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Abstract
The maximum likelihood and restricted (or residual) likelihood methods are common tools for
estimating variances in linear mixed models. However, regression in the light of future data can
yield different results. Investigations into the characteristics of this new variance are expected to
promote the effective use of data in fields such as ecology and genetic statistics. Our numerical
simulations show that the estimates of variances in the light of future data are substantially different
from those given by the maximum likelihood and restricted (or residual) likelihood methods.

Keywords: Expected log-likelihood, linear mixed model, maximum likelihood estimator, optimization,
third variance.
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1 Introduction
Linear mixed models are regression analysis techniques that are based on extensive research. They
have been successfully applied to various fields, and are regarded as a typical regression analysis
technique. There is an extensive amount of literature and software available for this method (e.g.,
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[1-6]). The regression coefficients in linear mixed models are treated as random variables from
a normal distribution, so estimation methods for the variances of the normal distributions have an
important role. The maximum likelihood (ML) and restricted (or residual) maximum likelihood (REML)
methods are typically used for this purpose. The differences between the ML and REML methods
are described in Section 6.10 of [7]. In short, the estimate of variance given by ML is an extension of
maximum likelihood variance and that given by REML is an extension of unbiased variance. REML is
usually used in practical applications of mixed model.

An alternative method is the “third variance”, which was suggested in [8] and Section 5 of [9]. It
can be used in combination with the maximum-likelihood and unbiased estimators of the variance.
The third variance is based on “regression in the light of future data”. The concept of “regression
in the light of future data” is closely related to expected log-likelihood (Section 3.2 of [10]). That
is, “regression in the light of future data” aims to maximize the expected log-likelihood given by a
regression equation. The third variance is given by the simplest regression: estimation of variance
when a nomal distribution is assumed. By introducing this method into variance estimates for linear
mixed models we expect to yield better regression equations in terms of predictions, when compared
to the ML or REML methods. In this paper, we investigate this claim using simple simulations.

In Section 2, we give the results of applying lmer() contained in the R (version 2.15.1) package
“lme4 (version 1.0.4)”, which produces simple linear mixed models using ML. The results are compared
with those using a grid search optimization of the variance in terms of the log-likelihood. These
procedures confirm that the ML results given by lmer() were the same as those given by maximizing
the log-likelihood. The REML results given by lmer() were also confirmed to be accurate in a similar
manner. Our R programs for these validations can be used as a basis for carrying out regression in
the light of future data. Section 3 describes our numerical simulations, where we assumed that the
constant multiplication of the variance given by ML or REML is optimal when estimating linear mixed
models in the light of future data.

2 The “lme4” Packages with ML and REML

The work in this paper considered the simplest regression equation of the linear mixed model. That
is,

y = β + Zu+ ϵ. (2.1)

This equation is derived by eliminating the linear part of the typical linear mixed model (e.g., page
98 of [2]), which is an extension of a simple regression equation. This simple regression equation
is adopted because it makes the number of parameters to be estimated smaller. If the number of
parameters is large, grid search for the best parameters needs long period of time.

y =



y1
y2
...
...
yn

 , Z =


1s×1 0s×1 · · · 0s×1

0s×1 1s×1 · · · 0s×1

...
...

. . .
...

0s×1 0s×1 · · · 1s×1

 , (2.2)

β =



β
β
...
...
β

 , u =


U1

U2

...
Um

 , ϵ =



ϵ1
ϵ2
...
...
ϵn

 , (2.3)
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where y is the target variablefs data. Z contains 1s×1 (a column vector comprising s elements of 1)
and 0s×1 (a column vector comprising s elements of 0). β is a column vector comprising n elements
of β. {Ui}(1 ≤ i ≤ m) are elements of u and are realizations of N(0, σ2

U ) (a normal distribution with
mean 0 and variance σ2

U ). n is the number of data (n = m · s).
Next, we set

G = σ2
UIm, R = σ2

ϵ In, V ≡ cor(y) = ZGZt +R, (2.4)

where Im is the m × m identity matrix, and In is the n × n identity matrix. The ML estimate of V is
based on the model:

y ∼ N(β,V) (2.5)

Then, the log-likelihood of Eq. (2.1) in the light of y is (see, for example, page 101 of [2])

lP (V) = −0.5

(
log(|V|) + (y − β)tV−1(y − β) + nlog(2π)

