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ABSTRACT 
 

Free radicals pose serious threat to tissues and vital organs, especially membrane lipids, proteins 
and nucleic acids of cells. Overproduction of reactive oxygen/ nitrogen species (ROS/RNS) and 
other related radicals lead to oxidative stress which has been implicated in aging and a number of 
diseases. Free radicals react with biomolecules and cause lipid peroxidation, loss of enzyme 
activity, mutation and carcinogenesis. A number of degenerative diseases including cardiovascular 
disease, diabetes, and adverse hepatic conditions have been attributed to accumulation of free 
radicals. Diseases resulting from radical overload might also lead to different types of cancers. 
However free radicals at low or moderate levels are vital to human health. ROS and RNS produced 
in a well regulated manner help maintain homeostasis at the cellular level in the normal healthy 
tissues and play an important role as signaling molecules. Cellular antioxidant enzyme systems 
including superoxide dismutase, catalase, glutathione peroxidases/reductase, peroxiredoxins along 
with non enzymatic antioxidants viz., tocopherols, vitamin C and glutathione etc., apart from 
several dietary components protect cells and organisms from the lethal effects of excessive ROS 
production. Natural products of plant origin have been used in traditional medicine for the treatment 
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of diseases resulting from radical overload. The diversity of phytochemicals such as polyphenols, 
flavonoids, carotenes and saponins etc. present in plants and dietary components provide drug 
leads for the development of novel therapeutic agents. This review deals with the components of 
free radical biology, their adverse consequences in humans and amelioration of diseases by 
botanical therapeutics. 
 

 
Keywords: Reactive oxygen species; oxidative stress; cancer; aging; diabetes; plant products. 
 
1. INTRODUCTION 
 
Oxidative stress is initiated by free radicals, 
which seek stability through electron pairing with 
biological macromolecules in healthy human 
cells and cause protein and DNA damage along 
with lipid per-oxidation. It may be defined as an 
imbalance between free radicals and 
antioxidants in our body (Fig. 1). Free radicals 
are fundamental to any biochemical process and 
represent an essential part of aerobic life and 
metabolism [1]. In general, free radicals are very 
short lived, with half lives in milli, micro or 
nanoseconds. The most common reactive 
oxygen species (ROS) include superoxide (O

2-
) 

anion, hydrogen peroxide (H2O2), peroxyl (ROO
-
) 

radicals, and reactive hydroxyl (OH˙) radicals. 
The nitrogen derived free radicals are nitric oxide 
(NO˙) and peroxynitrite anion (ONOO-). Under 
physiological conditions, ROS formation and 
elimination are delicately balanced. However, 
enhanced activity of oxidant enzymes and/or 
reduced activity of antioxidant enzymes lead to 
oxidative stress. Majority of the diseases/ 
disorders are mainly linked to oxidative stress 
produced due to free radicals [2,3]. 
 

ROS have been implicated in over a hundreds of 
disease states which range from arthritis, 
connective tissue disorders to carcinogenesis, 
aging, physical injury, infection and acquired 
immunodeficiency syndrome [4,5]. Pathological 
conditions that predispose to cardiovascular 
events, such as hypertension, 
hypercholesterolemia, and diabetes, are 
associated with oxidative stress. Antioxidant 
therapy has gained an immense importance in 
the treatment of these diseases. Antioxidants 
have been reported to prevent oxidative damage 
caused by free radicals and ROS, and may 
prevent the occurrence of diseases such as 
cancer and aging. They can interfere with the 
oxidation process by reacting with free radicals, 
chelating catalytic metals, and also acting as 
oxygen scavengers [6-8]. Many phytochemicals 
have been found to play as potential 
antioxidants. Present review summarizes the 
causes and consequences of free radical 

generation, antioxidants and use of plant 
derivatives in controlling diseases. 
 

2. FREE RADICALS 
 
Free radicals are atoms, molecules or ions with 
unpaired electrons that are highly unstable, short 
lived and active towards chemical reactions with 
other molecules. They may be derived from 
oxygen, nitrogen and sulfur [9,10]. Internally, free 
radicals are produced as a normal part of 
metabolism within the mitochondria, through 
xanthine oxidase, peroxisomes, inflammation 
processes, phagocytosis, arachidonate 
pathways, ischemia and physical exercise. 
External factors that help to promote the 
production of free radicals are smoking, 
environmental pollutants, radiation, drugs, 
pesticides, industrial solvents and ozone. It is 
paradox that these elements, essential to life 
(especially oxygen) have deleterious effects on 
the human body through these reactive species 
[9]. 
 
