design of 
the Learning Management System, often missing 
in open-source software. However, the present 
study portrays future research in using the 
customised artificial intelligence and machine 
learning tools for better prediction models of 
learners’ performance and retention rates.  
Support systems for the development of learning 
content suitable for different devices with 
features such as easy tracking and assessment, 
seamless delivery suitable etc. are very much 
essential in development. 
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