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As an important part of renewable energy, wind power is crucial to the

realization of carbon neutrality. It is worth studying on how to accurately

predict the wind output so that it can be integrated into the power grid as

much as possible to enhance its utilization rate. In this article, a data

enhancement method and a framework are proposed to assist wind power

forecasting. The proposed method uses the super-resolution perception

technology to first detect the completeness and correctness of historical

meteorological and wind power data collected by industrial devices. Then,

the detected errors are corrected and the missing data are recovered to make

the data complete. The frequency of the data is then increased using the

proposed method so that the data become complete high-frequency data.

Based on the enhanced complete high-frequency data with more detailed

characteristics, more accurate forecasts of wind power can be achieved,

thereby improving the utilization rate of wind power. Experiments based on

public datasets are used to demonstrate the effectiveness of the proposed

method and framework. With the proposed method and framework, higher

frequency data with more detailed information can be achieved, thereby

providing support for accurate wind power prediction that was not possible

before.
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1 Introduction

The emission of greenhouse gases (GHG) leads to the continuous increase in global

temperature, and the resulting climate change with frequent extreme weather is attracting

attention worldwide (Liu et al., 2022). To cope with global climate change, many countries

have set targets to limit carbon dioxide emissions; for example, the European Union,

China, and the United States announced plans to achieve carbon neutrality before 2050,

2060, and 2050, respectively. To reduce carbon dioxide emissions, it is necessary to reduce

the use of fossil fuels. As an alternative to fossil energy, renewable energy will account for a
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substantial increase in the proportion of electricity in the future.

Wind power is a vital source of renewable energy and will be

vigorously developed. According to the GWEC 2021 of the

Global Wind Energy Council, the new global installed

capacity in 2020 is 93 GW, with a 53% year-on-year increase

rate, and the global installed wind power capacity exceeded

742 GW by 2020 (GWEC, 2021).

Due to the randomness of wind speed, the generation of wind

power is intermittent, and its large-scale integration into power

grids will bring great challenges to the security and stability of

power grids (Wang et al., 2021). To deal with the instability of

power generation, a certain proportion of reserve services needs

to be configured, and most of the units providing these services

are thermal power units (Welikala et al., 2017). Most of the time,

these units operate under inefficient conditions, which is not only

a huge waste of investment but also brings additional impacts

such as more carbon dioxide emissions to the environment.

Therefore, how to use historical data to accurately predict wind

power forecasting is a very valuable task. Short-term wind power

forecasting is to predict the short-term power generation of wind

farms, thereby reducing the uncertainty of wind power

generation (Khazaei et al., 2022). Therefore, the accurate

prediction of short-term wind power is of great significance

for increasing the proportion of wind power integration into

power grids, ensuring the safety and stability of power grids, and

mitigating climate change.

However, accurate short-term wind power forecasting is a

difficult problem. Many meteorological factors, such as wind

speed, wind direction, and temperature, may affect the

generation of wind power. Therefore, the generation of wind

power often presents nonlinear uncertainty. There are many time

series and classic machine learning methods used for short-term

wind power forecasting, including the autoregressive moving

average (ARMA) (Gomes and Castro, 2012), autoregressive

integrated moving average (ARIMA) (Azimi et al., 2016),

seasonal autoregressive integrated moving average (SARIMA)

(Liu et al., 2021), and the generalized autoregressive conditional

heterosked (GARCH) model (Chen et al., 2018). With the

application of machine learning in various fields, some classic

machine learning algorithms including support vector regression

(SVR) (Ranganayaki and Deepa, 2017), classification and

regression tree (CART) (González et al., 2015), and Gaussian

process regression (GPR) (Fang and Chiang, 2016) are also used

for short-term wind power forecasting. Due to the limitation of

their learning ability, these methods cannot meet the

requirements of achieving high-frequency accurate wind

power forecasting. With their strong nonlinear learning

ability, deep neural networks have achieved remarkable results

in image processing, speech recognition, natural language

processing, etc. There are also some studies on short-term

wind power forecasting, such as deep belief network (DBN)

(Wang et al., 2018), recurrent neural network (RNN) (Kumar

et al., 2021), long short-term memory (LSTM) (Shahid et al.,

2020), convolutional neural network (CNN) (Yu et al., 2020),

semi-supervised generative adversarial network (SSGAN) (Zhou

et al., 2021), and spatiotemporal attention networks (SAN) (Fu

et al., 2019). Among them, the SSGAN has better generalization

ability than other deep neural networks, and it is a semi-

supervised learning method, which requires less data and is

more practical.