2.1 Reactive Oxygen and Nitrogen 

Species (ROS and RNS) 
 
Free radicals derived from oxygen and nitrogen 
are known as reactive oxygen species (ROS) 
and reactive nitrogen species (RNS), 
respectively. Formation of ROS and RNS in the 
cells can occur by enzymatic and/or non-
enzymatic reactions. Enzymatic reactions include 
those involved in the respiratory chain, the 
prostaglandin synthesis, the phagocytosis, and 
the cytochrome P450 system [11]. Some of ROS 
molecules are extremely reactive, such as the 
hydroxyl radical, while some are less reactive 
(superoxide and hydrogen peroxide) [5,12]. The 
superoxide anion created from molecular oxygen 
by the addition of an electron is, in spite of being 
a free radical, not highly reactive. It lacks the 
ability to penetrate lipid membranes and is 
therefore enclosed in the compartment where it 
was produced. The formation of superoxide 
takes place spontaneously, especially in the 
electron-rich aerobic environment in vicinity of 
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the inner mitochondrial membrane with the 
respiratory chain. Superoxide (as well as 
hydrogen peroxide) is also produced 
endogenously by flavoenzymes, e.g., xanthine 
oxidase activated in ischemia-reperfusion 
[13,14]. Other superoxide-producing enzymes 
are lipoxygenase and cyclooxygenase [15,16]. 
Hydrogen peroxide plays a radical forming role 
as an intermediate in the production of more 
reactive ROS molecules including hypochlorous 
acid by the action of myeloperoxidase, an 
enzyme present in the phagosomes of 
neutrophils [17]. Most importantly, hydrogen 
peroxide forms hydroxyl radical in a reaction 
catalyzed by metal ions (Fe2+ or Cu+), often 
bound in complex with different proteins or other 
molecules by a reaction known as the Fenton 
reaction [18,19].  
 
Nitric oxide (NO) is formed from L-arginine by 
one of the three NO synthase (NOS) isoforms. 
The three isoforms are nNOS (identified 
constitutive in neuronal tissue), iNOS (inducible 
by cytokines in activated macrophages and liver) 
and eNOS (identified constitutive in vascular 
endothelial cells) [20]. NO is rapidly oxidized by 
oxyhemoglobin to form nitrate, the major end 
stable oxidation product of NO in the body. NO 
also reacts with glutathione to form nitrosothiol or 
with heme to yield heme-NO. Physiologically, 
nitrosothiol can serve as a vehicle to transport 
NO in plasma, thereby increasing the biological 
half-life of physiologic concentrations of NO 
[21,22]. 
 

2.2 Physiological Functions of Free 
Radicals 

 
ROS and RNS are involved in many 
physiological activities and function as cellular 
signaling agents. Activation of phagocytes 
produces ROS in amounts enough to kill 
intruding bacteria [23]. In this system ROS are 
produced by the NADPH oxidase complex that 
converts O2 and O2●─

 [24,25]. Superoxide is then 
reduced in the phagosome by SOD to H2O2 that 
can be further converted to HOCl by 
myeloperoxidase [26]. Hypochlorous acid may 
then spontaneously form hydroxyl radical. The 
two highly reactive ROS molecules thereby 
formed in phagosomes (HOCl and •OH) are 
highly toxic to bacteria ingested by the phagocyte 
and carry the direct antimicrobial effects of ROS. 
The hypochlorous acid produced in the 
myeloperoxidase reaction is also an important 
part of the antimicrobial defense by destruction of 

the DNA anchoring at the bacterial membrane, 
resulting in cessation of DNA replication [27]. 
 
ROS can directly affect the conformation and/or 
activities of all sulfhydryl-containing molecules, 
such as proteins or GSH, by oxidation of their 
thiol moiety. This type of redox regulation affects 
many proteins important in signal transduction 
and carcinogenesis such as protein kinase C, 
Ca2+-ATPase, collagenase, and tyrosine kinases 
[28], among many other enzymes and membrane 
receptors [29]. For several transcription factors, 
ROS function as physiological mediators of 
transcription control. Well-known examples of 
redox-sensitive transcription factors are Nuclear 
Factor-кB (NF-кB) and Activator Protein-1 (AP-1) 
[30]. Activator Protein-1, a dimer of gene 
products from the Jun and Fos proto-oncogene 
families, expression is induced by several pro-
oxidant conditions, including different types of 
irradiation [31,32]. Nitric oxide (NO) is one of the 
most important signaling molecules. Physiologic 
levels of NO produced by endothelial cells are 
essential for regulating the relaxation and 
proliferation of vascular smooth muscle cells, 
platelet aggregation, leukocyte adhesion, 
angiogenesis, vascular tone, thrombosis, and 
hemodynamics. In addition, NO produced by 
neurons serves as a neurotransmitter, and NO 
generated by activated macrophages is an 
important mediator of the immune response 
[33,34]. 
 

2.3 Molecular Damage Induced by Free 
Radicals 

 
All the biological molecules present in our body 
are at risk of being attacked by ROS. It is 
estimated that every day a human cell is targeted 
by the hydroxyl radical and other such species 
on an average of 105 times inducing oxidative 
stress [33]. The main targets of ROS and other 
free radicals are proteins, DNA and RNA 
molecules, sugars and lipids [34-37]. Membrane 
lipids present in sub-cellular organelles are highly 
susceptible to free radical damage. During lipid 
per-oxidation a large number of toxic byproducts 
are also formed that can have effects at a site 
away from the area of generation, behaving as 
second messengers. The damage caused by 
lipid peroxidation is highly detrimental to the 
functioning of the cell [38]. Oxidation of proteins 
by ROS/RNS can generate a range of stable as 
well as reactive products such as protein 
hydroperoxides that can generate additional 
radicals particularly upon interaction with 
transition metal ions. Table 1 summarizes the 
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mechanisms involved in free radical damage to 
biomolecules. Oxidative damage to DNA is a 
result of interaction of DNA with ROS or RNS. 
The C4-C5 double bond of pyrimidine is 
particularly sensitive to attack by hydroxyl 
radical, generating a spectrum of oxidative 
pyrimidine damage products, including thymine 
glycol, uracil glycol, urea residue, 5-
hydroxydeoxyuridine, 5-hydroxydeoxycytidine, 
hydantoin and others. 8-Hydroxydeoxyguanidine 
(8-OHdG) has been implicated in carcinogenesis 
and is considered a reliable marker for oxidative 
DNA damage [38]. 
 

