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Abstract: Space modular self-reconfigurable satellite (SMSRS) is a new type of satellite. The research
on self-collision avoidance of SMSRS is important for its on-orbit safety but is not completely solved.
This paper offers a new method for joint path planning for self-collision avoidance of SMSRS. Firstly,
we establish the collision detection model for SMSRS based on forward kinematics and the spherical
nonholonomic envelope to detect the collision occurring in SMSRS. Then, to achieve offline path
planning in joint space, we proposed the self-collision avoidance strategy, which splices multiple
C-spaces based on the pre-defined joint path into a binary map, and then transforms the binary
map into a map with the dangerous potential field, and planning algorithms based on a map
with the dangerous potential field is proposed to find the optimal collision-free path. The new
method is applied to two cases and both find collision-free joint paths for SMSRS successfully, which
demonstrates the feasibility of the method. In addition, this study bridges the gap in the study of
self-collision avoidance of super-redundant self-reconfigurable satellites.

Keywords: self-collision avoidance; path planning; self-reconfigurable satellite; collision detection model

1. Introduction

With the large-scale exploitation of outer space and the increasing frequency of space-
craft and satellite launches, future space systems are expected to have low cost, rapid
response, and multiple uses [1]. However, the traditional development mode cannot meet
the needs of future space systems [2]. For example, traditional space systems are almost
specially designed for missions, requiring subsystem-by-subsystem development and nu-
merous iterations, which are slow, repetitive, and expensive [3]. In addition, the structures
of these traditional spacecraft systems are essentially permanently fixed and designed to
perform a single mission that cannot be reconfigured for other missions. Long development
cycles and launch-window limitations also make it difficult for them to respond quickly to
emergencies [3].

To overcome these limitations of existing space systems, many new concept satellites
have been proposed, and the most representative ones are CubeSats [4,5]. The primary
goal of CubeSats is to provide a small, lightweight, low-cost platform for academic and
technology demonstration. A CubeSat is a 10 cm× 10 cm× 10 cm cube. It provides a
standard for the design of picosatellites to reduce cost and development time, increase
accessibility to space, and sustain frequent launches [6]. The spacecraft bus was designed
to be versatile enough to accommodate different payloads that meet the mass, volume, and
power constraints. Presently, the CubeSat Projects become attractive for wide fields [7,8],
such as exoplanet detection [9,10], space weather [11], weather forecasting [12], and river-
flow estimation [13].

However, the utilization of a standard, low-cost satellite bus will reduce the reliability
and decrease the lifetime of Cubesats [14,15]. A statistical study performed in 2013 on the
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first 100 launched CubeSats [16] shows that the mission failures of CubeSats are on a high
level [17]. In addition, the structure of CubeSat is fixed, and it carries limited payloads so
that they can only perform a single space task.

Taking the design concept of CubeSat as the baseline, we proposed a new type of
satellite with a reconfigurable structure and adjustable function, named Space Modular
Self-Reconfigurable Satellite (SMSRS). SMSRS has the following features:

(1) Modular: SMSRS has a chain structure composed of functional modules and joints.
Common satellite subsystems are integrated into unit modules and are called subsystem
modules. The unit subsystem modules are installed with standard interfaces for payloads
and joints. According to shapes and work positions, the payloads are designed as external
structures carrying standard docking interfaces to the subsystem modules, or as unit
payload modules. The modular design of SMSRS facilitates the structural folding and
packaging before launch and the reconfiguration in space [18].

(2) Scalability: Payload and subsystem modules are functionally independent and
physically separated from each other. The volumes and masses of module units are divided
into several series from small to large, which can be selected according to the demand of
payloads. All modules have standard interfaces, which are used to connect with modular
joint modules for ground or in-orbit extension according to the type of space mission. The
type and number of modules carried by SMSRS are configured to mission requirements.
The model of the SMSRS with five modules is shown in Figure 1.
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Figure 1. Model of SMSRS with five modules.

(3) Structural Reconfigurability: There are three mutually orthogonal joints between
modules of SMSRS. The three joints form degrees of freedom (DOFs) between modules
in relative rotation, roll, and yaw and enable the SMSRS to self-reconfigure adaptively to
mission command.

(4) Risk resistance. The scalability and modularity together determine the risk resis-
tance of SMSRS. Since modules are functionally independent, the failure of a local satellite
module makes the satellite not completely fail, and the multiple payloads it carries can still
be reprogrammed functionally. In addition, multiple joints between modules allow the
modules to maintain some relative motion capability in the event of a single joint failure.

(5) Functional Adjustability: The types of payloads carried by SMSRS include optical
cameras, SAR, communication payloads, etc. While carrying different payloads, SMSRS
arranges and reorganizes these payloads in different space orientations by structural
reconfiguration and therefore achieves the ability to accomplish multiple types of space
missions. There are typical application scenarios for SMSRS:

• When SMSRS carries multiple optical cameras, it could change the spatial orientations
of these cameras through joint motions. With this, these cameras could achieve an
expanded imaging area by stitching together their field of view as shown in Figure 2a,
or achieve the reconnaissance of multiple targets as shown in Figure 2b.

• When SMSRS carries multiple communication payloads and adjusts them towards
different orientations, it can achieve multi-area communication to the earth, as shown
in Figure 2c.
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Figure 2. Application scenarios for SMSRS: (a) SMSRS carries multiple optical cameras and expands
the imaging area by stitching together fields of view. (b) SMSRS reconnaissance of multiple targets by
multiple optical cameras. (c) SMSRS carries multiple communication payloads to achieve multi-area
communication to the earth.

The application scenarios of SMSRS are by no means limited to these, and there are
larger expansions. Moreover, in recent years, a large number of small satellite launches
have led to space traffic congestion and burdened space traffic management. At the same
time, a large amount of space debris is generated, which seriously threatens the safety of
satellites in orbit. The multi-functional feature of SMSRS, which allows a single satellite
to perform multiple functions adaptively, can reduce the number of satellite launches. It
reduces the pressure of space traffic management and the generation of space debris.

The target orbit of SMSRS is Low Earth Orbit (LEO). The advantage of standing high
and seeing far in High Earth Orbit (HEO) can be compensated by the feature of SMSRS
multi-payload synergy, e.g., the large field of view of HEO satellites can be achieved by
using fields of view stitching of SMSRS. In addition, LEO launches can launch heavier mass
satellites at a lower cost, providing margin for SMSRS in-orbit scalability.

When running on LEO, the satellite tracking is characterized by low transmission
delay, low coverage, low link loss, and low power consumption. The low transmission
delay and low loss are beneficial to the command transmission of the reconfiguration for
SMSRS, and in solving the low coverage problem, as shown in Figure 2c, adjusting the
orientation of the tracking system can be used to expand the tracking range.