Existing studies are based on data collected at the inherent

sampling frequency of terminal devices such as Internet-of-

things (IoT) devices and do not consider the utilization of

higher-frequency complete data with more detailed

information. Higher-frequency complete data can not only

provide more detailed information for accurate wind power

forecasting but also help achieve a shorter forecast period,

thereby facilitating wind power to be efficiently integrated

into power grids. Collecting high-frequency data is a

challenging task with several problems. First, collecting

high-frequency data requires the installation of high-

frequency meters to replace the installed low-frequency

meters, which will be an additional investment and a

resource waste. Second, the transmission of high-frequency

data requires a large amount of bandwidth, which requires

upgrading the existing communication network to improve

the data transmission capacity. Third, even if high-frequency

data are collected and transmitted to where it is needed

(such as a data center), massive storage space is required to

store the data. Therefore, it is a more practical solution

to recover high-frequency data from existing low-frequency

data. There are some studies on improving the frequency of

data, such as linear interpolation, binary interpolation,

ARIMA, and backpropagation-artificial neural network

(BP-ANN), but they have problems such as large errors,

poor quality, or low computational efficiency (Liu et al.,

2020; Liang et al., 2020). SRP is a technology that uses

advanced artificial intelligence technologies to recover low-

frequency incomplete data to obtain high-frequency complete

data; its effectiveness has been verified in many areas.

For example, in the study by Liang et al. (2020), super-

resolution perception net for state estimation (SRPNSE)

is proposed for improving data completeness in smart grid

state estimation. A super-resolution perception convolutional

neural network (SRPCNN) is proposed in the study by

Liu et al. (2020) to generate high-frequency load data from

low-frequency data collected by smart meters. A monthly-

super-resolution perception convolutional neural network

(M-SRPCNN) is proposed in the study by de-Paz-Centeno

et al. (2021) to up-sample monthly energy consumption

measured at hourly resolution. Compared with other data

quality improvement methods, the SRP method has the

advantages of higher efficiency, better quality, and richer

information. Therefore, the application of SRP technologies

to enhance wind power forecasting is a very valuable research

topic.
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Against this background, super-resolution perception wind

power net (SRPWPN) is proposed based on SRP in this article to

enhance the completeness and frequency of data used in wind

power forecasting. The proposed method combines the attention

mechanism and residual network, which can provide accurate

data support for wind power forecasting. The main contributions

of this article are described as follows:

1) This article is the first to formalize the SRP problem for short-

term wind power forecasting and propose a corresponding

framework to solve the proposed problem.

2) This article is the first to propose the SRPWPN to improve the

quality of historical data to obtain complete high-frequency

data, thereby providing more detailed information for more

accurate and higher-frequency wind power forecasting. The

SRPWPN provides more detailed information and higher

quality data for the current short-term wind power

forecasting task.

3) Based on public datasets, the effectiveness of the proposed

method and framework is verified using experiments,

demonstrating their data enhancement capability for short-

term wind power forecasting. In addition, experiments also

demonstrate that the proposed method can provide complete

data with higher frequency, more detailed information, and

higher quality.

The rest of this article is organized as follows: Section 2

formulates the problems of SRP for short-term wind power

forecasting and short-term wind power forecasting. The

methodology is introduced in Section 3. Experiments and

numerical simulation results are reported and discussed in

Section 4. Finally, Section 5 concludes this article.

