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Abstract 
 

In the traveling salesman problem, there are a collection of cities and travel cost between each 
pair of them. The aim is to find the minimum cost way of visiting all cities and returning to the 
starting point. This kind of problem is deceptive and one of the most intensely studied problems 
in computational mathematics. No effective solution method is known for the general case. 
Variable Neighborhood Search (VNS) is a recent metaheuristic for solving combinatorial and 
global optimization problems whose basic idea is systematic change of neighborhood within a 
local search. Its development has been rapid, with several dozen papers already published or 
to appear. Many extensions have been made, mainly to allow solution of large problem 
instances. In most of them, an effort has been made to keep the simplicity of the basic scheme. 
In this study, variable neighborhood search structure as a metaheuristic optimization technique 
and neighborhood approximation is developed. K-opt neighborhood structure is generated. This 
new structure’s solvability in benchmark and symmetric traveling salesman problem instances 
is tested, and results are listed. 

 

Keywords: Metaheuristic methods, neighborhood approximation, travelling salesman problem. 
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1 Introduction 
 
The Traveling Salesman Problem (TSP) is a well-known and important combinatorial optimization 
problem. The goal is to find the shortest tour that visits each city in a given list exactly once and 
then returns to the starting city. Formally, the TSP can be stated as follows. The distances 
between n cities are stored in a distance matrix (D) with elements dij where i, j= 1,…, n and the 
diagonal elements dii are zero. A tour can be represented by a cyclic permutation Π of {1, 2,…, n} 
where Π(i) represents the city that follows city i on the tour.  
 
The TSP is then the optimization problem to find a permutation Π that minimizes the length of the 
tour denoted by [1]; 
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(1) 

 
For this minimization task, the tour length of (n - 1)! permutation vectors have to be compared. 
This results in a problem which is very hard to solve and in fact known to be NP-complete. Solving 
TSPs is an important part of applications in many fields like vehicle routing, computer wiring, 
machine sequencing and scheduling, frequency assignment in communication networks. 
Applications in statistical data analysis include ordering and clustering objects As in Hubert and 
Baker’s example, data analysis applications in psychology ranging from profile smoothing to 
finding an order in developmental data are proposed[2,3,4]. 
 
An optimization problem may be formulated as follows: 
 

},/)(min{ SXXxxf                                                                   (2) 
 
S, X, x and f are solution space, feasible set, feasible solution and real valued function, 
respectively. If S is a finite but large set a combinatorial optimization problem is defined. Most 
optimization problems are NP-hard and heuristic (suboptimal) solution methods are needed to 
solve them (at least for large instances or as an initial solution for some exact procedure). 
Metaheuristics, or general frameworks for building heuristics to solve problem (1), are usually 
based upon a basic idea, or analogy. Then, they are developed, extended in various directions and 
possibly hybridized. After complicated results, they use many parameters. This may enhance their 
efficiency but obscures the reasons of their success. 
 
As TSP is known to be NP-hard, this means that no known algorithm is guaranteed to solve all 
TSP instances to optimality within reasonable execution time. So in addition to exact solution 
approaches, a number of heuristics and metaheuristics have been developed to solve problems 
approximately. Heuristics and metaheuristics trade optimality of the solutions that they output with 
execution times. They are used to find “good” quality solutions within reasonable execution times 
[5]. 
 
Finding the exact solution to a TSP with n cities requires checking (n-1)! possible tours. To 
evaluate all possible tours is infeasible for even small TSP instances. Held and Karp presented the 
dynamic programming to find the optimal tour in 1962 [1]. 
 
A different method, which can deal with larger instances, uses a relaxation of the linear 
programming problem and iteratively tightens the relaxation till a solution is found. This general 
method for solving linear programming problems with complex and large inequality systems is 
called cutting plane method and was introduced by Dantzig, Fulkerson, and Johnson in 1954. If no 
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further cutting planes can be found or the improvement in the objective function due to adding cuts 
gets very small, the problem is branched into two sub-problems which can be minimized 
separately. Branching which leads to a binary tree of sub-problems is used iteratively. Each sub-
problem is either solved without further branching or is found to be irrelevant because its relaxed 
version already produces a longer path than a solution of another sub-problem. This method is 
called branch-and-cut which is a variation of the well known branch-and-bound procedure [1]. 
 