As shown in Figure 3, SMSRS are folded and packed on the ground before launch.
After getting into orbit, the folded configuration is gradually unfolded and changed from
the initial configuration to the work configuration for performing the designed mission.
When the SMSRS receives a new mission command, its mission planning system will plan
the new mission configuration and send the joint control system command for reconfiguring
to the new work configuration. Modules of SMSRS have solar cells attached to each surface
to ensure battery recharging in different configurations.
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The function switching of SMSRS depends largely on the motion of the joints. However,
from Figure 1, it can be seen that the modules of SMSRS are large in size but small in
spacing between each other, and the motion of the joints allows the relative positions of
these modules to change over a wide range so that collisions between modules can easily
occur. When a collision occurs, it is likely to cause structural damage and instability of the
system [19]. To avoid self-collisions between modules in whole reconfiguration progress is
crucial for the on-orbit safety of the system [20]. In this paper, we will study how to achieve
self-collision avoidance in the reconfiguration of SMSRS.

The remaining paper is organized as follows. Section 2 sorts out the related work on
self-collision avoidance of self-configuring systems. In Section 3, the collision detection
model of SMSRS is established. Section 4 elaborates on the self-collision strategy of SMSRS.
In Section 5, the parameters of SMSRS and two self-collision avoidance tasks are set.
Section 6 verifies the self-collision avoidance path planning method. Section 7 summarizes
the work of this paper.

2. Related Work

The researches on avoiding self-collision are mainly for redundant robotic arms, and
the contents mainly involve two aspects: self-collision detection and self-collision avoidance
strategies. Collision detection focuses on establishing an approximate geometric model of
the collision-prone structures of the research object to calculate the relative position between
them [21] and to judge whether they will collide or have collided. There are two common
methods to establish the collision detection model. The first method uses a large number of
polygons [22,23] to model the geometrical shapes of collision-prone structures to fit them
as closely as possible. This method is generally suitable for systems that have an irregular
shape and higher requirements for collision detection accuracy, or are used to perform
sophisticated tasks, but it requires higher computational costs. For systems with regular
shapes or have low requirements for collision detection accuracy, using the sphere-based
model to establish its approximate structural envelope is another method [20,21]. These
approximate envelopes can be selected according to the shape of the system, including
spheres [21,24], swept-spheres [25], cylinders [20], capsules [26], patch-based bounding
volumes [27], etc. Although the second method could not accurately describe the shape of
the collision-prone structures, it is computationally economical.

In the present research, self-collision avoidance strategies are usually divided into the
online reactive approach [27,28] and offline path planning. Of the two, the online reactive
approach does not predetermine the angle motion path but detects collisions in real time
during joint movements. Online reactive approaches usually use the distance functions
as “repulsive potential” functions and then converts them into joint velocities based on
Jacobian Inverse Kinematics (IK) [26] and joint torques for torque control schemes [29], or
regards them as a constraint in an optimization-based IK solver to adjusts the joint motion
path in real time [28,30], etc. To obtain smooth joint motion trajectories, some researchers
have proposed a unified framework to detect collisions by using a series of sensors capable
of estimating joint torques and accelerations in real time. However, the use of expensive
hardware such as sensors always increases the cost [21]. Although the online reactive
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approach has a shorter computation time, it is mostly applied to ground-based humanoid
robots and is only applicable to systems with fewer DOFs because of its instability.

Offline path planning can be divided into two categories: path planning of end-effector
in workspace [31,32] and path planning of joints in joint space [33,34]. As there is no end-
effector of SMSRS, we do not discuss the path planning of the end-effector, but focus on
the path planning of the joints in joint space. In contrast to the online method, offline path
planning predetermines the motion path of joints and there would not be self-collision when
joints move along the predetermined path. Compared with the online reactive approach,
offline path planning is more stable and efficient, and the planned paths are guaranteed
to be optimal, which are more suitable for space systems with higher requirements for
stability. Moreover, for SMSRS, offline path planning will not make its joints detour in
space, which is also of great significance for energy conservation. Therefore, offline path
planning is the more suitable choice for the self-collision avoidance strategy of SMSRS.

Currently, offline path planning for collision avoidance of self-configuration systems
such as space robotic arms is mostly focused on avoiding collision with fixed obstacles
or target vehicles in the environment [20,35]. The methods to avoid collision with obsta-
cles in the environment include using a random search algorithm to find a collision-free
joint path in the Configuration Space (C-Space) of the robotic arm, and commonly used
algorithms include the A* algorithm [36] and the Rapid Exploration Random Tree (RRT)
algorithm [37–39], and using optimization techniques [40], etc. In addition, the current
offline path planning only needs to find collision-free joint paths to achieve the desired
pose of the end effector, regardless of the pose of other intermediate structures [20]. The re-
searches on self-avoidance are also mainly focused on systems with fewer DOFs. Therefore,
current research cannot meet the requirements of self-collision path planning of SMSRS,
mainly because it has the following newly derived difficulties:

(1) SMSRS has a super-redundant structure, and its ultra-high DOFs make collisions
between each module possible and easy;

(2) The pose of each module of SMSRS is changed in real time during reconfiguration, for
one module, all other modules are its dynamic obstacles—this also imposes a burden
on collision detection; and

(3) Different from the robots that only achieve the pose of the end effector without
collision, SMSRS requires all modules to achieve desired poses without collision after
path planning.

In this paper, considering the above difficulties and the actual space mission require-
ments, we proposed a new self-collision avoidance method for SMSRS, which consists of a
collision detection model and a self-collision avoidance strategy. The collision detection
model is established based on the Forward Kinematics (FK) and spherical nonholonomic
envelope, which has no hardware cost and low computational cost. Among the offline and
online strategies, considering the high stability requirements of the SMSRS and reducing
additional hardware as much as possible, the offline path planning is selected to realize
self-collision avoidance of SMSRS, and a self-collision avoidance path planning strategy
based on pre-defined path and spliced C-space is proposed.

The main contributions of this study are as follows: (1) a collision detection model
is developed using multiple discrete spherical, which can approximate envelop SMSRS
using a few spheres and execute collision detection for SSMSRS at a low computational
cost; (2) a method is proposed for splicing multiple C-spaces into a binary map based
on a pre-defined path, which transforms the path planning in dynamic C-space into the
planning of time sequence of joints on the pre-defined path; and (3) a new collision-free
path search algorithm based on the map with dangerous potential fields is proposed to find
the safest path without self-collision for SMSRS.

3. Collision Detection of SMSRS

The collision detection model of SMSRS is used to detect whether each module collides
with others, and the relative poses of modules are the basis of collision detection. SMSRS
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consists of a series of rigid bodies and its modules and inter-module connection structures
can also be regarded as links, and this structure forms a kinematic chain. We firstly ignore
the specific shape of modules and treat them as links, and calculate their space poses by
establishing an FK model in Section 3.1. On this basis, the collision detection model will be
completed after assigning the shape characteristics of these links in Section 3.2.