2 Problem formulation

2.1 Problem formulation of SRP for short-
term wind power forecasting

The purpose of SRP for wind power forecasting is to recover

high-frequency complete data from the incomplete low-

frequency data collected by terminal devices, thereby

supporting more accurate wind power forecasting. The

historical incomplete low-frequency data ILF includes features

such as wind power, wind direction, wind speed, temperature,

pressure, and density, which are expressed as follows:

ILF � {ilf0
0, ilf

1
0, . . . , ilf

n
0 , ilf

0
1, ilf

1
1, . . . , ilf

n
1, . . . , ilf

n
t }, (1)

where t represents the time index and n represents the number of

features. Compared with ILF, complete high-frequency data

CHF are more densely indexed in temporal dimension. The

relationship between complete high-frequency data CHF and

incomplete low-frequency data ILF is expressed as follows:

ILF � ↓αCHF + e, (2)
where ↓α represents the degradation function, α is the down-

sampling factor, and e represents noise caused by sampling

devices. The goal of SRP is to find a function f(·) such that

its output ĈHF is as close as possible to the complete high-

frequency data CHF, which can be expressed as follows:

ĈHF � f(ILF) � ↑βCLF (3),

where ↑β is the SRP function which is implemented by a deep

neural network and β is the SRP factor. For example, given

incomplete low-frequency data ILF with a sampling interval of

15 min, when the SRP factor β is three, SRP can obtain complete

high-frequency data ĈHF with a sampling interval of 5 min.

2.2 Problem formulation of short-term
wind power forecasting

Short-term wind power forecasting is based on historical data

to predict wind power generation for some time in the future,

where the historical dataXwith t time steps and n features can be

expressed as follows:

X � {x0
0, x

1
0, . . . , x

n
0, x

0
1, x

1
1, . . . , x

n
1, . . . , x

n
t }. (4)

The wind power forecasting task for k time steps in the future

at time t can be expressed as follows:

Ŷ � g(X|θ) + ε (5),

where Ŷ is the predicted wind power generation with k time steps

in the future at time t, g(·|θ) represents the relationship function
described by themodel parameter set θ that uses historical data to

predict future wind power generation, and ε is the forecasting

error. Therefore, the goal of model g(·|θ) is to make prediction

result Ŷ as close as possible to actual data Y. Actual data Y are

expressed as follows:

Y � {xp
t+1, x

p
t+2, . . . , x

p
t+k}. (6)

3 Methodology

3.1 The framework of short-term wind
power forecasting with SRP

The goal of SRP is to enhance the frequency and quality of

historical data to achieve more accurate short-term wind power

forecasting, so a framework for short-term wind power

forecasting based on SRP is proposed to achieve the above

goal. The framework is shown in Figure 1. First, the historical

data containing six features such as wind speed and wind power

are used as the input of the data preprocessing part as incomplete

low-frequency data. Those missing values, duplicate values,
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outliers, etc., are all processed, and the data are also normalized to

obtain low-frequency data. Then the low-frequency data are used

as the input of the SRP part, and the complete high-frequency

data are obtained by enhancing the historical data through the

SRP part. Then based on the complete high-frequency data

obtained by SRP, the wind power forecasting method can

predict the target wind power generation.

3.2 Super-resolution perception wind
power net

SRPWPN is proposed to enhance the historical data, and

its structure is shown in Figure 2. Data CHF ↓↑ represent the

data obtained by data CHF first through bicubic down-

sampling and then bicubic up-sampling. ILF ↑ represents

the data up-sampled by the bicubic function. Incomplete

low-frequency data ILF are first extracted by three two-

dimensional (2D) convolutional layers to achieve feature

extraction and then used as the input for the next 16 super-

resolution perception blocks (SRPB). In SRPB, the data are

used as the input of the 2D convolutional layer, and then the

corresponding output is normalized, and then the above

process is repeated. F represents the identity mapping,

which is added to the previous calculation results, and the

rectified linear unit (ReLU) function is used for activation

(Agarap, 2018).

CHF, CHF ↓↑, and ILF ↑ are mapped to V, K, and Q by

three 2D convolutional layers, respectively. To calculate the

similarity between Q and K, Q and K are first sliced into

patches denoted as qi and kj, then these patches are

normalized by Eqs 7, 8, respectively. The similarity between qi
and kj is obtained by Eq. 9 to form the correlation Similarityij.

