

British Journal of Mathematics & Computer Science

6(5): 422-434, 2015, Article no.BJMCS.2015.088

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: hande.erol@marmara.edu.tr;

New Variable Neighborhood Search Structure for
Travelling Salesman Problems

A. Hande Erol Bingüler1* and Serol Bulkan2

1Department of Industrial Engineering, Institute for Graduate Studies In Pure and Applied

Sciences, Marmara University, Göztepe 34722, Istanbul, Turkey.
2
Department of Industrial Engineering, Faculty of Engineering, Marmara University,

Göztepe 34722, Istanbul, Turkey.

Article Information

DOI: 10.9734/BJMCS/2015/14453
Editor(s):

(1) Farouk Yalaoui, Department of Industrial Systems Engineering, Troyes University of Technology, France.
(2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA.

Reviewers:
(1) Anonymous, Egypt.

(2) Stephen Akandwanaho, University of KwaZulu-Natal, South Africa.
(3) Ayman I.H. Srour, Facility of Information Science & Technology, National University of Malaysia,

Malaysia.
Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=735&id=6&aid=7683

Received: 30 September 2014
Accepted: 23 December 2014

Published: 09 January 2015

Abstract

In the traveling salesman problem, there are a collection of cities and travel cost between each
pair of them. The aim is to find the minimum cost way of visiting all cities and returning to the
starting point. This kind of problem is deceptive and one of the most intensely studied problems
in computational mathematics. No effective solution method is known for the general case.
Variable Neighborhood Search (VNS) is a recent metaheuristic for solving combinatorial and
global optimization problems whose basic idea is systematic change of neighborhood within a
local search. Its development has been rapid, with several dozen papers already published or
to appear. Many extensions have been made, mainly to allow solution of large problem
instances. In most of them, an effort has been made to keep the simplicity of the basic scheme.
In this study, variable neighborhood search structure as a metaheuristic optimization technique
and neighborhood approximation is developed. K-opt neighborhood structure is generated. This
new structure’s solvability in benchmark and symmetric traveling salesman problem instances
is tested, and results are listed.

Keywords: Metaheuristic methods, neighborhood approximation, travelling salesman problem.

Method Article

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

423

1 Introduction

The Traveling Salesman Problem (TSP) is a well-known and important combinatorial optimization
problem. The goal is to find the shortest tour that visits each city in a given list exactly once and
then returns to the starting city. Formally, the TSP can be stated as follows. The distances
between n cities are stored in a distance matrix (D) with elements dij where i, j= 1,…, n and the
diagonal elements dii are zero. A tour can be represented by a cyclic permutation Π of {1, 2,…, n}
where Π(i) represents the city that follows city i on the tour.

The TSP is then the optimization problem to find a permutation Π that minimizes the length of the
tour denoted by [1];

n

i
iid

1
)(

(1)

For this minimization task, the tour length of (n - 1)! permutation vectors have to be compared.
This results in a problem which is very hard to solve and in fact known to be NP-complete. Solving
TSPs is an important part of applications in many fields like vehicle routing, computer wiring,
machine sequencing and scheduling, frequency assignment in communication networks.
Applications in statistical data analysis include ordering and clustering objects As in Hubert and
Baker’s example, data analysis applications in psychology ranging from profile smoothing to
finding an order in developmental data are proposed[2,3,4].

An optimization problem may be formulated as follows:

},/)(min{ SXXxxf (2)

S, X, x and f are solution space, feasible set, feasible solution and real valued function,
respectively. If S is a finite but large set a combinatorial optimization problem is defined. Most
optimization problems are NP-hard and heuristic (suboptimal) solution methods are needed to
solve them (at least for large instances or as an initial solution for some exact procedure).
Metaheuristics, or general frameworks for building heuristics to solve problem (1), are usually
based upon a basic idea, or analogy. Then, they are developed, extended in various directions and
possibly hybridized. After complicated results, they use many parameters. This may enhance their
efficiency but obscures the reasons of their success.

As TSP is known to be NP-hard, this means that no known algorithm is guaranteed to solve all
TSP instances to optimality within reasonable execution time. So in addition to exact solution
approaches, a number of heuristics and metaheuristics have been developed to solve problems
approximately. Heuristics and metaheuristics trade optimality of the solutions that they output with
execution times. They are used to find “good” quality solutions within reasonable execution times
[5].