3.1. Module Pose

In SMSRS, each moveable joint defines a joint variable, all joints form a joints vector
q =

(
θ1, θ1, · · · , θNj

)
and the number of joints Nj defines DOFs of SMSRS. Calculating the

poses of links using the given values of the joint variables and the link parameters is a
forward problem, which is known as FK [41,42]. In FK, the poses of links can be represented
by a homogeneous transformation matrix. For example, the homogeneous transformation
matrix [43] of the ith link relative to the base coordinate system Σb is:

0
i T =


nxi oxi axi pxi
nyi oyi ayi pyi
nzi ozi azi pzi
0 0 0 1

 =

[ [
ni oi ai

]
pi

0 1

]
=

[
Ri pi
0 1

]
(1)

where, Ri represents the attitude matrix and pi presents the position vector of the ith link.
To obtain the homogeneous transformation matrix, we should establish the multi-link
coordinate system according to certain rules, then select the parameters to describe relative
relationships between coordinate systems. In this paper, we select Denavit–Hartenberg
(D–H) method to build the homogeneous transformation matrix. According to the princi-
ples of the D–H method, we fix every link with a coordinate system as shown in Figure 4,
the Σb is usually established at the center of mass of the attitude control module to facilitate
the attitude control, and then the multi-link coordinate system of SMSRS is divided into a
and b side by Σb. In some space systems, such as space dual-arm robots, the joint axis on
both sides of Σb are always designed to be symmetrical in direction, so the D–H parameters
on both sides are equal [44]. However, the three joints between the modules are orthogonal
and are asymmetrical on both sides of Σb, which violates principles of the D–H method
on establishing coordinate systems. In this case, we proposed the concept of virtual joint
coordinate system Jv [18]. Jv is a coordinate system established between the Σb and the first
joint coordinate system on the b side. The origin of the Jv coincides with the origin of Σb.
Then, the pose matrix of the link on the b side only needs to multiply the homogeneous
transformation matrix from the Jv to Σb between the first joint coordinate system and Σb.
Moreover, Jv does not affect the mass and size of SMSRS when its mass and size are set to 0.
The insertion of Jv successfully solves the problem caused by the asymmetrical direction of
joints on a and b sides.

Then, four parameters between adjacent coordinate systems: linked length A, link
twist α, link offset d, and joint angle θ are measured to calculate their relative relationship.
In FK, any single translation or rotation can be expressed by a homogeneous transformation
matrix, and a series of motions can be expressed by multiplying these homogeneous
transformation matrices of single motions. The four selected parameters imply four-
step motions from the (i − 1)th coordinate system to the ith coordinate system, so the
homogeneous transformation matrix between them can be expressed as:
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i−1
i T = Rot(x, αi−1)·Tran(Ai−1, 0, 0)·Rot(z, θi)·Tran(0, 0, di)

=


1 0 0 0
0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1

·


1 0 0 Ai−1
0 1 0 0
0 0 1 0
0 0 0 1

·


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

·


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1


=


cθi −sθi 0 Ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1


(2)
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The relative poses of non-adjacent links can be obtained by the successive multiplica-
tions of adjacent link homogeneous transformation matrices [43]. Equation (3) shows the
homogeneous transformation matrix of the ith link relative to Σb.

0
i T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3) · · · i−1

i T(θi) =
i

∏
k=1

k−1
k T(θk) (3)

3.2. Self-Collision Detection Model
3.2.1. Spherical Nonholonomic Envelope

A complete self-collision detection model needs to assign shape properties to links
based on the obtained link poses. In this paper, the spherical shape is chosen to envelop
the modules of SMSRS, which has the following advantages: (1) the single parameter can
avoid a large amount of computational consumption and improve the computational speed.
(2) The fixed shape of SMSRS modules can be completely enveloped by spheres, and the ap-
proximate nature of the spherical envelope makes the collision detection conservative [24],
which is suitable for space systems where reliability and safety are vital. Since the volume
of the module is much larger than the volume of the inter-module joint structure, we create
a spherical envelope only for the module and ignore the joint structures. The spherical
nonholonomic envelope could further improve computational efficiency. And the spherical
nonholonomic envelope of SMSRS with nine modules is shown in Figure 5.
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3.2.2. Self-Collision Detection Criteria

Figure 6 shows the schematic diagram of the spherical nonholonomic envelope of the
SMSRS with three modules. The center of the spherical envelope locates at the center of
the module body, and the length of the radius RC is one half of the diagonal length of the
module body. In this paper, the distance between the centers of two modules is used to
determine whether modules collide. For SMSRS, Ψ is defined as the set of modules. Select
two different modules y, r ∈ Ψ, (y 6= r), their position vectors with respect to Σb are py and
pr, dyr denotes the distance between the centers of the two modules, and it equals to the
2-norm of the difference between py and pr. The criteria for determining modules y, r have
not collided is:

dyr = ‖py − pr‖ > 2RC (4)
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For a certain configuration of SMSRS, only if dyr of any two modules is larger than
2RC, it can be concluded that SMSRS has no collision under this configuration, and as long
as there exist any two modules that collide, this configuration has collision.

4. Self-Collision Avoidance Strategy

Collision avoidance is a fundamental problem in offline path planning, and a two-step
framework is widely used in collision-free path planning for robotic arms with few DOFs
and mobile robots, i.e., building the C-space and then searching for collision-free paths in
the C-space. For the offline collision-free problem of SMSRS in time-varying configurations,
we propose the spliced C-space based on pre-defined joint paths and the path planning
algorithms based on digital maps with the dangerous potential field, which together consist
of the self-collision avoidance strategy of SMSRS. It is implemented in several steps as
follows to achieve the self-collision avoidance strategy of SMSRS:

(1) Locate the collision module and record collision start-stop joint angles;
(2) Determine the planned joints;
(3) Build linear path-based multiple C-spaces;
(4) Pre-defined the paths of the planned joints;
(5) Splice the multiple C-spaces based on the pre-defined paths into the binary map, and

check the validity of the binary map;
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(6) Transform the binary map into a map with the dangerous potential field;
(7) Search collision-free path in the map with the dangerous potential field; and
(8) Check paths.

The logical relationships of these steps are shown in Figure 7, where steps (1) to (2)
are for initialization, (3) to (5) are for C-space construction, and (6) to (8) are for path
planning algorithms based on digital maps with the dangerous potential field. The idea
and execution process of each step will be described below.
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4.1. Locate the Collision Module

The initial configuration and final configuration with corresponding joint angles are
given by the mission planning system. The results of the path planning of SMSRS, on a
self-collision-free basis, need to satisfy the pose requirements of each link, not only the
desired poses of the end link while ignoring the poses of the other links. Therefore, the goal
of the path planning of SMSRS is to find feasible paths for all joints so that the SMSRS can
move from the initial configuration to the final configuration without collision. We set all
joints of SMSRS to move in linear paths from initial angles to final angles, and locate the
collision modules under their linear paths. If there are no additional optimization objectives,
the linear path is the most economical path, which avoids the energy waste caused by joints
moving in complex paths and could facilitate the subsequent joint trajectory optimization.