For the hard attention part, element bi of hard attention map B is

calculated by Eq. 10, and then used together with V as the input

of the hard attention operation. In the hard attention operation,

the index selection operation is shown in Eq. 11, where di is the

element of D and vi is the element of V. After the hard attention

operation,D and outputA of SRPB are concatenated as the input

E of soft attention operation. In the soft attention part, element ci
of the hard attention map C is calculated by Eq. 13, and then also

used as the input of the soft attention operation. Then, the

convolution operation is performed on E to get the result

Ecov. The results Ecov and C are element-wise multiplicated

directly through Eq. 13, where ⊙ represents the element-wise

multiplication. Finally, EC and A are added together to get the

final output ĈHF.

qnormi � qi����qi
����

(7)

knormj � kj����kj
����

(8)

Similarityij � 〈 qi����qi
����
,

kj����kj
����
〉 (9)

bi � argmax
j

Similarityij (10)

di � vbi (11)
ci � max

j
Similarityij (12)

EC � Ecov ⊙ C (13)

4 Experiments

The experiments are divided into two parts: one part is to use

SRPWPN to enhance historical data, and the other part is to

perform short-term wind power forecasting on the recovered

data and original data. For the first part, the following three

experiments were performed:

1) The sampling interval of incomplete low-frequency data is

15 min, and the SRP factor β is three.

2) The sampling interval of incomplete low-frequency data is

10 min, and the SRP factor β is two.

3) The sampling interval of incomplete low-frequency data is

1 h, and the SRP factor β is six.

FIGURE 1
Framework of short-term wind power forecasting with SRP.
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Experiments Eqs 1, 2 are conducted on the dataset

National Renewable Energy Laboratory (NREL), and

experiment (3) is conducted on the dataset The La Haute

Borne (TLHB). For the second part, three short-term wind

power forecasting methods, CNN, LSTM, and SSGAN,

perform short-term wind power forecasting on the

complete high-frequency data recovered by SRP and the

original high-frequency data, respectively.

4.1 Dataset description

Two datasets were used in the experiments. The first dataset is

from the National Renewable Energy Laboratory (NREL). There

are six wind farms used for the experiments in NREL, their site

IDs are 123229, 123815, 123978, 124043, 124044, and 124045,

respectively. NREL contains meteorological information such as

wind direction, wind speed, temperature, pressure, and density, as

FIGURE 2
Super-resolution perception wind power net.
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well as wind power for each wind farm. The time range of the data

is from 2012-01-01 00:00:00 to 2013-12-31 23:55:00, where the

time interval between two consecutive points is 5 min. The

abstract information of the used six wind farms is shown in

Table 1, where capacity factor represents the average power

output divided by the wind turbine’s maximum power

capability. The second dataset is the La Haute Borne (TLHB)

wind farm, which is located in the Grand Est of northeastern

France. There are four wind turbines in TLHB, their site IDs are

R80711, R80721, R80736, and R80790, respectively. Other

variables, such as wind speed, wind direction, and temperature,

are also included in this dataset. The time range of the data is from

TABLE 1 Information of six wind farms.

Index Site ID Latitude Longitude Capacity Capacity factor

1 123229 48.716766 −101.827454 16 0.437

2 123815 48.870552 −101.73111 16 0.426

3 123978 48.895412 −101.98913 16 0.435

4 124043 48.91811 −101.90655 16 0.388

5 124044 48.91947 −101.87832 16 0.398

6 124045 48.92083 −101.85009 16 0.403

FIGURE 3
Graphs of historical data for three different wind farms in NREL.
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2017-01-01 00:00:00 to 2018-01-13 00:00:00, where the time

interval between two consecutive points is 10 min.

4.2 Exploratory data analysis

For NREL, three wind farms with site IDs of 123815, 124043,

and 124045 are selected for exploratory data analysis, where

temperature, wind speed, and wind power are selected as

represented features for visualization. Figure 3 shows the

historical data graphs of the represented features for the three

wind farms. It can be seen that the temperature has obvious

periodicity due to seasonal changes, while the wind speed does

not have a similar periodicity as the temperature. The wind power

related to the strongwind speed has almost the same pattern in every

season. In addition, the maximum value of wind power is 16MW,

even if the wind speed does not reach the maximum value at the

corresponding time. The reason is that when the wind speed exceeds

the rated wind speed of the wind turbine and is less than the cut-out

wind speed, and the wind turbinewill generate constant power at the

rated power. The wind power is zero at certain time points because

the wind speed at those time points is lower than the cut-in wind

speed of the wind turbine. For TLHB, two wind farms with site IDs

R80711 and R80721 are selected, where absolute wind direction,

wind speed, wind power, and outdoor temperature are selected

represented features. The historical data of the represented features

are shown in Figure 4. The wind power of the two wind farms is

between 0 and 2,000 kW, and is not significantly affected by the

season. Therefore, periodicity is not considered in the experiments,

but these features are used directly.