Finding the exact solution to a TSP with n cities requires checking (n-1)! possible tours. To
evaluate all possible tours is infeasible for even small TSP instances. Held and Karp presented the
dynamic programming to find the optimal tour in 1962 [1].

A different method, which can deal with larger instances, uses a relaxation of the linear
programming problem and iteratively tightens the relaxation till a solution is found. This general
method for solving linear programming problems with complex and large inequality systems is
called cutting plane method and was introduced by Dantzig, Fulkerson, and Johnson in 1954. If no

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

424

further cutting planes can be found or the improvement in the objective function due to adding cuts
gets very small, the problem is branched into two sub-problems which can be minimized
separately. Branching which leads to a binary tree of sub-problems is used iteratively. Each sub-
problem is either solved without further branching or is found to be irrelevant because its relaxed
version already produces a longer path than a solution of another sub-problem. This method is
called branch-and-cut which is a variation of the well known branch-and-bound procedure [1].

The development of computational methods to solve the TSP is an active field of research, and
Applegate et. al. proposed a comprehensive review about solving TSP [6]. These methods can be
classified into two broad categories, exact algorithms which are guaranteed to output optimal
tours, and heuristics which generate good quality tours within reasonable execution time. The
former category which includes cutting plane algorithms is shown in Table 1.

Table 1. Algorithms and references

Algorithms References
Cutting plane algorithms Dantzig et al. [7]; Grőtschel and Padberg [8]; Hong [9]
Branch and bound algorithms Balas [10]; Held and Karp [11]; Lin [12]
Branch and cut algorithms Hong [9]; Crowder and Padberg [13]; Grőtschel

and Holland [14], Padberg and Rinaldi [15]

There are several construction heuristics such as the nearest neighborhood heuristic, the nearest,
farthest, and cheapest insertion heuristics, Christofides’ heuristic, as well as improvement
heuristics such as Lin and Kernighan’s local search [16], Fiechter’stabu search [17]; also tabu
search proposed by Gendreau et al. [18]; Knox [19]; Potvin et al. [20]; Tsubakitani and Evans [21],
Cerny’s simulated annealing [22], Nguyen’s genetic algorithms [23] and swarm algorithms of
Goldbarg et al. [24] and Wang et al. [25,26].

Onder et al. proposed Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) supported
GA techniques for finding the shortest route in condition of to visit every city one time but the
starting city twice for TSP [27]. Nagata and Kobayashi used GA for TSP with edge assembly
crossover (EAX) and found finding very high-quality solutions on instances with up to 200,000
cities [28]. Tasgetiren et al. [29] proposed iterated greedy algorithm with an Inver-Over operator to
solve TSP. The proposed algorithm is applied to the well-known 14 TSP instances from TSPLIB
and is competitive to the recent best performing algorithms. Gorkemli and Karaboga improved
quick Artificial Bee Colony (qABC) algorithm as an improved version of ABC in which the onlooker
bees behavior is modeled [30].

2 Methodology

2.1 Objectives

In this paper, exact algorithms, heuristic and meta-heuristic algorithms which are used to solve
NP-hard problems are surveyed. These algorithms’ solution approaches in problem instances are
compared and new improved structure for TSP in the literature are also surveyed. The main
objective is to solve TSP instances with an effective VNS structure based on k-opt neighborhoods
and compare results to best known solutions to test the changes of the order of neighborhoods
makes a significant difference.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

425

2.2 Variable Neighborhood Search Method

Variable Neighborhood Search (VNS) is based upon a simple principle: systematic change of
neighborhood within the search. Several dozen papers already published for VNS. Many
extensions have been made and research papers mainly proposed to allow solution of large
problem instances. In most of them, the aim is to keep the simplicity of the basic scheme.

VNS is a metaheuristic based on systematically changing of neighborhood set. Usual heuristic
searches are based on transformations of solutions that determine one neighborhood structure on
the solution space. VNS uses a series of neighborhood structure. The basic idea of the VNS is to
change the neighborhood used when the local search is fascinated at a local minimum. During the
past decade, this method has been successfully applied to a wide range of rich vehicle routing
problems [31].

VNS is a stochastic local search method that is based on the systematic change of the
neighborhood during the search. It has been shown to be a simple and effective method for solving
single-objective optimization problems, including TSP and scheduling problems [30].