Under the linear paths of joints, the collision detection model in Section 3.2 is used to
determine whether there is a collision between modules in real time, and once a module
collision is detected, the two modules are marked as collision modules, and the collision
start angles of joints qcol_start are recorded. The final configuration of the SMSRS is collision-
free, indicating the collision state will not last until the end, allowing the SMSRS to continue
moving and recording the collision stop angles of joints qcol_end.

4.2. Determine the Planned Joints

Once the collision module and the qcol_start and qcol_end are clarified, there are two
options for the selection of the joints to be planned: planning the path of all joints or
planning the path of only some selected joints. In this paper, the paths of two joints are
selected to plan to avoid the self-collision, which is based on the following considerations:
(1) the path planning with few joints can reduce the planning complexity and computational
cost, while a large number of stable and efficient path search algorithms for planes can
be utilized, which also improves the visibility; (2) SMSRS has wide ranges of joint angles,
and by reasonably configuring the two planned joints, the configurations of SMSRS can
be substantially adjusted so that new collision-free paths can be found in the collections
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of these configurations; and (3) each joint needs to return to the desired angle after path
planning, and when multiple joint angles are planned at the same time, it is difficult to
ensure that.

The principle of configuring the planned joints is the maximum success rate and
maximum stability. The so-called maximum success rate means that the selected joint can
find the collision-free path as successfully as possible after planning. Maximum stability
means that the planned joint will not significantly change the configuration of the collision-
free module, resulting in unnecessary collisions. Combining these two principles, we
develop the following selection rules for the planned joints:

1. For ith joint, when its θi_col_start 6= θi_col_end, we call it motion joint, otherwise no
motion joint—when there are more than two motion joints between two collision
modules, the two adjacent motion joints closest to the end of SMSRS are selected as
the planned joints;

2. When the selected joints cannot successfully avoid the self-collision after planning,
another two adjacent motion joints between collision modules are selected from the
end to the middle of SMSRS;

3. When the number of motion joints between collision modules is less than two, a no
motion joint closest to the end collision module and a motion joint are selected as
planned joints;

4. Under (3), if it is still not able to find self-collision-free paths, the motion joint and no
motion joint are configured from the end to the middle of SMSRS; and

5. After selection, we denote the planned joints as θ
p
1 , θ

p
2 , their start collision angles as

θ
p
1_start, θ

p
2_start, and end collision angles as θ

p
1_end, θ

p
2_end.

4.3. Splice Multiple C-Spaces Based on a Pre-Defined Path
4.3.1. Multiple C-Spaces

The concept of C-space originates from collision detection and avoidance of robotics [12,13],
which uses the pose parameters of rigid objects in the workspace as its coordinate parameters,
and the kinematic relations map the poses of target objects and obstacles from the workspace to
the C-space.

C-space is often used for path planning of rigid objects in stationary obstacles. There-
fore, C-space can be further divided into two subspaces: obstacle space and free space.
The obstacle space refers to the space occupied by obstacles in the C-space, while the
free space refers to the space not occupied by obstacles in C-space. Unlike the physical
workspace, the dimensions of the C-space are defined as the DOFs of all control variables
in the motion system [45]. A schematic of a two-dimensional C-space is shown in Figure 8.
When the boundaries of the obstacle space and the free space in the C-space are determined,
collision-free path planning is to search for a path in the C-space that connects the start
point and end point and does not pass through the obstacles.
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For SMSRS, a configuration C can be defined by the Nj-dimensional joint vector q,
with q denoting the current state of each joint. At this point, C can be designated as a
point in the Nj-dimensional C-space of SMSRS, and the boundary of this convex C-space is
defined by the upper bound ub and the lower bound Ib of joint angles.

Ib =
[

θ1min θ2min θ3min · · · θNjmin

]T

ub =
[

θ1max θ2max θ3max · · · θNjmax

]T (5)

However, in Section 4.2 we illustrate selecting only two joints for path planning,
so there is not necessary to build an Nj-dimensional C-space of SMSRS, but only a two-
dimensional C-space with the angles of planned joints as coordinate parameters. At a
certain moment t, SMSRS has a configuration Ct. If a collision occurs in SMSRS under Ct,
the point

(
θ

p
1 (t), θ

p
2 (t)

)
belongs to the obstacle space of the C-space, and if no collision

occurs, the point belongs to the free space. Then, the first task is to map the obstacles in the
workspace space to C-space. In SMSRS, all non-planned joints will be used to build the
obstacle space.

However, unlike the C-space with fixed obstacles, the C-space of SMSRS is with dy-
namic obstacles as modules are in motion with time, so it is impossible to use computational
methods to calculate its obstacle space, this paper uses the random sampling method to
determine the obstacle space of the C-space of SMSRS.

At a moment, we could fix the angles of non-planned joints and build the C-space
of the planned joints by the random sampling method. While the angles of non-planned
joints also need to move with time, we propose the concept of spliced C-space. We select
multiple time points in the collision process of SMSRS uniformly, build the C-space at each
time point, and splice them together into a spliced C-space. The operation procedures are:

(1) Moderate angle allowance is added into qcol_start and qcol_end to ensure the states of
SMSRS before and after planning are self-collision-free. Assuming that the total time of
the collision process is T and joint moves from the qcol_start to qcol_end linearly, the collision
process is equated into N time sequences. The start moment of each time sequence is
Tt, t = 1, 2 · · ·N, and the joint angles of SMSRS at Tt is qTt

. The determination principle of

N is: N = max
((

θ
p
1

)
max
−
(

θ
p
1

)
min

,
(

θ
p
2

)
max
−
(

θ
p
2

)
min

)
to keep it in a reasonable interval.

(2) At Tt, randomly sample (θp
1 (Tt), θ

p
2 (Tt)) with a sampling number ϑ, and the sam-

ple intervals are for θ
p
1 (Tt), θ

p
2 (Tt) are

( (
θ

p
1

)
min

,
(

θ
p
1

)
max

)
,
( (

θ
p
2

)
min

,
(

θ
p
2

)
max

)
,

respectively, put all the sampled points into the matrix ЄTt ∈ <ϑ×2 in order.
(3) At Tt, the angles of the planned joints at the corresponding positions in qTt

are
replaced by each set of θ

p
1 (Tt), θ

p
2 (Tt) in ЄTt to form a new joint angle sequence. The new

joint angle sequence is saved to the matrix БTt ∈ <
ϑ×Nj .