)
. (2.6)

The ML method maximizes this value for estimating β, σ2
U , and σ2

ϵ . This leads to the estimate of β
(see, for example, page 163 of [6]),

β̂ =
1

n

n∑
i=1

yi. (2.7)

Therefore, the value given by substituting Eq. (2.7) into Eq. (2.6) is maximized and used to derive σ2
U

and σ2
ϵ . We also use Eq. (2.7) when applying the REML method, because REML does not estimate

β̂ (see page 178 of [6]).
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Figure 1: Log-likelihoods ( lP (V)(Eq.(2.6)) ) using various values of σ2
U and σ2

ϵ .
The log-likelihood in the area where σ2

U is small rises sharply.

Then, we compared the ML results given by lmer() (contained in the package “lme4 (version
1.0.4)”) with those using the log-likelihood on the grid-point variance values.

We first produced regression equations in the form of Eq. (2.1). We set β = 9.9, s = 15,
and m = 10 in Eq. (2.1) and generated simulation data. This results in n = 150. Furthermore,
we used realizations of N(0, 0.22) (a normal distribution with mean 0 and variance 0.22) as {Ui},
and realizations of N(0, 0.42) (a normal distribution with mean 0 and variance 0.42) as {ϵij}. We
obtained β̂ using Eq. (2.7). The resulting value was substituted into Eq. (2.6). The value of σ2

U

was set to one of 50 values ({0.005, 0.010, 0.015, . . . , 0.25}). The value of σ2
ϵ was set to one of 100

values ({0.102, 0.104, 0.106, . . . , 0.3}). Then, we calculated the value of Eq. (2.6) using one of the
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Figure 2: The horizontal axis represents σ2
U estimated using the grid-point values

of lP (V)(Eq. (2.6)). The vertical axis represents σ2
U that resulted from lmer()(left).

The horizontal axis represents σ2
ϵ estimated using the grid-point values of lP (V)(Eq.

(2.6)). The vertical axis represents σ2
ϵ that resulted from lmer()(right).

grid-points derived from these values. The results are shown in Fig. 1. We compared the optimum
values of σ2

U and σ2
ϵ determined using this procedure with those given by lmer() with the ML setting.

This simulation was repeated 50 times using various initial values for the pseudo-random numbers.
The results are shown in Fig. 2. The two sets of estimates are very similar. Hence, lmer() with the
ML setting provides very accurate estimates using the ML method. We modified this R program for
calculating the log-likelihood in the light of future data to create the program used in the next section.

Next, we assessed the validity of the results given by lmer() with the REML setting. Most of
the settings were the same as in Fig. 2, although we used the following definition of lR(V) (see, for
example, page 101 of [2]) instead of lP (V)(Eq. (2.6)) to carry out the numerical simulations.

lR(V) = −0.5

(
log(|V|) + (y − β)tV−1(y − β) + nlog(2π) + log((1n×1)

tV−11n×1)[RC4]

)
, (2.8)

where 1n×1 is a column vector comprising n elements of 1. The results are shown in Fig. 3, and
confirm that lmer() with the REML setting produces very accurate estimates.

3 Linear Mixed Model Given by Regression in the Light of
Future Data

We define the future data as

y∗ =



y∗
1

y∗
2

...

...
y∗
n

 . (3.1)

The log-likelihood of the regression equation derived by maximizing Eq. (2.6) in the light of y∗ is

l∗P (V̂) = −0.5

(
log(|V̂|) + (y∗ − β̂)tV̂−1(y∗ − β̂) + nlog(2π)

)
. (3.2)
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Figure 3: The horizontal axis represents σ2
U estimated by the grid-point

values of lP (V)(Eq. (2.8)). The vertical axis represents σ2
U that resulted from

lmer()(left). The horizontal axis represents σ2
ϵ estimated by the grid-point values

of lP (V)(Eq.(2.8)). The vertical axis represents σ2
ϵ that resulted from lmer()(right).