3. ANTIOXIDANTS 
 

Antioxidants are substances that neutralize free 
radicals or their actions [42]. The antioxidants 
acting in the defense systems act at different 
levels such as preventive, radical scavenging, 
repair and de novo, and the fourth line of 
defense, i.e., the adaptation. The first line of 
defense is the preventive antioxidants, which 
suppresses the formation of free radicals. The 
second line of defense is the antioxidants that 
scavenge the active radicals to suppress chain 
initiation and/or break the chain propagation 
reactions. The third line of defense is the repair 
and de novo antioxidants. The enzymes present 
in the cytosol and in the mitochondria of 
mammalian cells recognize, degrade, and 
remove oxidatively modified proteins and prevent 
the accumulation of oxidized proteins. There is 
another important function called adaptation 
where the signal for the production and reactions 
of free radicals induces formation and transport 
of the appropriate antioxidant to the right site 
[43]. Antioxidants can be classified into two major 
classes i.e., enzymatic and non-enzymatic. 
 

3.1 Enzymatic Antioxidants 
 

Nature has endowed each cell with adequate 
protective mechanisms against harmful effects of 
free radicals. Cellular antioxidant enzyme 
systems serve to protect cells and organisms 
from the lethal effects of excessive ROS 
formation. Superoxide dismutase (SOD), 
catalase (CAT), glutathione peroxidase and 
glutathione reductase are examples of some 
antioxidant enzymes. 
 

In eukaryotic cells, O2•- can be metabolized to 
hydrogen peroxide by two metal containing SOD 
isoenzymes, tetrameric Mn-SOD present in 
mitochondria and dimeric Cu/Zn-SOD present in 
the cytosol [43,44]. In the reaction catalyzed by 
SOD, two molecules of superoxide form 

hydrogen peroxide and molecular oxygen and 
are thereby a source of cellular hydrogen 
peroxide. In mitochondria, superoxide is formed 
in relatively high concentrations due to the 
leakage of electrons from the respiratory chain. 
Expression of Mn-SOD is, in contrast to Cu/Zn-
SOD, induced by oxidative stress [44]. Cytosolic 
Cu/Zn-SOD seems less important than Mn-SOD, 
and transgenic animals lacking this enzyme are 
able to adapt so that the phenotype appears 
normal [45]. 
 
Catalases of many organisms are mainly heme-
containing enzymes [46]. The predominant 
subcellular localization in mammalian cells is in 
peroxisomes, where catalase catalyzes the 
dismutation of hydrogen peroxide to water and 
molecular oxygen. Catalase also has functions in 
detoxifying different substrates, e.g., phenols and 
alcohols, via coupled reduction of hydrogen 
peroxide. One antioxidative role of catalase is to 
lower the risk of hydroxyl radical formation from 
H2O2 via the Fenton reaction catalyzed by Cu or 
Fe ions. Catalase binds NADPH, which protects 
the enzyme from inactivation and increases its 
efficiency [47]. 
 
Peroxiredoxins (Prx; thioredoxin peroxidases) 
are recently discovered enzymes capable of 
directly reducing peroxides, e.g., hydrogen 
peroxide and different alkyl hydroperoxides [48]. 
In mammalian cells, thioredoxin regenerate 
oxidized Prx formed in the catalytic cycle [49]. In 
the mitochondria of mammalian cells the 
mitochondrial thioredoxin system is probably a 
specific reductant of Prx [50]. Peroxiredoxins 
have been shown to inhibit apoptosis induced by 
p53 and by hydrogen peroxide on a level 
upstream of bcl-2 [51]. 
 
There are at least four different Glutathione 
peroxidases (GPx) in mammals (GPx1–4), all of 
them containing selenocysteine [52]. GPx1 and 
GPx4 both are cytosolic enzymes abundant in 
most tissues. GPx4 has recently been found to 
have dual functions in sperm cells by being 
enzymatically active in spermatids but insoluble 
and working as a structural protein in mature 
spermatozoa [53]. GPx2 (gastrointestinal GPx) 
and GPx3 (plasma GPx) are mainly expressed in 
the gastrointestinal tract and kidney, respectively 
[54]. All glutathione peroxidases may catalyze 
the reduction of H2O2 using glutathione as 
substrate. They can also reduce other peroxides 
(e.g., lipid peroxides in cell membranes) to 
alcohols. Some data has indicated that GPx 
should be of high antioxidant importance under 
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physiological conditions while others place the 
enzymes as important only at events of oxidative 
stress [55]. The function of GPx isoenzymes in 
antioxidant defense is still unclear, but the kinetic 
properties and widespread distribution still imply 
that they constitute major contributors to the total 
protection against oxidative damage. 
 