(4) At Tt, each qTt
in БTt is brought into the FK of SMSRS to calculate the module

poses, and the self-collision detection model in Section 3.2 is used to judge whether there
is a collision occurring in SMSRS under qTt

, if there is a collision occurring, the point
(θp

1 (Tt), θ
p
2 (Tt)) are counted into the obstacle space, otherwise, it is counted into the free

space. Until each qTt
in БTt are judged, the work to build C-space at Tt is finished. Figure 9

shows a schematic diagram of C-space built by random sampling with ϑ = 40,000, from
which we can see that as long as the sampling points are sufficient, the boundary of the
obstacle space is clear.
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(5) Follow steps 2 to 4 to build the C-space at each moment until obtaining the N-
multiplicity two-dimensional C-space.

4.3.2. Pre-Defined Path

To find self-collision-free joint paths from the N-multiplicity C-spaces, the primary
is to splice the N-multiplicity C-spaces according to certain principles. In this paper, we
propose a method for splicing N-multiplicity C-spaces based on a predefined path of
planned joints. The idea is to predefine a joint path and splice N-multiplicity C-spaces into
a binary map along the predefined path. In the binary map, searching for a collision-free
path is essentially the planning of the time sequence of the pre-defined path. Thus, the
path planning of joints in N-multiplicity C-spaces is transformed into the planning of its
time sequence on a pre-defined path in spliced C-space. Firstly, we propose a method
to pre-define the path of the planned joint from θ

p
1_start, θ

p
2_start to θ

p
1_end, θ

p
2_end, which is

shown in Figure 10.
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Figure 10a shows the pre-defined path for two planned joints that are both motion joints.
Firstly, the angles of planned joints from

(
θ

p
1_start, θ

p
2_start

)
to (θp

1_end, θ
p
2_end) are divided into

n equal intervals, n = max‖
(

θ
p
1_end − θ

p
1_start, θ

p
2_end − θ

p
2_start

)
‖. The (A1, B1) point is the start

point of the path, representing the start collision angle of the planned joint
(

θ
p
1_start, θ

p
2_start

)
.

(An, Bn) is the end of the path, representing the end collision angle of the planned joint(
θ

p
1_end, θ

p
2_end

)
. The default pre-defined path is linear: (A1, B1)→

(
Verx, Very

)
→ (An, Bn) ,

and it forms a triangle with (A1, B1)→ (An, Bn).
(
Verx, Very

)
is the apex of the obtuse angle,

and it has the following three kinds of moving rules:
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(1) Equilateral path: along with the (An, B1)→ (A1, Bn) line, Verx move from the
A(n/2+1) to both sides of A(n/2+1), Very move from B(n/2+1) to both sides of B(n/2+1).

(2) Non-equilateral path: Very = Bn, Verx move from An to A1; or Verx = An, Verx
move from Bn to B1.

(3) Non-equilateral path: Very = B1, Verx move from A1 to An; or Verx = A1, Verx
move from B1 to Bn.

Figure 10b shows the pre-defined path method when one of the planned joints is no
motion joint. Firstly, the angles of motion joints are divided into n equal intervals from
θ

p
1_start to θ

p
1_end, and θ

p
2_end = θ

p
2_start, n = ‖θp

1_end − θ
p
1_start‖. The (A1, B1) point is the start

point of the path, representing the start collision angle of the planned joint
(

θ
p
1_start, θ

p
2_start

)
.

(An, B1) is the end of the path, representing the end collision angle of the planned joint(
θ

p
1_end, θ

p
2_end

)
. The side length of both X and Y directions of a grid are equal. The default

pre-defined path is linear: (A1, B1)→
(
Verx, Very

)
→ (An, B1) , and it forms an equilateral

triangle with (A1, B1)→ (An, B1).
(
Verx, Very

)
has two kinds of moving rules:

(1) Equilateral path:
(
Verx, Very

)
move along

(
A(n/2+1), B2

)
→
(

A(n/2+1), Bm

)
. Bm ∈( (

θ
p
2

)
min

,
(

θ
p
2

)
max

)
.

(2) Non-equilateral path: Verx move from A(n/2+1) to both sides of A(n/2+1) and Very

move from B1 to Bm. Bm ∈
( (

θ
p
2

)
min

,
(

θ
p
2

)
max

)
.

We restrict
(
Verx, Very

)
can only be located on the grid points in Figure 10, it generates

a new pre-defined path for each step forward on the grid. In Figure 10a, if there is no
collision-free path in the spliced C-space generated by the current pre-defined path, a new
path needs to be pre-defined according to rules (1)~(3) successively, and the pre-defined
path needs to be guaranteed the obtuse angle is greater than 100 degrees; In Figure 10b, if
all pre-defined paths in rule (1) are proved to be invalid, a new path shall be pre-defined
according to rule (2), and the value of the two acute angles of the path should be less than
80 degrees. As shown in Figure 7, if all the compliant pre-defined paths of the currently
planned joints are proved invalid, the progress needs to return to the step of determining
planned joints.

4.3.3. Splice Multiple C-Space

Finding the time sequence for the planned joints on the pre-defined path with no
collisions is our inspiration for splicing N-multiplicity C-spaces. Equate the pre-defined
path into S segments. To ensure the length of the path segment is equal to the C-space
grid, S = max(An − A1), (Bn − B1). Create an N × S dimensional matrix Z, calculate the
point of joint angles

(
θ

p
1_j, θ

p
2_j

)
, j ∈ 1, 2 · · · S of the start point of each segment on the

predefined path. For jth point, judge whether it is in free space or obstacle space of the ith
multiplicity C-space, and, if it is in the free space, Z(i, j) = 0; otherwise Z(i, j) = 1. After
finishing the judgments, the N-multiplicity C-spaces based on the pre-defined paths are
spliced into matrix Z, which can be regarded as a two-dimensional digital map composed
of the numbers 1 and 0 and is named as the binary map.

The N rows of the binary map present the N-multiplicity C-spaces and the S columns
present the S segments of whole movement time along the pre-defined path. If we could
find an all-0 path from the top-left to the bottom-right in the binary map, it means that
the planned joints could cross the N-multiplicity C-spaces along the pre-defined path
collision-freely under a specific time sequence. A binary map is valid if there exists an all-0
path from the top-left to the bottom-right; otherwise, the map is invalid, and a pre-defined
path needs to be reselected. We propose an all-0 path search algorithm based on the total
path length to determine whether the binary map is valid.