The development of computational methods to solve the TSP is an active field of research, and 
Applegate et. al. proposed a comprehensive review about solving TSP [6]. These methods can be 
classified into two broad categories, exact algorithms which are guaranteed to output optimal 
tours, and heuristics which generate good quality tours within reasonable execution time. The 
former category which includes cutting plane algorithms is shown in Table 1.  
 

Table 1. Algorithms and references 
 
Algorithms References 
Cutting plane algorithms Dantzig et al. [7]; Grőtschel and Padberg [8]; Hong [9] 
Branch and bound algorithms Balas [10]; Held and Karp [11]; Lin [12] 
Branch and cut algorithms Hong [9]; Crowder and Padberg [13]; Grőtschel 

and Holland [14], Padberg and Rinaldi [15] 
 
There are several construction heuristics such as the nearest neighborhood heuristic, the nearest, 
farthest, and cheapest insertion heuristics, Christofides’ heuristic, as well as improvement 
heuristics such as Lin and Kernighan’s local search [16], Fiechter’stabu search [17]; also tabu 
search proposed by Gendreau et al. [18]; Knox [19]; Potvin et al. [20]; Tsubakitani and Evans [21], 
Cerny’s simulated annealing [22], Nguyen’s genetic algorithms [23] and swarm algorithms of 
Goldbarg et al. [24] and Wang et al. [25,26]. 
 
Onder et al. proposed Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) supported 
GA techniques for finding the shortest route in condition of to visit every city one time but the 
starting city twice for TSP [27]. Nagata and Kobayashi used GA for TSP with edge assembly 
crossover (EAX) and found finding very high-quality solutions on instances with up to 200,000 
cities [28]. Tasgetiren et al. [29] proposed iterated greedy algorithm with an Inver-Over operator to 
solve TSP. The proposed algorithm is applied to the well-known 14 TSP instances from TSPLIB 
and is competitive to the recent best performing algorithms. Gorkemli and Karaboga improved 
quick Artificial Bee Colony (qABC) algorithm as an improved version of ABC in which the onlooker 
bees behavior is modeled [30]. 
 

2 Methodology 
 
2.1 Objectives 
 
In this paper, exact algorithms, heuristic and meta-heuristic algorithms which are used to solve 
NP-hard problems are surveyed. These algorithms’ solution approaches in problem instances are 
compared and new improved structure for TSP in the literature are also surveyed. The main 
objective is to solve TSP instances with an effective VNS structure based on k-opt neighborhoods 
and compare results to best known solutions to test the changes of the order of neighborhoods 
makes a significant difference. 
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2.2 Variable Neighborhood Search Method 
 
Variable Neighborhood Search (VNS) is based upon a simple principle: systematic change of 
neighborhood within the search. Several dozen papers already published for VNS. Many 
extensions have been made and research papers mainly proposed to allow solution of large 
problem instances. In most of them, the aim is to keep the simplicity of the basic scheme.  

 
VNS is a metaheuristic based on systematically changing of neighborhood set. Usual heuristic 
searches are based on transformations of solutions that determine one neighborhood structure on 
the solution space. VNS uses a series of neighborhood structure. The basic idea of the VNS is to 
change the neighborhood used when the local search is fascinated at a local minimum. During the 
past decade, this method has been successfully applied to a wide range of rich vehicle routing 
problems [31].  
 
VNS is a stochastic local search method that is based on the systematic change of the 
neighborhood during the search. It has been shown to be a simple and effective method for solving 
single-objective optimization problems, including TSP and scheduling problems [30]. 
 
The concept of classical VNS algorithms employs a set of neighborhood search methods 
systematically to find the optimum or near-optimal solution. The base solution in VNS is compared 
with the neighboring solutions and updated during the search process. Most benchmark sets of 
single objective optimization problems are established using constraints with different levels [32]. 
Almost all methods in the literature treat and solve the instances above independently and 
separately. That is only one instance will be solved on each run which usually leads to limit the 
sharing of search information. However, from the observation on the search process, it is easy to 
find out that the info overlap among instances with adjacent levels of constraints [32,33]. 
 
This method includes the idea of neighborhood change systematically, both in descent to local 
minima and in escape from the valleys which contain them. VNS heavily relies upon three 
following observations [33]: 
 
Fact 1. A local minimum for one neighborhood structure is not necessarily a local minimum for 
another neighborhood structure. 
Fact 2. A global minimum is a local minimum for all possible neighborhood structures. 
 
Fact 3. Local minima with respect to one or several neighborhoods are relatively close to each 
other. 
 