3.2 Non Enzymatic Antioxidants 
 
The non-enzymatic antioxidants include 
tocopherols, carotenoids, ascorbic acid, 
flavonoids and polyphenols which are obtained 
from natural plant sources [56]. Some non 
enzymatic antioxidants are shown in Fig. 2. 
Exposure to DNA by irradiation or hydroxyl 
radical may leads to the formation of 8-
hydroxydeoxyguanosine. On this basis Fischer-
Nielsen et al. [57] found that vitamin C at 
physiological concentration exhibits a protective 
effect against free radical-induced oxidative 
damage. Vitamin E and tocotrienols (such as 
those from palm oil) are efficient lipid soluble 
antioxidants that function as a chain breaker 
during lipid peroxidation in cell membranes and 
various lipid particles including LDL [58,59]. 
Animal studies have shown the antioxidant effect 
of dietary phytochemicals. Among them, phenolic 
compounds, such as flavonoids exhibit potent 
antioxidant activities. For example tea 
polyphenols have capability to enhance red 
blood cell resistance to oxidative stress; 
scavenge superoxide and hydroxyl radicals; and 
inhibition of oxidative modification of low density 
lipoprotein. Dietary supplementation of 

polyphenols is also reported to decrease serum 
concentrations of total cholesterol and 
malondialdehyde [21]. β-Carotene and other 
carotenoids (α-carotene, γ-carotene, and β-
cryptoxanthin) are potent antioxidants of plant 
origin.  They react with a peroxyl radical to form a 
resonance-stabilized carbon-centered radical 
within its conjugated alkyl structure, thereby 
inhibiting the chain propagation effect of ROS. 
Lycopene, lutein, canthaxanthin, and zeaxanthin 
also have their antioxidant actions similar to 
those of β –carotene [60]. A wide range of 
antioxidants from both natural and synthetic 
origin have been proposed for use in the 
treatment of various human diseases [61]. Some 
synthetic antioxidant compounds commonly used 
in processed foods have been shown to produce 
toxic effects like liver damage and mutagenesis 
[5,62]. Hence, nowadays search for natural 
compounds antioxidant source is gaining much 
importance. 
 
Antioxidant-based drugs/ formulations for 
prevention and treatment of complex diseases 
like atherosclerosis, stroke, diabetes, Alzheimer’s 
disease (AD), Parkinson’s disease, cancer, etc. 
appeared over the past three decades. There are 
a number of epidemiological studies that have 
shown inverse correlation between the levels of 
established antioxidants/phytonutrients present 
in tissue/blood samples and occurrence of 
cardiovascular disease, cancer or mortality due 
to these diseases. 
 

 

 

 
Fig. 1. Effect of imbalance between antioxidants and free radicals 

(Abbreviations: AO-antioxidant, ROS-reactive oxygen species, RNS-reactive nitrogen species, RSS-reactive 
sulphur species, FR-free radicals, OS-oxidative stress) 
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Table 1. Mechanisms involved in free radical mediated damage to biomolecules 
 

Targets of 
free radicals 

Mode of damage 

Proteins Oxidative modification of a specific amino acid. 
Free radical-mediated peptide cleavage. 
Formation of protein cross -linkage due to reaction with lipid peroxidation products 
[9]. 

DNA and 
RNA 

Production of base-free sites. 
Deletions, modification of bases. 
Frame shifts. 
Strand breaks. 
DNA–protein crosslink and chromosomal arrangements. 
Oxidation of DNA by hydroxyl radicals [39,40]. 

Sugars Formation of oxygen free radicals during early glycation could contribute to 
glycoxidative damage [40]. 
Short sugar fermentation products (glycoaldehyde) due to autoxidation produce 
superoxide radical [40]. 

Lipids Lipid peroxidation takes place by the abstraction of hydrogen atom from a 
methylene carbon of fatty acid side chain resulting into free radical chain reaction 
producing peroxyl radicals [41].  
Another way to generate lipid peroxides is through the attack on polyunsaturated 
fatty acids (PUFA) or their side chain by the singlet oxygen which is a very 
reactive form of oxygen [41]. 
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Fig. 2. Non enzymatic antioxidants 
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4. FREE RADICALS AND HUMAN 
DISEASES 

 
Free radicals have different types of reaction 
mechanisms. They can react with surrounding 
molecules by (a) Electron donation, reducing 
radicals, and electron acceptance, oxidizing 
radicals, (b) Hydrogen abstraction, (c) Addition 
reactions, (d) Self-annihilation reactions, and (e) 
by disproportionation [63]. These reactions lead 
to the production of ROS, RNS and other 
radicals which have been linked to many severe 
diseases like cancer, cardiovascular diseases 
including atherosclerosis and stroke, neurological 
disorders, renal disorders, liver disorders, 
hypertension, rheumatoid arthritis, adult 
respiratory distress syndrome, auto-immune 
deficiency diseases, inflammation, degenerative 
disorders associated with aging, diabetes 
mellitus, diabetic complications, cataracts, 
obesity, autism, alzheimer’s, parkinson’s and 
huntington’s diseases, vasculitis, 
glomerulonephritis, lupus erythematous, gastric 
ulcers, hemochromatosis and preeclampsia, 
among others [64,65]. Effects of free radicals on 
disease occurrence are shown below (Fig. 3). 
 