In Figure 11, the binary map is plotted into a map with grids. Every grid has
two values, the top value represents its binary value, and the bottom value represents
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the binary sum of all the grids on the optimal path pushed to the current grid from the start
point, denoted by 0.
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We specify the path to a grid can only be extended from its upper grid and left grid,
e.g., the path to grid G can only be extended from grid F or H, and 0 = 1 for A→ H , 0 = 0
for A→ F . Therefore, the path from grid F is the more optimal path for grid G. Based on
this method, the steps of the all-0 path search algorithm based on the total path length are:

(1) In a binary map, set the top-left grid as the start point and the bottom-right grid as
the end point, if one of their binary values is not 0 or none is 0, the binary map is invalid
and the pre-defined path should be adjusted to redraw the binary map.

(2) The path to a grid can only be extended from its upper grid and left grid. Based on
this principle, we first calculate the 0 of grids in the first row and first column from the
start point down and right, respectively. Then, in left to right and top to bottom order, we
continue to calculate 0 of each grid until reaches the end point.

(3) Judge whether 0 of the end point is 0, if 0 = 0, as shown in Figure 11a, it proves
that there exists an all-0 path from the start point to the endpoint. If 0 6= 0, as shown in
Figure 11b, it proves that there exists no all-0 path from the start point to the end point, the
map is invalid.

4.4. Path Planning Algorithms
4.4.1. Dangerous Potential Fields

As shown in Figure 12a, a valid binary map may have several collision-free paths from
the start point to the end point, to select the optimal path from them, a collision-free path
planning algorithm based on a Map with Dangerous Potential Fields (MDPF) is proposed.
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The dangerous potential field of the map is used to evaluate the possibility of potential
collisions of its grids. As shown in Figure 12b, a grid is centered on the eight surrounding
grids, and the values `i in the surrounding grids represent their effect weights to the
dangerous potential field of the center grid. The dangerous potential field strength of
the center grid is Q = ∑8

i=0 `iLi, where Li is the binary value of its eight surrounding
grids, and for the four oblique grids, `i = 0.1, for the other grids, `i = 0.2. Calculating the
dangerous potential field strength of all grids in the binary map, we convert the binary map
into a digital map with the dangerous potential field, as shown in Figure 12c. We expect to
find an optimal path in the map with the dangerous potential field by the MDPF algorithm.
The optimal path has the smallest total value of the dangerous potential field of all grids on
the path, that is, the safest path with the lowest collision possibility.

4.4.2. MDPF Algorithm

Same as the all-0 path search algorithm in Section 4.3.3, the MDPF algorithm sets the
path start point at the top-left grid and the end point at the bottom-right grid, and 0 of all
grids are calculated in the same order. The difference is that the value at the top of the grid
represents the value of Q, and the bottom value 0 represents the sum of the Q of all grids
on the optimal path from the start point to it. In addition, the all-0 path search algorithm
uses 0 to determine whether a binary map is valid, but the MDPF algorithm aims to find
the safest path in the map with the dangerous potential field.

Since 0 of all grids are calculated in the forward direction, the optimal path of one
grid from the start point can be retracted based on the 0 value of other grids. For example,
in Figure 13, the path to grid G can only extend from grid C or grid D. Then we compare
the 0 of grid C and grid D, it can be found that 0 = 0.6 for A→C and 0 = 1.1 for A→D,
therefore, the path to grid G is extended from grid C. According to the principle that the
sub-path of the optimal path must also be optimal, the sub-path of the current path back
one step is also the optimal path. Therefore, the mechanism for the MDPF algorithm is to
find the optimal path by backtracking 0 from the end point to the start end in the map with
the dangerous potential field.
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From the end point, we compare the 0 values of its upper grid and left grid, and mark
the grid with smaller 0 as the target grid, then compare the 0 values of the upper grid and
left grid of the target grid, Following this step, the target grid can be backtracked to the
start grid and all the target grids form the optimal path. The MDPF algorithm achieves the
planning of the optimal path without traversing every path.

In the MDPF algorithm, for the current grid, if the 0 value of its upper grid is the same
as its left grid, different optimal paths will be obtained when setting different backtracking
directions, including priority to the left; priority to the upper; priority to the upper left; and
priority to the previous direction, etc.
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4.4.3. Check Path

The information contained in the optimal path obtained by the MDPF algorithm is the
time sequence for the planned joints to cross the N-multiplicity C-spaces on the pre-defined
path, and it can be translated into joint paths. Then, it should be stitched with the linear
joint paths of the planned joints together to form the complete joint paths of SMSRS from
the initial configuration to the final configuration. Check whether SMSRS has self-collision
under the complete joint paths, if there is no collision, it proves that the path is successfully
planned, and if there still exits collision, start the next joint path planning program from
locating the collision module. Until the complete joint paths are verified collision-free, the
path planning ends.

5. Settings
5.1. Parameter Setting of SMSRS

In this paper, SMSRS with nine modules and 25 DOFs is selected as the path planning
object, and Σb locates in its middle module, so there are four modules on both the a and
b sides of Σb. The DOFs of a side are 12, and, the DOFs of the b side are 13 due to the
existence of virtual joints. The body diagonal length of the module is 0.23 m. The D–H
parameters of SMSRS are shown in Table 1.

Table 1. D–H parameters of SMSRS.

D–H Parameters of a Side D–H Parameters of b Side

Link θa
i (deg) da

i (m) αa
i−1(deg) Aa

i−1(m) Link θb
i (deg) db

i (m) αb
i−1(deg) Ab

i−1(m)

1 0 0 0 0 v1-0 90 0 90 0
2 90 0 90 0.198 1-v 0 −0.243 90 0
3 −90 0.243 −90 0 2 −90 0 90 0
4 −90 0 −90 0 3 90 0 −90 0.198
5 90 0 90 0.198 4 −90 −0.243 −90 0
6 −90 0.243 90 0 5 −90 0 90 0
7 −90 0 −90 0 6 90 0 −90 0.198
8 90 0 90 0.198 7 −90 −0.243 −90 0
9 −90 0.243 90 0 8 −90 0 90 0

10 −90 0 −90 0 9 90 0 −90 0.198
11 90 0 90 0.198 10 −90 −0.243 −90 0
12 −90 0.243 90 0 11 −90 0 90 0
- - - - - 12 90 0 -90 0.198

The lower and upper limits of the joint angle are set as:

Ib =
[
−90 −90 −90 · · · −90

]T

ub =
[

90 90 90 · · · 90]T
(6)

5.2. Setting of Cases

This paper selects two cases to illustrate the application of the self-collision avoidance
method for SMSRS in detail and verifies the feasibility of this method.