The concept of classical VNS algorithms employs a set of neighborhood search methods
systematically to find the optimum or near-optimal solution. The base solution in VNS is compared
with the neighboring solutions and updated during the search process. Most benchmark sets of
single objective optimization problems are established using constraints with different levels [32].
Almost all methods in the literature treat and solve the instances above independently and
separately. That is only one instance will be solved on each run which usually leads to limit the
sharing of search information. However, from the observation on the search process, it is easy to
find out that the info overlap among instances with adjacent levels of constraints [32,33].

This method includes the idea of neighborhood change systematically, both in descent to local
minima and in escape from the valleys which contain them. VNS heavily relies upon three
following observations [33]:

Fact 1. A local minimum for one neighborhood structure is not necessarily a local minimum for
another neighborhood structure.
Fact 2. A global minimum is a local minimum for all possible neighborhood structures.

Fact 3. Local minima with respect to one or several neighborhoods are relatively close to each
other.

This last observation is that a local optimum often provides some information about the global
optimum. In this case, there may be several variables with the same value in both. However, it is
not usually known which have the same value. Therefore, a VNS structure search different
neighborhoods of a local optimum systematically [34].

2.2.1 Steps of variable neighborhood search method

Unlike most local search heuristics that uses only a simple neighboorhood structure, a VNS
structure uses a finite set of pre-selected neighborhood structures denoted by Nk, for k=1,…,kmax

and the set of solutions in the k
th
 neighborhood of x is denoted by Nk(x). Neighborhoods Nk may be

obtained by different local search approaches into a solution space S. A best solution (hopefully
global minimum) xbest is a feasible solution where a minimum of the solutions in a neighborhood k
is reached. The steps of a basic VNS structure are defined as in the Algorithm 1. [33].

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

426

Initialization:
- Determine the set of Nk, for k=1,…,kmax, that will be used in VNS;
- Find an initial solution x by any construction heuristic and its objective function value f(x), set
xbest← x, fbest← f(x); choose a stopping condition;
Repeat the following operations as long as the stopping conditions are not met:
(1) Set k ←1;
(2) Repeat the below steps until k=kmax:

(a) Shaking. Generate a random solution point x’ and in the k
th
 neighborhood of x;

(b) Local search. Find a solution point x’’ as the local optimum applying some local search
method with x’ as initial solution;

(c) Check for improvements. If f(x’)’is better than f(x), set fbestt← f(x’’) and xbest←x’’ and
k=1, otherwise set k=k+1

(or if k=kmax, set k=1); go to Step 1.

Algorithm 1.Steps of basic VNS algorithm [33].

In Step 1, x’ is generated at random to avoid cycling (Successive Nk are often nested). In Step 2, if
incumbent is changed then started over with N1, otherwise continue search in Nk+1 starting with the
local optimum of Nk [33].

The main step can possibly be iterated until some other stopping condition is met (e.g. maximum
number of iterations, maximum CPU time allowed, or maximum number of iterations between two
improvements). Often successive neighborhoods Nk will be nested [35,36].

2.2.2 TSP and extensions

VNS is used for the TSP and its extensions. Another problem is asymmetric TSP that a
generalized TSP in which distances between a pair of cities need not equal in the opposite
direction [37]. Hansen and Mladenovic consider basic VNS for the euclidean TSP [38,39]. Burke et
al. [40] apply guided VNS methods for the asymmetric TSP. In TSP, there is a collection of cities
and travel cost between each pair of them. VNS includes structural and flexible changes of these
pairs [41,42]. VNS for the Pickup and Delivery TSP is considered by Carrabs et al. [43]. Hu and
Raidl study the effectiveness of neighborhood structures within a VNS approach for the
generalized TSP [44]. Felipe et al. [45] use a VNS approach to solve a double TSP with multiple
stacks. In the same year, a multi-start variant of VNS is applied by Mansini and Tocchella [46] to
solve the travelling purchaser problem with budget constraints [35].

3 Variable Neighborhood Search Structure Proposed for TSP and
Computational Study

3.1 Input Files

The symmetric and asymmetric TSP benchmark instances are taken from the TSP Library
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) are used in this study. The travel costs
between nodes are Euclidean distance between the two corresponding nodes. Each benchmark
problem is solved five times in order to have an average performance of the VNS structure.