This last observation is that a local optimum often provides some information about the global 
optimum. In this case, there may be several variables with the same value in both. However, it is 
not usually known which have the same value. Therefore, a VNS structure search different 
neighborhoods of a local optimum systematically [34]. 

 
2.2.1 Steps of variable neighborhood search method 

 
Unlike most local search heuristics that uses only a simple neighboorhood structure, a VNS 
structure uses a finite set of pre-selected neighborhood structures denoted by Nk, for k=1,…,kmax 

and the set of solutions in the k
th
 neighborhood of x is denoted by Nk(x). Neighborhoods Nk may be 

obtained by different local search approaches into a solution space S. A best solution (hopefully 
global minimum) xbest is a feasible solution where a minimum of the solutions in a neighborhood k 
is reached. The steps of a basic VNS structure are defined as in the Algorithm 1.  [33]. 
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Initialization: 
- Determine the set of Nk, for k=1,…,kmax, that will be used in VNS;  
- Find an initial solution x by any construction heuristic and its objective function value f(x), set 
xbest← x, fbest← f(x); choose a stopping condition; 
Repeat the following operations as long as the stopping conditions are not met: 
(1) Set k ←1; 
(2) Repeat the below steps until k=kmax: 

(a) Shaking. Generate a random solution point x’ and in the k
th
 neighborhood of x; 

(b) Local search. Find a solution point x’’ as the local optimum applying some local search 
method with x’ as initial solution; 

(c) Check for improvements. If f(x’)’is better than f(x),  set fbestt← f(x’’) and xbest←x’’ and 
k=1, otherwise set k=k+1 

(or if k=kmax, set k=1); go to Step 1. 

 
Algorithm 1.Steps of basic VNS algorithm [33]. 
 
In Step 1, x’ is generated at random to avoid cycling (Successive Nk are often nested). In Step 2, if 
incumbent is changed then started over with N1, otherwise continue search in Nk+1 starting with the 
local optimum of Nk [33]. 

 
The main step can possibly be iterated until some other stopping condition is met (e.g. maximum 
number of iterations, maximum CPU time allowed, or maximum number of iterations between two 
improvements). Often successive neighborhoods Nk will be nested [35,36]. 
 
2.2.2 TSP and extensions 
 
VNS is used for the TSP and its extensions. Another problem is asymmetric TSP that a 
generalized TSP in which distances between a pair of cities need not equal in the opposite 
direction [37]. Hansen and Mladenovic consider basic VNS for the euclidean TSP [38,39]. Burke et 
al. [40] apply guided VNS methods for the asymmetric TSP. In TSP, there is a collection of cities 
and travel cost between each pair of them. VNS includes structural and flexible changes of these 
pairs [41,42]. VNS for the Pickup and Delivery TSP is considered by Carrabs et al. [43]. Hu and 
Raidl study the effectiveness of neighborhood structures within a VNS approach for the 
generalized TSP [44]. Felipe et al. [45] use a VNS approach to solve a double TSP with multiple 
stacks. In the same year, a multi-start variant of VNS is applied by Mansini and Tocchella [46] to 
solve the travelling purchaser problem with budget constraints [35]. 
 

3 Variable Neighborhood Search Structure Proposed for TSP and 
Computational Study  

 
3.1 Input Files 
 
The symmetric and asymmetric TSP benchmark instances are taken from the TSP Library 
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) are used in this study. The travel costs 
between nodes are Euclidean distance between the two corresponding nodes. Each benchmark 
problem is solved five times in order to have an average performance of the VNS structure.  
 
The distances between n cities are stored in a distance matrix (D) with elements dij where i, j= 1,…, 
n and the diagonal elements dii are zero. A tour can be represented by a cyclic permutation Π of {1, 
2,…, n} where Π(i) represents the city that follows city i on the tour. The TSP is then the 
optimization problem to find a permutation Π that minimizes the length of the tour. The goal is to 
find the shortest tour that visits each city in a given list exactly once and then returns to the starting 
city. 
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There are six structures proposed in this paper. The proposed VNS algorithms are developed 
based on a neighborhood structures; k-opt algorithm. The VNS-I structure uses five 
Opt(fourOpt(threeOpt(twoOpt())) as a neighborhood structure. Let S be a permutation given in the 
VNS before applying any operation and N be the number of cities. 
 