5.2.1. Case 1

In case 1, the SMSRS moves from the initial configuration in Figure 14 to the final
configuration in Figure 15. qstarta

, qstartb
are, respectively, the initial angles of joints on
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both a and b sides of Σb, and qenda
, qendb

are, respectively, the final angles of joints on both
a and b sides of Σb.

qstarta
= [0, 0, 0, 90, 0, 0, 0, 0, 0, 90, 0, 0]

qstartb
= [0, 0, 0,−90, 0,−90, 0, 0,−30, 0, 0, 0]

qenda
= [0, 0, 0,−90, 0,−90, 0, 0,−30, 0, 0, 0]

qendb
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(7)

Aerospace 2022, 9, 141 17 of 28 
 

 

5.2.1. Case 1 
In case 1, the SMSRS moves from the initial configuration in Figure 14 to the final 

configuration in Figure 15. 𝒒𝒔𝒕𝒂𝒓𝒕𝒂, 𝒒𝒔𝒕𝒂𝒓𝒕𝒃 are, respectively, the initial angles of joints on 
both a and b sides of 𝛴௕, and 𝒒𝒆𝒏𝒅𝒂, 𝒒𝒆𝒏𝒅𝒃 are, respectively, the final angles of joints on 
both a and b sides of 𝛴௕. 𝒒𝒔𝒕𝒂𝒓𝒕𝒂 = ሾ0,0,0,90,0,0,0,0,0,90,0,0ሿ𝒒𝒔𝒕𝒂𝒓𝒕𝒃 = ሾ0,0,0, −90,0, −90,0,0, −30,0,0,0ሿ𝒒𝒆𝒏𝒅𝒂 = ሾ0,0,0, −90,0, −90,0,0, −30,0,0,0ሿ𝒒𝒆𝒏𝒅𝒃 = ሾ0,0,0,0,0,0,0,0,0,0,0,0ሿ  (7) 

 
Figure 14. Initial configuration of SMSRS in case 1. 

 
Figure 15. Final configuration of SMSRS in case 1. 

As shown in Figure 16, modules will collide when joints of the SMSRS moves in linear 
joint paths. 

 
Figure 16. SMSRS reconfigure in linear joint paths in case 1. 

Figure 14. Initial configuration of SMSRS in case 1.

Aerospace 2022, 9, 141 17 of 28 
 

 

5.2.1. Case 1 
In case 1, the SMSRS moves from the initial configuration in Figure 14 to the final 

configuration in Figure 15. 𝒒𝒔𝒕𝒂𝒓𝒕𝒂, 𝒒𝒔𝒕𝒂𝒓𝒕𝒃 are, respectively, the initial angles of joints on 
both a and b sides of 𝛴௕, and 𝒒𝒆𝒏𝒅𝒂, 𝒒𝒆𝒏𝒅𝒃 are, respectively, the final angles of joints on 
both a and b sides of 𝛴௕. 𝒒𝒔𝒕𝒂𝒓𝒕𝒂 = ሾ0,0,0,90,0,0,0,0,0,90,0,0ሿ𝒒𝒔𝒕𝒂𝒓𝒕𝒃 = ሾ0,0,0, −90,0, −90,0,0, −30,0,0,0ሿ𝒒𝒆𝒏𝒅𝒂 = ሾ0,0,0, −90,0, −90,0,0, −30,0,0,0ሿ𝒒𝒆𝒏𝒅𝒃 = ሾ0,0,0,0,0,0,0,0,0,0,0,0ሿ  (7) 

 
Figure 14. Initial configuration of SMSRS in case 1. 

 
Figure 15. Final configuration of SMSRS in case 1. 

As shown in Figure 16, modules will collide when joints of the SMSRS moves in linear 
joint paths. 

 
Figure 16. SMSRS reconfigure in linear joint paths in case 1. 

Figure 15. Final configuration of SMSRS in case 1.

As shown in Figure 16, modules will collide when joints of the SMSRS moves in linear
joint paths.
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5.2.2. Case 2

In case 2, the SMSRS moves from the initial configuration in Figure 17 to the final
configuration in Figure 18. qstarta

, qstartb
are, respectively, the initial angles of joints on
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both a and b sides of Σb, and qenda
, qendb

are, respectively, the final angles of joints on both
a and b sides of Σb.

qstarta
= [0, 0, 0, 90, 0, 90, 90, 0, 0, 90, 30, 0]

qstartb
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

qenda
= [0, 0, 0, 90, 0,−90, 90, 0, 0, 90, 0, 0]

qendb
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(8)
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As shown in Figure 19, modules will collide when joints of the SMSRS moves in linear
paths.
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5.3. Setting of Algorithm

For case 1 and case 2, N = 180, and set the number of samples to ϑ = 40,000. All
algorithms are implemented in MATLAB 2012a and run on the same machine with an
Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz and 8 G memory.

6. Simulation Results and Analysis
6.1. Case 1
6.1.1. Locate Collide Modules and Determine Planned Joints

Case 1 sets the joints moving from the initial angles to the final angles in linear paths.
According to the collision detection model in Section 3 and the method for locating collision
modules in Section 4.1, the two terminal modules of SMSRS are located as the collision
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modules by real-time detection, and the collision time sequence is (71, 364) when the total
time of collision process is divided into 1000 segments.

According to the selection principle of the planned joints in Section 4.2, θ
p
1 is set as the

tenth joint on a side and θ
p
2 is set as the seventh joint on a side for case 1.

(
θ

p
1_start, θ

p
2_start

)
=

(86.31, 3.65),
(

θ
p
1_end, θ

p
2_end

)
= (52.74, 37.26),

( (
θ

p
1

)
min

(
θ

p
1

)
max

)
= (−90, 90),( (

θ
p
2

)
min

(
θ

p
2

)
max

)
= (−90, 90).

6.1.2. Spliced C-Space

Follow the steps in Section 4.3.1 to create the 180-multiplicity C-spaces. When both of
the planned joints are motion joints, their paths are pre-defined as shown in Figure 10a. For
each pre-defined path, we judge whether the binary map generated by splicing C-space
under this pre-defined path is valid, and, if it is not, we re-select the pre-defined path
according to the principles in Section 4.3.2.

After multiple iterations shown in Figure 20, one pre-defined path is found as the
needed pre-defined path because the binary map generated by splicing 180-multiplicity
C-spaces under it is valid, and it is marked obviously in Figure 20.
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Under the final pre-defined path, we splice 180-multiplicity C-spaces following steps
in Section 4.3.3 and obtain the binary map shown in Figure 21. In the binary map, (0, 0) is
the start point of the path, and (180, 37) is the end point, and there exist accessible paths
from the start point to the end point.
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Figure 21. Binary map of case 1.

6.1.3. Path Planning

The map with the dangerous potential field can be obtained by calculating the danger-
ous field strength of all grids in the binary map. In the map with the dangerous potential
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field, the MDPF algorithm could for search the collision-free path. Different paths will be
obtained when setting different priority backtracking directions in the MDPF algorithm.
Figure 22 shows the different collision-free paths founded by the MDPF algorithm. Among
them, the priority backtracking directions set for path 1 is the previous direction, for path 2
is the bottom-left, for path 3 is the below, and for path 4 is the left.
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Figure 22. Collision-free paths founded by the MDPF algorithm in the map with the dangerous
potential field for case 1.