The distances between n cities are stored in a distance matrix (D) with elements dij where i, j= 1,…,
n and the diagonal elements dii are zero. A tour can be represented by a cyclic permutation Π of {1,
2,…, n} where Π(i) represents the city that follows city i on the tour. The TSP is then the
optimization problem to find a permutation Π that minimizes the length of the tour. The goal is to
find the shortest tour that visits each city in a given list exactly once and then returns to the starting
city.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

427

There are six structures proposed in this paper. The proposed VNS algorithms are developed
based on a neighborhood structures; k-opt algorithm. The VNS-I structure uses five
Opt(fourOpt(threeOpt(twoOpt())) as a neighborhood structure. Let S be a permutation given in the
VNS before applying any operation and N be the number of cities.

3.2 Numerical Experiment

The simplest variant for shaking is to perform sequence of k moves. In this paper, the proposed
VNS structures are developed based on four neighborhood structures; k-opt (2-opt, 3-opt, 4-opt, 5-
opt) structures. For initial solution, Hill Climbing method is used. Neighborhood definition is k-opt
where kmax=5, i.e. Nk(x) is the set of solutions having k edges different from x. Local search method
used in Step 2 is 2-opt.

This experiment is to use the six structures to solve all benchmark symmetric TSP instances. Each
instance is solved by these structures five times with a random initial solution. These structures are
terminated when any of the two following conditions is met;

1. The optimal solution is found,
2. The 100-th is reached. After five runs and 100 iterations (maximum iteration number as

control parameter), and if there is no improvement in cost value, VNS process is ended.
Then the computation time is recorded.

The result of the experiment in solution values is given in Table 2. In this table, the information in
each column can be defined as; “Problem name” is symmetric TSP instance name that is used for
the proposed VNS-I structure as the main structure, “Best” is the value of best solutions of
application over five trial runs, “Best known solutions” is the value of best known solution, “Avg.” is
the average Central Processing Unit (CPU) times value taken from all five solutions.

Table 2. VNS-I application results for symmetric TSP instances

Problem
name

Performance over best
known solution (%)

Best
solution

Best known
solutions

Avg.
(seconds)

Min Max
ulysses16.tsp 0 0 6859 6859 19.719
ulysses22.tsp 0 0 7013 7013 25.047
fri26.tsp 0 0 937 937 27.078
bays29.tsp 0 0 2020 2020 30.109
bayg29.tsp 0 0 1610 1610 29.078
att48.tsp 0 0.006 10628 10628 42.266
hk48.tsp 0 0 11461 11461 42.375
berlin52.tsp 0 0 7542 7542 45.250
eil51.tsp 0 0 426 426 44.210
eil76.tsp 0 0.014 538 538 64.968
eil101.tsp 0.024 0.088 644 629 84.672
ch130.tsp 0.042 0.050 6368 6110 112.515
gr24.tsp 0 0 1272 1272 26.391
gr48.tsp 0 0 5046 5046 42.375
gr96.tsp 0.010 0.016 55774 55209 81.921
gr120.tsp 0.026 0.039 7127 6942 102.188
gr202.tsp 0.087 0.097 43668 40160 189.218
kroA100.tsp 0.016 0.031 21624 21282 85.047
kroB100.tsp 0.026 0.136 22715 22141 84.813

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

428

Table 2. VNS-I application results for symmetric TSP instances (continued)

Problem
name

Performance over best
known solution (%)

Best
solution

Best known
solutions

Avg.
(seconds)

Min Max
kroB150.tsp 0.098 0.101 28700 26130 138.656
kroB200.tsp 0.071 0.102 31540 29437 203.250
kroC100.tsp 0.003 0.004 20818 20749 84.328
kroD100.tsp 0.015 0.020 21621 21294 84.313
kroE100.tsp 0.016 0.049 22424 22068 84.218
lin105.tsp 0.015 0.020 14596 14379 89.250
pr76.tsp 0.004 0.010 108644 108159 65.906
pr107.tsp 0.040 0.051 46071 44303 89.657
pr124.tsp 0.013 0.015 59813 59030 111.016
pr136.tsp 0.049 0.058 101477 96772 118.235
pr144.tsp 0.022 0.014 59834 58537 126.547
pr152.tsp 0.063 0.075 78294 73682 134.813
pr226.tsp 0.101 0.111 88494 80369 215.703
rd100.tsp 0.014 0.072 8022 7910 85.063
tsp225.tsp 0.182 0.187 4630 3916 219.922
ts225.tsp 0.155 0.161 146326 126643 224.625
swiss42.tsp 0 0 1273 1273 38.547
rat99.tsp 0.028 0.044 1245 1211 82.328
rat195.tsp 0.161 0.285 2697 2323 179.703