3.2 Numerical Experiment 
 
The simplest variant for shaking is to perform sequence of k moves. In this paper, the proposed 
VNS structures are developed based on four neighborhood structures; k-opt (2-opt, 3-opt, 4-opt, 5-
opt) structures. For initial solution, Hill Climbing method is used. Neighborhood definition is k-opt 
where kmax=5, i.e. Nk(x) is the set of solutions having k edges different from x. Local search method 
used in Step 2 is 2-opt. 

 
This experiment is to use the six structures to solve all benchmark symmetric TSP instances. Each 
instance is solved by these structures five times with a random initial solution. These structures are 
terminated when any of the two following conditions is met; 
 

1. The optimal solution is found,  
2. The 100-th is reached. After five runs and 100 iterations (maximum iteration number as 

control parameter), and if there is no improvement in cost value, VNS process is ended. 
Then the computation time is recorded.  

 
The result of the experiment in solution values is given in Table 2. In this table, the information in 
each column can be defined as; “Problem name” is symmetric TSP instance name that is used for 
the proposed VNS-I structure as the main structure, “Best” is the value of best solutions of 
application over five trial runs, “Best known solutions” is the value of best known solution, “Avg.” is 
the average Central Processing Unit (CPU) times value taken from all five solutions. 
 

Table 2. VNS-I application results for symmetric TSP instances 
 
Problem  
name 

Performance over best 
known solution (%) 

Best 
solution 

Best known 
solutions 

Avg. 
(seconds) 

Min Max 
ulysses16.tsp 0 0 6859 6859 19.719 
ulysses22.tsp 0 0 7013 7013 25.047 
fri26.tsp 0 0 937 937 27.078 
bays29.tsp 0 0 2020 2020 30.109 
bayg29.tsp 0 0 1610 1610 29.078 
att48.tsp 0 0.006 10628 10628 42.266 
hk48.tsp 0 0 11461 11461 42.375 
berlin52.tsp 0 0 7542 7542 45.250 
eil51.tsp 0 0 426 426 44.210 
eil76.tsp 0 0.014 538 538 64.968 
eil101.tsp 0.024 0.088 644 629 84.672 
ch130.tsp 0.042 0.050 6368 6110 112.515 
gr24.tsp 0 0 1272 1272 26.391 
gr48.tsp 0 0 5046 5046 42.375 
gr96.tsp 0.010 0.016 55774 55209 81.921 
gr120.tsp 0.026 0.039 7127 6942 102.188 
gr202.tsp 0.087 0.097 43668 40160 189.218 
kroA100.tsp 0.016 0.031 21624 21282 85.047 
kroB100.tsp 0.026 0.136 22715 22141 84.813 
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Table 2. VNS-I application results for symmetric TSP instances (continued) 
 

Problem  
name 

Performance over best 
known solution (%) 

Best 
solution 

Best known 
solutions 

Avg. 
(seconds) 

Min Max 
kroB150.tsp 0.098 0.101 28700 26130 138.656 
kroB200.tsp 0.071 0.102 31540 29437 203.250 
kroC100.tsp 0.003 0.004 20818 20749 84.328 
kroD100.tsp 0.015 0.020 21621 21294 84.313 
kroE100.tsp 0.016 0.049 22424 22068 84.218 
lin105.tsp 0.015 0.020 14596 14379 89.250 
pr76.tsp 0.004 0.010 108644 108159 65.906 
pr107.tsp 0.040 0.051 46071 44303 89.657 
pr124.tsp 0.013 0.015 59813 59030 111.016 
pr136.tsp 0.049 0.058 101477 96772 118.235 
pr144.tsp 0.022 0.014 59834 58537 126.547 
pr152.tsp 0.063 0.075 78294 73682 134.813 
pr226.tsp 0.101 0.111 88494 80369 215.703 
rd100.tsp 0.014 0.072 8022 7910 85.063 
tsp225.tsp 0.182 0.187 4630 3916 219.922 
ts225.tsp 0.155 0.161 146326 126643 224.625 
swiss42.tsp 0 0 1273 1273 38.547 
rat99.tsp 0.028 0.044 1245 1211 82.328 
rat195.tsp 0.161 0.285 2697 2323 179.703 

Bold values are the best known solutions obtained by VNS-I 
 
For symmetric TSP instances, the minimum and maximum errors as performance measures with 
respect to the best known solutions for test problem sets are listed. Symmetric TSP instances are 
solved and best solutions of five runs, the best known solutions and average CPU times (in 
seconds) are shown in Table 2. The proposed VNS-I heuristics solved eleven of twelve problem 
instances optimally. The last column reports the average of five runs’ CPU times of the VNS-I 
heuristics. Because of the random choices made in the VNS heuristic, it is not deterministic. It is 
therefore executed five times on each instance. 
 