FIGURE 4
Graphs of historical data for two different wind farms in TLHB.

TABLE 2 Experimental results of different methods on NREL (MAPE on 15 min/10 min).

Site ID LI BI ARIMA BP-ANN SRPCNN SRPWPN

123229 27.92%/26.35% 31.83%/29.13% 26.63%/24.41% 22.72%/21.95% 9.88%/6.37% 3.26%/2.04%

123815 26.15%/25.03% 30.95%/27.84% 22.95%/20.19% 21.03%/19.94% 10.27%/8.52% 3.34%/2.10%

123978 25.98%/24.59% 28.72%/24.72% 24.86%/21.74% 22.65%/21.59% 9.15%/6.76% 3.23%/1.93%

124043 28.13%/26.87% 29.70%/25.28% 23.43%/21.26% 21.46%/20.73% 10.53%/7.52% 3.29%/2.08%

124044 26.34%/23.05% 30.18%/26.31% 25.48%/22.83% 20.87%/18.65% 8.84%/7.91% 3.35%/1.97%

124045 24.82%/21.86% 31.99%/28.63% 22.19%/20.04% 21.32%/19.48% 9.77%/7.15% 3.20%/1.99%

The bold characters is to emphasis the results which indicates the results are better than other methods.
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FIGURE 5
SRPWPN on historical data with site IDs 123229 and 123815 in NREL.

TABLE 3 Experimental results of different methods on TLHB.

Site ID LI (%) BI (%) ARIMA (%) BP-ANN (%) SRPCNN (%) SRPWPN (%)

R80711 35.58 42.47 29.05 25.82 15.49 8.08

R80721 36.04 41.53 30.82 26.93 16.85 7.75

R80736 34.65 39.49 31.37 24.18 14.64 8.49

R80790 33.60 38.35 28.64 25.04 15.06 7.37

The bold characters is to emphasis the results which indicates the results are better than other methods.

FIGURE 6
SRPWPN on historical data with site IDs R80711 and R80721 in TLHB.
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4.3 Data preprocessing

The historical data in NERL are down-sampled by Eq. 14 to

obtain data with sampling intervals of 15 and 10 min,

respectively. xhf is the original high-frequency data, and the

down-sampling factors α are three and two, respectively.

Similarly, for TLHB, the sampling interval of down-sampled

data is 1 h and the down-sampling factor α is six. Then the data

are checked for missing data, and if there are missing data, then

they are filled with the mean of the corresponding feature. Next,

duplicate data are checked according to timestamps, and deleted

if they exist. Then, each feature is detected and processed for

outliers according to the method in reference (Liu et al., 2022).

After that, each feature in the historical data is normalized by Eq.

15, where xnorm denotes the normalized result, x include the

original data, x min denotes the minimum value of this feature,

and xmax denotes the maximum value of this feature.

x � ↓αxhf (14)
xnorm � x − x min

x max − x min
(15)

4.4 Experimental results of SRP for
enhancing historical data

SRPWPN performs SRP on historical data from NREL with

sampling intervals of 15 and 10 min, resulting in complete high-

frequency data with a sampling interval of 5 min after

enhancement. Similarly, SRP recovers data with a sampling

frequency of 1 hour in TLHB to obtain data with a frequency

of 10 min; 75% of the historical data is used for model training,

5% is used for model validation, and 20% is used to evaluate

model performance. The loss function used by SRPWPN is

defined as follows:

loss � ����y − ŷ
����22, (16)

where y represents the real data and ŷ represents the recovered

data by SRPWPN. For model training of SRPWPN, Adam was

chosen as the optimizing algorithm (Kingma and Ba, 2014). The

mean absolute percentage error (MAPE) is used as the metric for

evaluating the performance of SRPWPN, which is shown as

follows:

MAPE � 1
ND

∑ND

nd�1

∣∣∣∣∣∣∣∣
ynd − ŷnd

ynd

∣∣∣∣∣∣∣∣ × 100%, (16a)

where ND denotes the number of data points, ynd is the real

value of nd-th data point, and ŷnd is the recovered value of nd-th

data point. To verify the experimental effect of SRPWPN, linear

interpolation (LI), binary interpolation (BI), ARIMA, BP-ANN,

and SRPCNN are added to the experiment as comparative

methods.