Bold values are the best known solutions obtained by VNS-I

For symmetric TSP instances, the minimum and maximum errors as performance measures with
respect to the best known solutions for test problem sets are listed. Symmetric TSP instances are
solved and best solutions of five runs, the best known solutions and average CPU times (in
seconds) are shown in Table 2. The proposed VNS-I heuristics solved eleven of twelve problem
instances optimally. The last column reports the average of five runs’ CPU times of the VNS-I
heuristics. Because of the random choices made in the VNS heuristic, it is not deterministic. It is
therefore executed five times on each instance.

VNS-I structure is then modified to five different variants for TSP instances.The other VNS
structures are as follows:

 VNS-II structure uses threeOpt(fourOpt(fiveOpt(twoOpt()))),
 VNS-III structure uses threeOpt(fiveOpt(fourOpt(twoOpt()))),
 VNS-IV structure uses fourOpt(fiveOpt(threeOpt(twoOpt()))),
 VNS-V structure uses fourOpt(threeOpt(fiveOpt(twoOpt()))),
 VNS-VI structure uses threeOpt(fourOpt(twoOpt(fiveOpt()))).

Table 3 shows the solution values found by the proposed structures on thirty three symmetric TSP
instances and Table 4 shows the solution values found by the proposed structures on seven
asymmetric TSP instances. In these tables, the information in each column can be defined as
follows:

 “VNS variants” is the name of each structure used to solve the problem.
 “Best” is the value of the best found solution over five trial runs.
 “Avg.” is the average CPU times taken from all five solutions.
 The best found solution value is marked an asterisk if it is the best in the comparison.
 The best found solution value is bold if it is the optimal solution value.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

429

Table 3. Solution values found by the proposed structures on the benchmark instances

Problem
name

VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best
Known
solution

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

ulysses16.tsp 6859 20 6859 20 6859 20 6859 20 6859 20 6859 20 6859
ulysses22.tsp 7013 25 7013 26 7013 26 7013 26 7013 26 7013 25 7013
fri26.tsp 937 27 937 27 937 27 937 26 937 27 937 26 937
bays29.tsp 2020 30 2020 30 2020 30 2020 20 2020 30 2020 31 2020
bayg29.tsp 1610 29 1610 30 1610 30 1610 30 1610 30 1610 31 1610
att48.tsp 10628 42 10628 43 10628 39 10628 40 10628 39 10628 40 10628
hk48.tsp 11461 42 11461 43 11461 43 11461 43 11461 43 11461 43 11461
berlin52.tsp 7542 45 7542 46 7542 45 7542 45 7542 45 7542 46 7542
eil51.tsp 426 44 426 45 428 45 426 45 426 45 428 45 426
eil76.tsp 538 65 540 65 541 65 548 68 549 70 541 65 538
eil101.tsp 644 85 648 85 663 88 655 89 659 92 663 89 629
ch130.tsp 6368 113 6401 113 6682 118 6472 112 6438 111 6682 117 6110
gr24.tsp 1272 26 1272 27 1272 27 1272 26 1272 26 1272 27 1272
gr48.tsp 5046 42 5046 43 5046 43 5046 43 5046 42 5046 43 5046
gr96.tsp 55774 82 56178 81 55984 81 56066 80 57078 81 58675 82 55209
gr120.tsp 7127 102 7255 109 7430 102 7394 102 7189 104 7255 109 6942
gr202.tsp 43668 189 44207 191 43705 192 43187 192 42590 192 43705 193 40160
kroA100.tsp 21624 85 22002 85 21603 86 21398 85 21741 86 21603 87 21282
kroB100.tsp 22715 85 22942 85 24020 85 22954 85 23109 85 24020 86 22141
kroB150.tsp 28700 139 27672 138 28236 138 27897 137 27724 137 28236 139 26130
kroB200.tsp 31540 203 33793 201 32420 205 33196 206 33002 204 32420 207 29437
kroC100.tsp 20818 84 22792 84 21202 86 21188 85 21667 86 21202 86 20749
kroD100.tsp 21621 84 21907 84 21949 85 22142 85 22146 86 21949 87 21294
kroE100.tsp 22424 84 22340 84 22481 85 22655 85 22597 85 22481 85 22068
lin105.tsp 14596 89 14683 89 14681 90 14442 89 14830 89 14681 90 14379
pr76.tsp 108644 66 109085 65 109411 65 108444 65 109164 66 109411 64 108159
pr107.tsp 46071 90 45244 90 45806 89 45821 90 45211 91 45806 90 44303
pr124.tsp 59813 111 60611 112 61365 112 45389 90 44945 90 61365 111 59030