VNS-I structure is then modified to five different variants for TSP instances.The other VNS 
structures are as follows: 
 

 VNS-II structure uses threeOpt(fourOpt(fiveOpt(twoOpt()))),  
 VNS-III structure uses threeOpt(fiveOpt(fourOpt(twoOpt()))),  
 VNS-IV structure uses fourOpt(fiveOpt(threeOpt(twoOpt()))),  
 VNS-V structure uses fourOpt(threeOpt(fiveOpt(twoOpt()))), 
 VNS-VI structure uses threeOpt(fourOpt(twoOpt(fiveOpt()))). 

 
Table 3 shows the solution values found by the proposed structures on thirty three symmetric TSP 
instances and Table 4 shows the solution values found by the proposed structures on seven 
asymmetric TSP instances. In these tables, the information in each column can be defined as 
follows: 

 
 “VNS variants” is the name of each structure used to solve the problem. 
 “Best” is the value of the best found solution over five trial runs. 
 “Avg.” is the average CPU times taken from all five solutions. 
 The best found solution value is marked an asterisk if it is the best in the comparison. 
 The best found solution value is bold if it is the optimal solution value. 
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Table 3. Solution values found by the proposed structures on the benchmark instances 
 

Problem  
name 

VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best 
Known 
solution 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

ulysses16.tsp 6859 20 6859 20 6859 20 6859 20 6859 20 6859 20 6859 
ulysses22.tsp 7013 25 7013 26 7013 26 7013 26 7013 26 7013 25 7013 
fri26.tsp 937 27 937 27 937 27 937 26 937 27 937 26 937 
bays29.tsp 2020 30 2020 30 2020 30 2020 20 2020 30 2020 31 2020 
bayg29.tsp 1610 29 1610 30 1610 30 1610 30 1610 30 1610 31 1610 
att48.tsp 10628 42 10628 43 10628 39 10628 40 10628 39 10628 40 10628 
hk48.tsp 11461 42 11461 43 11461 43 11461 43 11461 43 11461 43 11461 
berlin52.tsp 7542 45 7542 46 7542 45 7542 45 7542 45 7542 46 7542 
eil51.tsp 426 44 426 45 428 45 426 45 426 45 428 45 426 
eil76.tsp 538 65 540 65 541 65 548 68 549 70 541 65 538 
eil101.tsp 644 85 648 85 663 88 655 89 659 92 663 89 629 
ch130.tsp 6368 113 6401 113 6682 118 6472 112 6438 111 6682 117 6110 
gr24.tsp 1272 26 1272 27 1272 27 1272 26 1272 26 1272 27 1272 
gr48.tsp 5046 42 5046 43 5046 43 5046 43 5046 42 5046 43 5046 
gr96.tsp 55774 82 56178 81 55984 81 56066 80 57078 81 58675 82 55209 
gr120.tsp 7127 102 7255 109 7430 102 7394 102 7189 104 7255 109 6942 
gr202.tsp 43668 189 44207 191 43705 192 43187 192 42590 192 43705 193 40160 
kroA100.tsp 21624 85 22002 85 21603 86 21398 85 21741 86 21603 87 21282 
kroB100.tsp 22715 85 22942 85 24020 85 22954 85 23109 85 24020 86 22141 
kroB150.tsp 28700 139 27672 138 28236 138 27897 137 27724 137 28236 139 26130 
kroB200.tsp 31540 203 33793 201 32420 205 33196 206 33002 204 32420 207 29437 
kroC100.tsp 20818 84 22792 84 21202 86 21188 85 21667 86 21202 86 20749 
kroD100.tsp 21621 84 21907 84 21949 85 22142 85 22146 86 21949 87 21294 
kroE100.tsp 22424 84 22340 84 22481 85 22655 85 22597 85 22481 85 22068 
lin105.tsp 14596 89 14683 89 14681 90 14442 89 14830 89 14681 90 14379 
pr76.tsp 108644 66 109085 65 109411 65 108444 65 109164 66 109411 64 108159 
pr107.tsp 46071 90 45244 90 45806 89 45821 90 45211 91 45806 90 44303 
pr124.tsp 59813 111 60611 112 61365 112 45389 90 44945 90 61365 111 59030 
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Table 3. Solution values found by the proposed structures on the benchmark instances (continued) 
 