4.1 Cancer 
 
DNA is a major target of free radical damage. 
The types of damages induced include strand 
breaks (single or double strand breaks), various 
forms of base damage yielding products such as 
8-hydroxyguanosine, thymine glycol or abasic 
sites, damage to deoxyribose sugar as well as 
DNA protein cross links. These damages can 
result in mutations that are heritable change in 
the DNA that can yield cancer in somatic cells or 
foetal malformations in the germ cells. 
 
The involvement of free radicals with tumor 
suppressor genes and proto-oncogenes suggest 
their role in the development of different human 
cancers [66]. Cancer develops through an 
accumulation of genetic changes. Initiating 
agents can be tobacco smoking and chewing, 
UV rays of sunlight, radiation, viruses, chemical 
pollutants, etc. Promoting agents include 
hormones (androgens for prostate cancer, 
estrogens for breast cancer and ovarian cancer). 
Inflammation induces iNOS (inducible nitric oxide 
synthase) as well as COX and LOX. These can 
initiate carcinogenesis. Table 2 summarizes 
examples of radical over load diseases. These 
develop from condition of chronic inflammation 
and can have an etiology that is primarily 
inherited or acquired through viral, bacterial and 

parasitic infection, or acquired through chemical 
induction. Cancer proneness is frequently a 
pathological consequence of extensive and 
sustained free radical stress related damage in 
these diseases. 
 
Table 2. Radical overload diseases leading to 

high cancer risk 
 

Disease Cancer 
Crohn’s disease 
Ulcerative colitis 

Colon [67,68] 

Barrett’s oesophagus Oesophageal [69] 
Pancreatitis Pancreatic [70] 
Prostatitis Prostate [71] 
Human papilloma virus 
infection 

Cervix [72] 

Viral hepatitis B and C 
Haemochromatosis 

Liver [73,74] 

 
Experimental as well as epidemiological data 
indicate that a variety of nutritional factors can 
act as antioxidants and inhibit the process of 
cancer development and reduce cancer risk. 
Some of these include vitamins A, C, E, beta-
catotene and micronutrients [75]. 
Chemopreventive phytochemicals can block 
initiation or reverse the promotion stage of 
multistep carcinogenesis. They can also halt or 
retard the progression of precancerous cells into 
the malignant ones. Many molecular alterations 
associated with carcinogenesis occur in cell-
signalling pathways that regulate cell proliferation 
and differentiation. One of the central 
components of the intracellular signaling network 
that maintains homeostasis is the family of 
mitogen activated protein kinases (MAPKs), they 
are prime targets of diverse classes of 
chemopreventive phytochemicals [76]. A number 
of plants (Table 3) have been found to inhibit 
cancer progression.  
 

4.2 Cardiovascular Disease 
 
Several established risk factors for 
cardiovascular disease have been linked to 
excessive generation of ROS. For instance, in 
animal models of hiperlipidemia, hypertension, 
and diabetes, the elevated levels of vascular 
superoxide anion production have been found 
[98,99]. The studies strongly suggest that 
increased oxidative stress is involved in the 
pathophysiology of cardiovascular disease. 
Several mechanisms have been proposed to 
explain how excessive production of ROS leads 
to vascular pathology. First, ROS are able to 
promote the oxidation of low-density lipoprotein 
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(LDL) [100]. Uptake of oxidatively modified 
lipoproteins by macrophages transforms these 
cells into foam cells, which are a key component 
of atherosclerotic plaques [101]. Second, 
superoxide anion rapidly inactivates endothelium 
derived nitric oxide (NO), a molecule with 
intrinsic antiatherogenic properties, leading to 
endothelial dysfunction, which is a hallmark of 
early atherosclerosis [102]. Moreover, the 
reaction between superoxide anion and NO 
generates peroxynitrite (ONOO-), which has 
been found to be cytotoxic to endothelial and 
vascular smooth muscle cells through a broad 
range of biological actions, such as lipid 
oxidation and mitochondrial DNA damage. Third, 
ROS have been shown to be involved in 
increased expression of certain vascular pro-
inflammatory genes that are pertinent to 
atherogenesis, such as monocyte 
chemoattractant protein-1 (MCP-1), vascular cell 

adhesion molecule-1 (VCAM-1), and intercellular 
adhesion molecule-1 (ICAM-1) [103,104]. 
 
Phytochemicals prevent endothelial dysfunction 
and reduce blood pressure, oxidative stress, and 
end organ damage in hypertensive animals. 
Moreover, some clinical studies have shown that 
phytochemicals can improve endothelial function 
in patients with hypertension and ischemic heart 
disease [105]. The effects of individual plant 
products on the relaxation of isolated arteries 
from rats have been investigated in many 
studies. Tetracyclic triterpene saponins, the 
ginsenosides are often attributed to the effects of 
Panax ginseng (Araliaceae) on the 
cardiovascular system. Studies show that 
phytosterols also have effect on the 
cardiovascular system by lowering cholesterol 
levels [106]. 
 