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

430

Table 3. Solution values found by the proposed structures on the benchmark instances (continued)

Problem
name

VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best
Known
solution

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

pr136.tsp 101477 118 102782 120 102977 119 106438 120 119813 120 102977 120 96772
pr144.tsp 59834 127 59158 126 60315 127 60771 126 59921 126 60315 126 58537
pr152.tsp 78294 135 77290 137 74961 136 77825 136 76365 137 74961 137 73682
pr226.tsp 88494 216 90365 218 92088 215 89344 215 87615 213 92088 215 80369
rd100.tsp 8022 85 8197 85 8222 86 8350 89 8166 86 8222 86 7910

Bold values are the best known values.

Table 4. Solution values found by the proposed structures on asymmetric TSP benchmark instances

Problem name VNS-I VNS-II VNS-III VNS-IV VNS-V VNS-VI Best
Known
solution

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

Best CPU
times
(s)

ftv70.atsp 1968 63 1981 61 1975 65 1964 63 1962 68 1975 67 1950
ftv170.atsp 2815 61 2755 60 2815 60 3058 60 2893 61 2815 62 2755
ftv160.atsp 2683 60 2738 61 2832 60 2932 60 2683 61 2848 62 2683
kro124p.atsp 44230 85 46126 84 41443 84 37962 88 36352 89 41443 86 36230
rbg323.atsp 1330 330 1334 301 1333 311 1332 322 1330 328 1333 334 1326
rbg358.atsp 1165 388 1170 383 1168 384 1167 387 1169 384 1168 387 1163
p43.atsp 5620 42 5622 42 5625 43 5623 43 5621 43 5621 42 5620

Bold values are the best known values.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

431

According to the results from Table 4, VNS-II can find best known solution for ftv170, and VNS-I
can find best known solution for ftv160 and p43. Thus, based on the data in Table 4, VNS-II seems
to be the best structure since it returns the optimal solution in ftv170 and also returns nearly the
best found solution on ftv70, ftv170, kro124p, rbg323.tsp in VNSV

Even though VNSI results are closer to best known solutions on symmetric TSP instances
compared to the other five VNS structures, pairwise t-test does not show a significant difference
between the best results as shown in Table 5.

Even though VNSII and VNSV results are closer to best known solutions on asymmetric TSP
instances compared to the other five VNS structures, pairwise t-test does not show a significant
difference between the best results as shown in Table 5.

Table 5. Statistical analyses for proposed structures on TSP benchmark instances

Structures t-value
(symmetric TSP
benchmark instances)

t-value
(asymmetric TSP
benchmark instances)

VNSI-VNSII 0,048* 0,176**
VNSI-VNSIII 0,085* 0,194**
VNSI-VNSIV 0,347* 0,199**
VNSI-VNSV 0,440* 0,181**
VNSI-VNSVI 0,052* 0,195**
VNSII-VNSIII 0,048* 0,186**
VNSII-VNSIV 0,203* 0,194**
VNSII-VNSV 0,441* 0,180**
VNSII-VNSVI 0,260* 0,187**
VNSIII-VNSIV 0,205* 0,204**
VNSIII-VNSV 0,432* 0,174**
VNSIII-VNSVI 0,179* 0,255**
VNSIV-VNSV 0,238* 0,121**
VNSIV-VNSVI 0,169* 0,203**
VNSV-VNSVI 0,392* 0,173**

* < t value(0,05;32)= 2,037 for symmetric problems;
** < t value(0,05;6)= 2,247 for asymmetric problems.

4 Conclusion

This paper examines new heuristic methods for getting an approximate solution of the TSP. A
neighborhood structure is defined on the solution space, and used to develop a local search
procedure. In this paper, we propose VNS structure for solving the TSP instances and examine the
performance of our approach based on solution quality and execution time. Six variations of VNS
are implemented and tested on 40 benchmark problems. From the application, VNS-I and VNS-V
performs best in terms of solution quality for asymmetric TSP instance. VNS-I structure performs
best for symmetric TSP instances.