6.1.4. Check Path

The collision-free path in the map with the dangerous potential field contains the
information of the time sequence of the planned joint from the first to the Nth multiplicity
C-space based on the pre-defined path. we translate the collision-free path into the angle
curves of planned joints in Figure 23.
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Figure 23. Angle curves of planned joints under four collision-free paths.

Maintaining the linear curves of joints when no self-collision occurs and inserting
planned angle curves in Figure 21 into them, complete curves of all motion joints of the
SMSRS are shown in Figure 24. We analyze the reconfiguration processes of SMSRS under
these angle curves, and they are shown in Figure 25. Under different angle curves, the
reconfiguration processes of SMSRS are different, but they can successfully avoid the
self-collision in common.
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Figure 24. Paths of all motion joints of the SMSRS under four collision-free paths: (a) path 1, (b) path
2, (c) path 3 and (d) path 4.
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6.2. Case 2
6.2.1. Locate Collide Modules and Determine Planned Joints

Case 2 sets the joints moving from the initial angles to the final angles in linear paths.
According to the collision detection model in Section 3 and the method for locating collision
modules in Section 4.1, the first and fifth modules on a side of SMSRS are located as the
collision modules by real-time detection, and the collision time sequence is (245, 835) when
the total time of collision process is divided into 1000 segments.

6.2.2. Spliced C-Space

According to the principles in Section 4.2 to select planned joints, they are set as two
motion joints: θ

p
1 is the eleventh joint on a side and θ

p
2 is the sixth joint on a side. And(

θ
p
1_start, θ

p
2_start

)
= (24.15, 54.9),

(
θ

p
1_end, θ

p
2_end

)
= (3.45,−69.3),

((
θ

p
1

)
min

,
(

θ
p
1

)
max

)
=

(−90, 90),
((

θ
p
2

)
min

,
(

θ
p
2

)
max

)
= (−90, 90). The 180-multiplicity C-spaces are built follow-

ing the steps in Section 4.3.1. However, after pre-defining paths according to the principles
in Figure 10a, the binary map generated by splicing C-space under each pre-defined path
of current planned joints is invalid, it proves the planned joints cannot avoid self-collision
of SMSRS after path planning.

In this case, we reselect the planned joint and set θ
p
1 as the eleventh joint on a side and

θ
p
2 as the tenth joint on a side. At this point, the 180-multiplicity C-spaces are re-built using

the random sampling method following steps in Section 4.3.1. After multiple iterations
shown in Figure 26, one pre-defined path is found as the needed pre-defined path because
the binary map generated by splicing 180-multiplicity C-spaces under it is valid, and it is
marked obviously in Figure 26.
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Under the final pre-defined path, splice 180-multiplicity C-spaces following steps in
Section 4.3.3, and the binary map is shown in Figure 27. In the binary map, (0, 0) is the start
point of the path, and (180, 37) is the end point, and there exist accessible paths from the
start point to the end point.

6.2.3. Path Planning

The map with the dangerous potential field can be obtained by calculating the danger-
ous field strength of all grids in the binary map. In the map with the dangerous potential
field, the MDPF algorithm could search for the collision-free path. Different paths will be
obtained when setting different priority backtracking directions in the MDPF algorithm.
Figure 28 shows the different collision-free paths founded by the MDPF algorithm. Among
them, the priority backtracking directions for path 1 is the previous direction, for path 2 is
the bottom-left, for path 3 is the below, and for path 4 is the left.
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Figure 28. Collision-free paths founded by the MDPF algorithm in the map with a dangerous
potential field for case 2.

6.2.4. Check Path

The collision-free path in the map with the dangerous potential field contains the
information of the time sequence of the planned joint from the first to the Nth multiplicity
C-space based on the pre-defined path. we translate the collision-free paths into the angle
curves of planned joints in Figure 29.

Maintaining the linear curves of joints when no self-collision occurs and inserting
planned angle curves in Figure 29 into them, complete curves of all motion joints of the
SMSRS are shown in Figure 30. We analyze the reconfiguration processes of SMSRS under
these angle curves, and they are shown in Figure 31. Under different angle curves, the
reconfiguration processes of SMSRS are different, but they can successfully avoid the
self-collision in common.

We observe that some segments of angle curves of planned joints change very sharply,
such as the curve of θ10

a in Figure 28, which will lead to rapid changes of joint speeds
and accelerations, even beyond their limits. However, the curves only reflect the path of
joint angle and with no correspondence to time. Therefore, there are several ways to solve
the problem:

1. If there is no limitation on the configuration time, we could extend the movement
time of segments with sharp changes on the angle curves until the joint speeds and
accelerations are within limitations;

2. Further improve the collision-free path planning algorithm by adding optimization
objectives and constraints to find smoother joint paths; and

3. Select key points in the angel curves and deep plan the paths between these points to
satisfy the joint velocity and acceleration constraints.
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Figure 29. Angle curves of planned joints under four collision-free paths.
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Figure 30. Paths of all motion joints of the SMSRS under four collision-free paths: (a) path 1, (b) path
2, (c) path 3 and (d) path 4.
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Figure 31. Reconfiguration processes of SMSRS under four collision-free paths. (a) path 1, (b) path 2,
(c) path 3 and (d) path 4.

7. Conclusions

SMSRS uses structural reconfiguration to achieve multi-mission capabilities. The
research on self-collision avoidance in the reconfiguration process of SMSRS is particularly
important for its safety, but it is still vacant because of the original and super-redundant
structure. Based on the analysis of the characteristics of SMSRS and the summary of existing
studies on the self-collision avoidance problem, we propose a method for self-collision
avoidance of SMSRS, which includes a suitable collision detection model and an innovative
self-collision avoidance strategy.

The collision detection model based on forward kinematics and the spherical nonholo-
nomic envelope is capable of collision detection at a low computational cost for SMSRS.
By comparison, offline path planning is the applicable self-collision avoidance strategy
for SMSRS. The idea of splicing the multiple C-spaces based on pre-defined paths into a
binary map solves the difficulty in joint path planning resulting from the dynamic change
of module position, it successfully transforms the path search in joint space into time
sequence planning based on the pre-defined path for planned joints. It provides a basis
for collision-free path planning. Converting the binary map into a map with dangerous
potential fields and searching for the safest path using the MDPF algorithm was proved
can avoid self-collisions successfully. The planned joint angle curve lays the foundation for
subsequent in-depth path planning and trajectory planning.

The proposed method of self-collision avoidance meets the needs of SMSRS and
proved to be effective, which fills the gap of offline path planning research for self-collision
avoidance of new self-configuration satellites to a certain extent. There are also implications
for offline path planning of other self-configuration systems. Future works will focus
on simplifying the steps of the method and the in-depth path planning and trajectory
optimization for SMSRS with single or multiple optimization objectives.
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