Problem  
name 

VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best 
Known 
solution 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

pr136.tsp 101477 118 102782 120 102977 119 106438 120 119813 120 102977 120 96772 
pr144.tsp 59834 127 59158 126 60315 127 60771 126 59921 126 60315 126 58537 
pr152.tsp 78294 135 77290 137 74961 136 77825 136 76365 137 74961 137 73682 
pr226.tsp 88494 216 90365 218 92088 215 89344 215 87615 213 92088 215 80369 
rd100.tsp 8022 85 8197 85 8222 86 8350 89 8166 86 8222 86 7910 

Bold values are the best known values. 
 

Table 4. Solution values found by the proposed structures on asymmetric TSP benchmark instances 
 

Problem name VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best 
Known 
solution 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

Best CPU 
times 
(s) 

ftv70.atsp 1968 63 1981 61 1975 65 1964 63 1962 68 1975 67 1950 
ftv170.atsp 2815 61 2755 60 2815 60 3058 60 2893 61 2815 62 2755 
ftv160.atsp 2683 60 2738 61 2832 60 2932 60 2683 61 2848 62 2683 
kro124p.atsp 44230 85 46126 84 41443 84 37962 88 36352 89 41443 86 36230 
rbg323.atsp 1330 330 1334 301 1333 311 1332 322 1330 328 1333 334 1326 
rbg358.atsp 1165 388 1170 383 1168 384 1167 387 1169 384 1168 387 1163 
p43.atsp 5620 42 5622 42 5625 43 5623 43 5621 43 5621 42 5620 

Bold values are the best known values. 
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According to the results from Table 4, VNS-II can find best known solution for ftv170, and VNS-I 
can find best known solution for ftv160 and p43. Thus, based on the data in Table 4, VNS-II seems 
to be the best structure since it returns the optimal solution in ftv170 and also returns nearly the 
best found solution on ftv70, ftv170, kro124p, rbg323.tsp in VNSV 
 
Even though VNSI results are closer to best known solutions on symmetric TSP instances 
compared to the other five VNS structures, pairwise t-test does not show a significant difference 
between the best results as shown in Table 5. 
 
Even though VNSII and VNSV results are closer to best known solutions on asymmetric TSP 
instances compared to the other five VNS structures, pairwise t-test does not show a significant 
difference between the best results as shown in Table 5. 
 

Table 5. Statistical analyses for proposed structures on TSP benchmark instances 
 

Structures t-value 
(symmetric TSP 
benchmark instances) 

t-value 
(asymmetric TSP 
benchmark instances) 

VNSI-VNSII 0,048* 0,176** 
VNSI-VNSIII 0,085* 0,194** 
VNSI-VNSIV 0,347* 0,199** 
VNSI-VNSV 0,440* 0,181** 
VNSI-VNSVI 0,052* 0,195** 
VNSII-VNSIII 0,048* 0,186** 
VNSII-VNSIV 0,203* 0,194** 
VNSII-VNSV 0,441* 0,180** 
VNSII-VNSVI 0,260* 0,187** 
VNSIII-VNSIV 0,205* 0,204** 
VNSIII-VNSV 0,432* 0,174** 
VNSIII-VNSVI 0,179* 0,255** 
VNSIV-VNSV 0,238* 0,121** 
VNSIV-VNSVI 0,169* 0,203** 
VNSV-VNSVI 0,392* 0,173** 

* < t value(0,05;32)= 2,037 for symmetric problems; 
** < t value(0,05;6)= 2,247 for asymmetric problems. 

 

4 Conclusion 
 
This paper examines new heuristic methods for getting an approximate solution of the TSP. A 
neighborhood structure is defined on the solution space, and used to develop a local search 
procedure. In this paper, we propose VNS structure for solving the TSP instances and examine the 
performance of our approach based on solution quality and execution time. Six variations of VNS 
are implemented and tested on 40 benchmark problems. From the application, VNS-I and VNS-V 
performs best in terms of solution quality for asymmetric TSP instance. VNS-I structure performs 
best for symmetric TSP instances. 
 
An important extension of this work could be to develop a new solution technique with a hybrid 
VNS structure. As a future research, the neighborhood structures used in the local search stage of 
the VNS structure will be improved in order to enhance the search performance and all symmetric 
and asymmetric TSP problem sets will be solved by this structure. 
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