An important extension of this work could be to develop a new solution technique with a hybrid
VNS structure. As a future research, the neighborhood structures used in the local search stage of
the VNS structure will be improved in order to enhance the search performance and all symmetric
and asymmetric TSP problem sets will be solved by this structure.

Competing Interests

Authors have declared that no competing interests exist.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

432

References

[1] Hahsler M, Hornik K. TSP-Infrastructure for the traveling salesperson problem. Journal of

Statistical Software. 2007;23(2):1-21.

[2] Hubert LJ, Baker FB. Applications of combinatorial programming to data analysis: the

traveling salesman and related problems. Psychometrika. 1978;43(1):81-91.

[3] Erol AH. A heuristic solution algorithm for the quadratic assignment problems. Master thesis,

Marmara University, Institute for Graduate Studies in Pure and Applied Sciences, Turkey;
2010. Supervisor: Asst. Prof. Dr. Serol Bulkan.

[4] Erol AH, Bulkan S. New genetic algorithm for the travelling salesman problem. Proceedings

of the 2012 International Conference on Industrial Engineering and Operations
Management, Istanbul, Turkey, July 3 – 6, 2012.

[5] Basu S, Ghosh D. A review of the tabu search literature on travelling salesman problems.

Working Paper Series, Indian Institute of Management, Ahmedabad, India, W.P. 2008;2008-
10-01.

[6] Applegate DL, Bixby RE, Chvatal V, Cook WJ. The traveling salesman problem: a

computational study. Princeton Series in Applied Mathematics. Princeton University Press;
2006. Princeton, NJ.

[7] Dantzig G, Fulkerson R, Johnson S. Solution of a large-scale traveling-salesman problem.

Operations Research. 1954;2:393-410.

[8] Grotschel M, Padberg MW. Polyhedral theory. In Lawler et al. 1985;252-305.

[9] Hong S. A linear programming approach for the traveling salesman problem. Ph.D. thesis.

Johns Hopkins University; 1972, Baltimore, MA.

[10] Balas E. An additive algorithm for solving linear programs with zero-one variables.

Operations Research. 1965;13:517-546.

[11] Held M, Karp RM. The traveling salesman problem and minimum spanning trees.

Operations Res. 1970;18:1138-1162.

[12] Lin S. Computer solutions of the traveling salesman problem. The Bell System Technical

Journal. 1965;44:2245-2269.

[13] Crowder H, Padberg MW. Solving large-scale symmetric traveling salesman problems to

optimality. Management Science. 1980;26:495-509.

[14] Grotschel M, Holland MO. Solution of large-scale symmetric traveling salesman problems.

Mathematical Programming. 1991;51:141-202.

[15] Padberg M, Rinaldi G. A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Review. 1991;33:60-100.

[16] Lin S, Kernighan BW. An effective heuristic algorithm for the traveling-salesman problem.

Operations Research. 1973;21:498-516.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

433

[17] Fiechter CN. A parallel tabu search algorithm for large scale traveling salesman problems.
Working Paper 90/1 Department of Mathematics, Ecole Polytechnique Federale de
Lausanne; 1990, Switzerland.

[18] Gendreau M, Hertz A, Laporte G. A tabu search heuristic for the vehicle routing problem.

Management Science. 1994;40:1276-1290.

[19] Knox J. Tabu search performance on the symmetric traveling salesman problem. Computers

& Operations Research. 1994;21:867-876.

[20] Potvin JT, Kervahut T, Garcia BL, Rousseau JM. The vehicle routing problem with time

windows Part I: Tabu Search. INFORMS Journal on Computing. 1996;8:158-164.

[21] Tsubakitani S, Evans JR. Optimizing tabu list size for the traveling salesman problem,

Computers & Operations Research. 1998;25:91-97.

[22] Cerny V. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimisation Theory and Application. 1985;45:41-51.

[23] Nguyen DH. Hybrid genetic algorithms for combinatorial optimization. Ph.D. Thesis.

Department of Systems Engineering. University of Miyazaki, Japan; 2004.

[24] Goldbarg EFG, Goldbarg MC, Souza GR. Particle swarm optimization algorithm for the

traveling salesman problem. In Greco. 2008;202-224.

[25] Wang KP, Huang L, Zhou CG, Pang W. Particle swarm optimization for traveling salesman

problem. International Conference on Machine Learning and Cybernetics. 2003;1583-1585.