 

 

 
Fig. 3. Consequences of free radical load 
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Table 3. Phytoconstituents and anti cancer activity 
 

Plant Family Compound Mode of action 
Catharanthus roseus Apocynaceae Vindesine and 

vinorelbine 
Mitotic block [77] 

Catharanthus roseus Apocynaceae Vinflunine Mitotic block [78] 
Podophyllum peltatum Berberidaceae Etoposide Mitotic block [79] 
Camptotheca acuminate  Nyssaceae Topotecan DNA  topoisomerase I inhibition 

[80] 
Berberis amarensis  Berberidaceae Berbamine Caspase-3- dependent apoptosis 

[81] 
Hvdrastis canadensis  Ranunculaceae Berberine Inhibit  bcr/abl gene fusion [82] 
Tabebuia avellanedae Bignoniaceae Betalapachone Inhibition of topoisomerase I and 

II [83] 
Betula alba Betulaceae Betulinic acid Triggers mitochondrial pathway of 

apoptosis [84] 
Colchicum autumnale  Colchicaceae Colchicine Anti-mitotic [85] 
Curcuma longa  Zingiberaceae Curcumin Exact mechanism of action is still 

unknown [86] 
Wikstroemia indica  Thymelaeaceae Daphnoretin Suppression of protein and DNA 

synthesis [87] 
Psoralea corylifolia  Fabaceae Psoralidin Enhanced TRAIL-induced (Tumor 

necrosis factor-related apoptosis-
inducing ligand) apoptosis [88] 

Vicia faba  Fabaceae Diadzein and 
Genistein 

Inhibits 3A 4- mediated 
metabolism and oxidative 
metabolism [89] 

Ochrosia borbonica  Apocynaceae Ellipticine DNA intercalation and inhibition of 
topoisomerase II [90] 

Amoora rohituka Meliaceae Flavopiridol Inhibits cell cycle progression at 
G1 or G2 phase [91] 

Cephalotaxus harrintonia Cephalotaxaceae Harringtonine Inhibition of protein synthesis and 
chain elongation during 
translation [92] 

Ipomoeca batatas  Convolvulaceae 4-Ipomeanol Cytochrome P-450 mediated 
conversion into DNA-binding 
metabolites [93] 

Iridaceaelatea pallasii Iridaceae Irisquinone Acts as a chemosensitizer [94] 
Erythroxylum pervillei Erythroxylaceae Pervilleines Inhibitors of Pglycoprotein [95] 
Salvia prionitis  Lamiaceae Salvicine Inhibition of topoisomerase II [96] 
Aglaia foveolata Meliaceae Silvestrol apoptosome/ mitochondrial 

pathway is involved in triggering 
extrinsic pathway of programmed 
cell death of tumor cells [97] 

 
4.3 Diabetes 
 
Diabetes mellitus is a metabolic disorder 
characterized by hyperglycemia and insufficiency 
of secretion or action of endogenous insulin. 
Although the etiology of this disease is not well 
defined, viral infection, autoimmune disease, and 
environmental factors have been implicated 
[107]. Increased oxidative stress is a widely 
accepted participant in the development and 
progression of diabetes and its complications 

[108]. People suffering from diabetes are not 
able to produce or properly use insulin in the 
body and therefore chronic hyperglycemia 
occurs. Hyperglycemia is also found to promote 
lipid peroxidation of low density lipoprotein (LDL) 
by a superoxide-dependent pathway resulting in 
the generation of free radicals [109]. Auto-
oxidation of glucose involves spontaneous 
reduction of molecular oxygen to superoxide and 
hydroxyl radicals, which are highly reactive and 
interact with all biomolecules. They also 
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accelerate formation of advanced glycation end 
products (AGEs). AGEs such as pyrroles and 
imidazoles tend to accumulate in the tissue. 
Crosslinking AGE-protein with other 
macromolecules in tissues results in 
abnormalities in the cell and tissue function. Due 
to protein glycation capacity of antioxidant 
enzymes is also reduced. Free radicals 
generated also react with nitric oxide in 
endothelial cells leading to loss of vasodilation 
activity. Long lived structural proteins, collagen 
and elastin, undergo continual non-enzymatic 
crosslinking during ageing and in diabetic 
individuals [110]. This abnormal protein 
crosslinking is mediated by AGEs generated by 
nonenzymatic glycosylation of proteins by 
glucose. 
 
Up to now, many kinds of antidiabetic medicines 
have been developed for the patients and most 
of them are chemical or biochemical agents 
aiming at controlling or/and lowering blood 
glucose to a normal level. Despite the impressive 
advances in health sciences and medical care, 
there are many patients who are using 
alternative therapies alone or complementary to 
the prescribed medication. Traditional plant 
remedies or herbal formulations exist from 
ancient times and are still widely used, despite all 
the controversy concerning their efficacy and 
safety to treat hypoglycemic and hyperglycemic 
conditions all over the world. To date, metformin 
(a biguanide) is the only drug approved for 
treatment of type II diabetes mellitus [111]. It is a 
derivative of an active natural product, galegine, 
isolated from the plant Galega officinalis L. [112]. 
Table 4 summarizes the herbs with active 
components having anti diabetic property. 
 

4.4 Oxidative Stress and Metabolic 
Changes in the Liver 

 
Hepatocyte plays a central role in the metabolism 
of alcohol or drugs which may enhance the ROS 
production [128]. Under some consequences a 
large amount of free fatty acids (FFAs) from the 
visceral fat tissue, as well as from dietary 
glucose and fat, flows directly into the liver [129]. 
Due to these mitochondria, peroxisomes, and 
endoplasmic reticulum metabolize the excessive 
amount of fatty acid, resulting in overproduction 
of ROS and oxidative stress in the hepatocytes. 