The experimental results of SRPWPN on NREL are shown

in Table 2. It can be seen that SRPWPN has a good

performance on the historical data of the six wind farms in

NREL, and the minimum MAPE is 1.93%, which means that

the minimum error does not exceed 2%. In addition, the

maximum MAPE is only 3.35%, which means that

SRPWPN has very stable and excellent performance in

enhancing historical data. The performance of SRPWPN on

data with a sampling interval of 10 min is better than that with

TABLE 4 MAPE results of short-term wind power forecasting on TLHB.

Index Site ID CNN (%) CNN_SRP (%) LSTM (%) LSTM_SRP (%) SSGAN (%) SSGAN_SRP (%)

1 123229 6.59 7.52 4.18 5.27 3.28 4.67

2 123815 6.61 7.75 4.09 5.09 3.24 4.93

3 123978 6.45 7.50 4.18 5.18 3.31 4.74

4 124043 6.35 7.62 4.37 5.06 3.15 4.73

5 124044 6.63 7.47 4.29 5.16 3.25 4.98

6 124045 6.47 7.45 4.39 4.61 3.59 4.98

TABLE 5 MAPE results of short-term wind power forecasting on NREL.

Index Site ID CNN (%) CNN_SRP (%) LSTM (%) LSTM_SRP (%) SSGAN (%) SSGAN_SRP (%)

1 R80711 8.54 8.93 6.49 6.96 5.47 6.14

2 R80721 9.73 10.92 7.82 9.24 5.03 6.32

3 R80736 8.39 9.85 7.93 8.59 6.71 5.85

4 R80790 9.04 10.47 6.51 7.88 5.23 5.96
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a sampling interval of 15 min, which means that a larger SRP

factor needs to recover more detailed information and is more

challenging. Figure 5 shows the actual effect of SRPWPN on

the historical data of NREL with site IDs 123229 and 123815.

The subfigures in the first row show the SRP effect of wind

speed and wind power with site ID 123229, and the second

row shows the SRP effect of wind speed and wind power with

site ID 123815. It can be seen that most of the detailed

information is recovered in SRPWPN, and the experiments

with a smaller SRP factor have better results. Table 3 shows the

experimental results of SRPWPN on TLHB. The minimum

MAPE is 7.37%, which means that the minimum error does

not exceed 7.5% and is slightly worse than the result on NREL.

Since the maximum MAPE does not exceed 8.5%, this proves

that SRPWPN has a similarly excellent performance. The

actual effect of SRPWPN on TLHB with site IDs

R80711 and R80721 is shown in Figure 6. The subfigures in

the first row show the SRP effect of absolute wind direction,

wind speed, wind power, and outdoor temperature with site

ID R80711, and the second row shows the SRP effect of wind

speed and wind power with site ID R80721. When the actual

value fluctuates greatly, SRPWPN can also learn its internal

FIGURE 7
SSGAN on site IDs 123229 and 123815 in NREL.

FIGURE 8
SSGAN on site IDs R80711 and R80721 in TLHB.
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relationship well and reconstruct the corresponding

information accurately. Taking the wind power of

R80711 as an example, although its value decreased from

near 1,900 KW to around 300 KW at around 10 pm,

SRPWPN still recovered it accurately. It can be seen that

most of the detailed information is recovered in SRPWPN.