[26] Ghosh D, Basu S. Diversified local search for the traveling salesman problem. Working

Paper Series, Indian Institute of Management, Ahmedabad, India, W.P. 2011;2011-01-03.

[27] Onder E, Ozdemir M, Yıldırım BF. Combinatorial optimization using artificial bee colony

algorithm and particle swarm optimization supported genetic algorithm, Kafkas University
Journal of Economics and Administrative Sciences Faculty. 2013;4(6). ISSN: 1309-4289.

[28] Nagata Y, Kobayashi S. A powerful genetic algorithm using edge assembly crossover for the

traveling salesman problem. INFORMS Journal on Computing. 2013;25(2):346-363.

[29] Tasgetiren MF, Buyukdagli O, Kızılay D, Karabulut K. A Populated iterated greedy algorithm
with Inver-over operator for traveling salesman problem. Swarm, Evolutionary, and Memetic
Computing Lecture Notes in Computer Science. 2013;8297:1-12.

[30] Gorkemli B, Karaboga D. Quick combinatorial Artificial Bee Colony -qCABC- Optimization
Algorithm for TSP. ISCIM - International Symposium on Computing in Informatics and
Mathematics. 2013;97-101.

[31] Wen M, Krapper E, Larsen J, Stidsen TK. A multilevel variable neighborhood search
heuristic for a practical vehicle routing and driver scheduling problem. Networks.
2011;58:311-322.

[32] Arroyo JEC, Ottoni RS, Santos A. Multi-objective Variable Neighborhood Search Algorithms
for a Just-in-Time Single Machine Scheduling Problem. 2011;978-1-4577-1676-8/11@ 2011
IEEE.

Bingüler and Bulkan; BJMCS, 6(5): 422-434, 2015; Article no.BJMCS.2015.088

434

[33] Hansen P, Mladenović N. Variable neighborhood search: Principles and applications.
European Journal of Operational Research. 2001;130(3):449-467.

[34] Hansen P, Mladenović N, Pérez JAM. Variable neighbourhood search: methods and

applications. Ann. Oper Res. 2010;175:367-407.

[35] Mladenović, N., Hansen, P. Variable neighborhood search. Computers & Operations

Research. 1997;24(1):1097-1100.

[36] Mladenović N, Urošević D. VNS for the TSP and its variants. BALCOR. 2011, Thessaloniki,

Greece.

[37] Piriyaniti I, Pongchairerks P. Novel VNS Algorithms on Asymmetric Traveling Salesman

Problems. Second International Conference on Computer and Network Technology; 2010.
DOI: 10.1109/ICCNT.2010.75.

[38] Hansen P, Mladenović N. An introduction to variable neighborhood search. In S. Voss et al.

(Eds.), Metaheuristics, advances, trends in local search paradigms for optimization.
1999;433-458. Amsterdam: Kluwer.

[39] Hansen P, Mladenović N. First improvement may be better than best improvement: An

empirical study. Discrete Applied Mathematics. 2006;154:802–817.

[40] Burke EK, Cowling P, Keuthen R. Effective local and guided variable neighborhood search

methods for the asymmetric travelling salesman problem. In Lecture Notes in Computer
Science. 2001;2037, 203–212. Berlin: Springer.

[41] Available: http://www.math.uwaterloo.ca/tsp/problem/, Accessed date: 11/01/2014

[42] Available: http://www.cse.hcmut.edu.vn/~dtanh/download/Appendix_B_LG.ppt, Accessed

date: 11/01/2014

[43] Carrabs F, Cordeau JF, Laporte G. Variable neighbourhood search for the pickup and

delivery traveling salesman problem with LIFO loading. INFORMS Journal on Computing.
2007;19(4):618–632.

[44] Hu B, Raidl GR. Effective neighborhood structures for the generalized traveling salesman

problem. In Lecture Notes in Computer Science. 2008;4972, 36–47. Berlin: Springer.

[45] Felipe Á, Ortuño MT, Tirado G. The double traveling salesman problem with multiple stacks:

a variable neighborhood search approach. Computers and Operations Research
2009;36(11):2983–2993.

[46] Mansini R, Tocchella B. The traveling purchaser problem with budget constraint. Computers
and Operations Research. 2009;36(7):2263-2274.

__
© 2015 Bingüler and Bulkan; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=735&id=6&aid=7683