Excessively high levels of iron are stored in the 
hepatocytes of patients with fatty liver, alcoholic 
hepatitis, or hepatitis type C. Such over 
accumulation of iron also causes oxidative stress 
in the hepatocytes [8]. The reason hepatocytes 
have the highest antioxidant function as 
compared with the cells of other organs is 
probably that oxidative stress is easily induced in 
the hepatocytes. 
 
Herbal medicines have been used in the 
treatment of liver diseases for a long time. A 
number of herbal preparations are available in 
the market. Some commonly used herbal 
preparations are Phyllanthus, Silybum marianum 
(milk thistle), glycyrrhizin (licorice root extract), 
and Liv52 (mixture of herbs). Phyllanthus 
appears to be promising in patients with chronic 
hepatitis B virus (HBV) infection [130]. Liu et al. 
[131] published a meta-analysis of the effect on 
and safety of genus Phyllanthus for chronic HBV 
infection. None of the trials reported mortality or 
incidence of liver cirrhosis and/or hepatocellular 
carcinoma. Phyllanthus has a positive effect on 
clearance of HBV markers. There are no major 
adverse effects. Though the active compound 
remains to be identified, significant progress has 
already taken place in standardization of the 
extract to ensure the bioefficacy of P. amarus 
[132]. 
 
Silybum marianum is the most well researched 
plant in the treatment of liver disease. In Roman 
times, Pliny the El-der (A.D. 77), a noted 
naturalist, reported that milk thistle was excellent 
for carrying off bile. Culpeper [133] described its 
effectiveness in removing obstruction of the liver 
and spleen. The active complex in mile thistle is 
a lipophilic extract from the seeds of the plant 
and is composed of three isomer flavonolignans-
silybin, silydianin and silychrstine collectively 
known as silymarin [134]. Silymarin acts as an 
antioxidant by reducing free radical production 
and lipid peroxidation, has antifibrotic activity, 
and may act as a toxin blockade agent by 
inhibiting binding of toxins to heptocyte cell 
membrane receptors [135]. In animals, silymarin 
reduces liver injury caused by acetaminophen, 
carbon tetrachloride, radiation, iron overload, 
phenylhydrazine, alcohol, cold ischemia, and 
Amanita phalloides [136]. 

 
 
 
 
 



 
 
 
 

Kumar and Pandey; BJMMR, 7(6): 438-457, 2015; Article no.BJMMR.2015.351 
 
 

 
448 

 

Table 4. Anti diabetic activity of plant products 
 

Plant Family Active 
compounds 

Mode of action 

Abelmoschus 
moschatus 

Malvaceae Myricetin enhances glucose utilization to lower 
plasma glucose with deficient insulin 
levels. [113] 

Achyrocline 
satureioides 

Asteraceae Dibenzofuran 
Achyrofuran 

lowers blood glucose levels[114] 

Psacalium 
decompositum 

Asteraceae Maturine lowers blood glucose levels [115] 

Acourtia thurberi Asteraceae benzoquinone 
perezone 

lowers blood glucose levels [116] 

Allium sativum Liliaceae Allicin decreases the concentration of 
serum lipids, blood glucose and 
activities of serum enzymes [117] 

Allium cepa Liliaceae S-methyl cysteine 
sulfoxide 

stimulation of insulin secretions and 
partly due to its antioxidant activity 
[118] 

Bauhinia forficata Leguminosae Kaempferitrin decreases lipid peroxidation in liver 
cells [119] 

Bryonia alba Curcubiaceae Trihydroxy 
octadecadienoic 
acid 

restores the disordered lipid 
metabolism [120] 

Caesalpinia ferrea Leguminosae Ellagic acid ALR2 inhibitor [121] 
Dioscorea 
dumetorum 

Dioscoreaceae Dioscoretine Lowers glucose level [122] 

Eucalyptus 
macrocarpa 

Myrtaceae Macrocarpals (A, B, 
C and D) 

inhibitory activity against porcine 
lenses ALR2 [123] 

Ficus bengalensis Moraceae Leucopelargonidin serum insulin raising [124] 
Galega officinalis Leguminosae Guanidine blood glucose-lowering activity[125] 
Gentiana olivieri Gentianaceae Isoorientin Antihyperlipidemic [126] 
Hydnocarpus 
wightiana 

Arcariaceae Hydnocarpin alpha-glucosidase  and moderate N-
acetyl-beta- D-glucosaminidase 
inhibitory activities [127] 

 
Glycyrrhizin is an aqueous extract of the licorice 
root, Glycyrrhizin glabra. Its major constituents 
are glycyrrhetic acid, multiple flavonoids, 
isoflavonoids, hydroxycoumarins and sterols, 
including β-sitosteroid, which may have 
glucocorticoid and mineralocorticoid activities 
[137]. Glycyrrhizin prevents several forms of 
experimental liver injury in animals [138]. This 
compound has anti-inflammatory and antioxidant 
activities. 
 