4.5 Experimental results of short-term
wind power forecasting with super-
resolution perception wind power net

The experimental results of different short-term wind

power forecasting methods on real high-frequency data and

high-frequency data recovered by SRPWPN are compared to

demonstrate that SRPWPN can provide almost the same

information as high-frequency data. To verify the

effectiveness of the complete high-frequency data recovered

by SRPWPN, three short-term wind power forecasting

methods including CNN, LSTM, and SSGAN are used in

the experiments. For NREL, the three methods perform

short-term wind forecasts on complete high-frequency data

with a real sampling interval of 5 minutes and data with a

sampling interval of 5 minutes recovered by using SRPWPN

from incomplete low-frequency data with a sampling interval

of 10 min. For TLHB, the three methods perform short-term

wind forecasts on complete high-frequency data with a real

sampling interval of 10 min and on data with a sampling

interval of 10 min recovered by using SRPWPN from

incomplete low-frequency data with a sampling interval of

1 h. In the experiments, the historical data of the past 7 days

are used to predict the wind power generation of the next day.

MAPE is used as the evaluation metric, and the experimental

results are shown in Tables 4, 5. The column with the suffix

SRP in the table represents the error of the short-term wind

power forecasting results of the prediction method on the data

recovered from the SRPWPN. Although the results of the

three methods on the data recovered by SRPWPN are slightly

inferior to the actual data, the biggest difference is not more

than 2%. The worst of the three methods on the data recovered

by SRPWPN is CNN, whose MAPE does not exceed 11% in

TLHB, and the best is SSGAN, whose MAPE does not exceed

7% in the two datasets. It can be considered that the data

recovered by SRPWPN are very close to the effect of real data

in practical applications. As the best short-term wind power

forecasting method, SSGAN is selected as the visualization

method. CNN and LSTM are chosen as the comparative

methods. Figure 7 shows SSGAN on the raw historical data

and data recovered by SRPWPN with site IDs 123229 and

123815 in NREL. The subfigures in the first row show the

performance of SSGAN on site ID 123229, and the second row

shows the performance of SSGAN on site ID 123815. Original

represents the real wind power of the two sites, SRP data

represent the predicted results of SSGAN on complete high-

frequency data recovered by SRPWPN, and raw data represent

the results of SSGAN on the real data with a sampling interval

of 5 minutes. Figure 8 shows SSGAN on the raw historical data

and data recovered by SRPWPN with site IDs R80711 and

R80721 in TLHB. The subfigures in the first row show the

performance of SSGAN on site ID R80711, and the second row

shows the performance of SSGAN on site ID R80721. Original

represents the real wind power of the two sites, SRP data

represent the predicted results of SSGAN on complete high-

frequency data recovered by SRPWPN and raw data represent

the results of SSGAN on the real data with a sampling interval

of 10 min. The results predicted by SSGAN are almost the

same as the actual results, which proves that the data

recovered by SRPWPN can be well utilized by short-term

wind power forecasting methods, thereby achieving higher

frequency accurate wind power forecasting, and the recovered

information is sufficient for short-term wind power

forecasting to use.

5 Conclusion

A deep SRP network named SRPWPN is proposed for

short-term wind power forecasting, and an SRP-based short-

term wind power forecasting framework is proposed to

achieve accurate short-term wind power forecasting at

higher frequencies. In the proposed framework, SRPWPN

is used to recover complete high-frequency data from

incomplete low-frequency data, thereby enhancing

historical data and then using short-term wind power

forecasting methods on the enhanced data to achieve

higher-frequency accurate short-term wind power

forecasting. In the SRPWPN, incomplete low-frequency

historical data are used as the input, and then detailed

information is reconstructed through structures such as

attention mechanism and SRPB, thereby obtaining

complete high-frequency data for higher-frequency short-

term wind power forecasting. The experimental results

show that the SRPWPN can recover the most lost detailed

information, and its maximum MAPE does not exceed 8.5%.

The maximum MAPE of short-term wind power forecasting

experiments on the complete high-frequency data recovered

based on SRPWPN is less than 11%. The MAPE of the best

short-term wind power forecasting method SSGAN is less

than 6.5%, which proves the effectiveness of the proposed

SRP-based wind power forecasting framework. Regardless of

whether the sampling frequency is 10 min, 15 min, or 1 h of

historical data, the proposed method enhances the data well.

With the proposed data enhancement method, SRPWPN and

SRP-based short-term wind power forecasting framework,

accurate short-term wind power forecasting at higher

frequencies can be achieved.
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