Liv52 is considered to be an Ayurvedic 
hepatoprotective medicine that contains the 
Capparis spinosa (Himsara), Cichorium intybus 
(Kasani), Mandur bhasma, Solanum nigrum 
(Kakamachi), Terminalia arjuna (Arjuna), Cassia 
occidentalis (Kasamarda), Achillea millefolium 
(Biranjasipha) and Tamarix gallica (Jhavaka). 
Liv52 has been on the market for over 50 years 
and has been claimed to be useful in the 

prevention and treatment a variety of conditions 
such as viral hepatitis, alcoholic liver disease, 
protein energy malnutrition, loss of appetite and 
radiation and chemotherapy induced liver 
damage [139]. Experimental data suggest that 
Liv52 inhibits lipid peroxidation, may have a 
protective effect on alcohol induced fetotoxicity, 
and inhibits TNF activity. Liv52 has been claimed 
to be useful as an adjuvant to hepatotoxic drugs 
[140-142]. 
 

4.5 Free Radical and Aging 
 
The aging process has been shown to result in 
an accelerated functional decline. The exact 
mechanisms that cause this functional decline 
are unclear. The free radical theory of aging, 
however, has gained strong support because it is 
able to explain some of the processes that occur 
with aging and the degenerative diseases of 
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aging. This theory proposes that an increase in 
oxygen radical production with age by 
mitochondria produce an increase in cellular 
damage [143-145]. Aerobic organisms are well-
protected against oxidative challenges by 
sophisticated antioxidant defense systems. 
However, it appears that during the aging 
process an imbalance between oxidants and 
antioxidants balance may occur. Oxidative 
damage of biomolecules increases with age and 
is postulated to be a major causal factor of 
cellular biochemical senescence [146-148]. 
Resveratrol, a phytoalexin, is synthesized in the 
leaf epidermis and the skin (pericarp) of grape 
berries and has potential antioxidant and anti-
aging property [149]. Some plants and their parts 
having anti aging activity are given in Table 5. 
 
The main function of mitochondria is energy 
production. During oxidative phosphorylation, 
however, highly reactive oxygen radicals are 
generated. One major site of oxidant production 
occurs in the mitochondrial electron transport 
chain in which O2 is reduced to H2O. Several 
studies have investigated age associated 
increase in the generation of oxidants by 
mitochondria [167,168]. Experiments using intact 
muscle mitochondria from house flies have 
shown that the rate of H2O2 generation 
progressively increases 2-fold as the house fly 
ages [169]. The enhanced generation of oxidants 
by older mitochondria may itself be caused by 
oxidative damage to mitochondrial membranes 

and proteins [170]. Miquel and his colleagues 
have widely promulgated the mitochondrial 
mutation theory of aging [170]. In this theory, 
senescence is linked to mutations of 
mitochondrial DNA (mtDNA) in differentiated 
cells. Mitochondrial DNA lacks excision and 
recombination repair mechanisms, it has been 
postulated that these mutations would lead to 
problems in replication, leading to a decline in 
physiological performance and the pathogenesis 
of many age-related diseases [169,170]. In 
addition, mtDNA is not protected by histones or 
DNA-binding proteins and, therefore, is directly 
exposed to a high steady state level of reactive 
oxygen and nitrogen species. Thus, oxidative 
modification and mutation of mtDNA may occur 
with great ease. During the aging process, 
protein oxidation is increased in a wide variety of 
human and animal tissues. The exact pathways 
for oxidative cellular damage are poorly 
understood because the reactive metabolites are 
very short-lived and difficult to detect directly in 
vivo. The quantification of oxidative damage to 
proteins has been studied almost exclusively by 
assessing the total carbonyl content [171]. The 
oxidants responsible for carbonyl formation 
within the proteins in vivo are believed to be 
radicals, such as, hydroxyl radicals. Indeed, 
hydroxyl radicals can be generated by metal-
catalyzed oxidation systems, and different metal 
catalyzed oxidation systems convert several 
amino acid residues to carbonyl derivatives       
[169-173]. 

 
Table 5. Some of the plants and their part used for anti aging activity 

 
Part used Plant Family 
Leaves Adansonia digitata Bombacaceae [150] 

Alstonia boonei Apocynaceae [151] 
Bambusa vulgaris Poaceae [152] 
Elaeis guineensis Palmae [153] 
Ficus capensis Moraceae [154] 
Harungana madagascariensis Harungaceae [80] 
Spondias mombin Anacardiaceae [155] 
Tectona grandis Verbanaceae [156] 
Zea mays Poaceae [157] 

Seed Aframomum melegueta Zingiberaceae [158] 
Garcinia kola Gutiferae [159] 

Whole plant Baphia nitida Papilinionaceae [160] 
Lophira alata Ochnaceae [161] 

Root Montandra guineensis Apocynaceae [162] 
Cocos nucifera Palmae [163] 

Stem bark Cordia millenii Boraginaceae [164] 
Khaya ivorensis Meliaceae [165] 

Fruits Milicia excels Moraceae [166] 
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5. CONCLUSION AND FUTURE 
PROSPECTS 

 
Free radicals are known to play a definite role in 
a wide variety of pathological manifestations. 
Antioxidants fight free radicals and protect us 
from various diseases. They exert their action 
either by scavenging the reactive oxygen species 
or protecting the antioxidant defense 
mechanisms. They can greatly reduce the 
damage due to oxidants by neutralizing the free 
radicals before they can attack the cells and 
prevent damage to lipids, proteins, enzymes, 
carbohydrates and DNA. Phytochemicals 
including polyphenols, flavonoids and others 
have potential to provide defense against 
oxidative damage. Newer approaches are further 
required for identification and characterization 
the specific phytoconstituents from diverse flora 
for providing protection against oxidative stress. 
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