σ2
U and σ2

ϵ that maximize the log-likelihood in the light of future data are αU σ̂
2
U and αϵσ̂

2
ϵ . σ̂2

U and σ̂2
ϵ

are estimated using the available data and either REML or ML. Then, Eq. (2.4) is replaced with

Ĝ = αU σ̂
2
UIm, R̂ = αϵσ̂

2
ϵ In, V̂ = ZĜZt + R̂. (3.3)

First, we set β = 9.9, s = 15, and m = 10. {Ui} are realizations of N(0, 0.22) (a normal
distribution with mean 0 and variance 0.22), and {ϵij} are realizations of N(0, 0.42) (a normal distribution
with mean 0 and variance 0.42). We used lmer()with the REML setting to estimate β̂, σ̂2

U , and σ̂2
ϵ .

Using these three estimates, we derived l∗P (V̂) (Eq.(3.2)). α̂U was set to be one of {1, 1.1, 1.2, . . . , 1.9},
and α̂ϵ was set to be one of {1, 1.01, 1.02, . . . , 1.09}. We used the grid-points constructed by these
two values for this simulation. y∗ was obtained using the same conditions as for y, although we
used different initial values for the pseudo-random numbers. These different initial values produced
20 sets of y∗ to derive l∗P (V̂). We took the average of these 20 values. This numerical simulation was
repeated 100 times using different initial values for the pseudo-random numbers, and we averaged
the 100 mean values for l∗P (V̂). The results are shown in Fig. 4. When the optimal values of (αU , αϵ)
were (α̂U , α̂ϵ), the means were (α̂U , α̂ϵ) = (1.325, 1.03). That is, α̂U σ̂

2
U was substantially larger than

the estimates given by the REML method. Although this tendency was not very apparent in σ̂2
ϵ , α̂ϵ

was larger than 1.
Figure 5 shows the estimation results for β̂, σ̂2

U , and σ̂2
ϵ . We used lmer() with the ML setting,

although the other conditions were the same as in Fig. 4. The mean values were (α̂U , α̂ϵ) =
(1.525, 1.035). That is, α̂U σ̂

2
U was substantially larger than that given by the ML method. Because σ̂2

U

calculated by the ML method was smaller than that given by the REML method, in this case, α̂U was
larger than that given by the REML method. Furthermore, α̂ϵ was larger than 1.

When s = 10 and m = 5, and the other conditions were the same as Fig. 4, we obtained the
results shown in Fig. 6. The value of α̂U was set to one of 10 values ({1, 1.1, 1.2, . . . , 1.9}), and
α̂ϵ was set to one of 10 values ({1, 1.05, 1.1, . . . , 1.45}). We used one of grid-point values given by
these values for this calculation. The means were (α̂U , α̂ϵ) = (1.4, 1.1125). As in the previous case,
α̂U σ̂

2
U was substantially larger than that given by the REML method. Furthermore, α̂ϵ was larger

than 1. Figure 7 shows the results of the numerical simulations with the ML setting instead of REML,
although the other conditions are the same as in Fig. 5. The value of α̂U was set to one of 10 values
({1, 1.2, 1.4, . . . , 2.8}), and α̂ϵ was set to one of 10 values ({1, 1.05, 1.1, . . . , 1.45}). We used one of
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Figure 4: We repeated the numerical simulations four times using various initial
values for the pseudo-random numbers. The mean values of the 4 sets were
(α̂U , α̂ϵ) = (1.325, 1.03).
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Figure 5: Mean of l∗P (V̂) given by σ̂2
U and σ̂2

ϵ . We used the ML method to obtain
these variances. In this experiment, β = 9.9, s = 15, and m = 10. The numerical
simulations were repeated four times using various initial values for the pseudo-
random numbers. The mean values were (α̂U , α̂ϵ) = (1.525, 1.035).
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Figure 6: Mean of l∗P (V̂) given by σ̂2
U and σ̂2

ϵ . We used the REML method to obtain
these variances. Here, β = 9.9, s = 15, and m = 10. We repeated the numerical
simulations four times using various initial values for the pseudo-random numbers.
The mean values were (α̂U , α̂ϵ) = (1.4, 1.1125).
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Figure 7: Mean of l∗P (V̂) given by σ̂2
U and σ̂2

ϵ . We used the ML method to
obtain these variances. Here, β = 9.9, s = 15, and m = 10. The numerical
simulations were repeated four times using various initial values for the pseudo-
random numbers. The mean values were (α̂U , α̂ϵ) = (1.85, 1.125).
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the grid-points given by these values for this calculation. The means were (α̂U , α̂ϵ) = (1.85, 1.125).
α̂U was larger than that given by the REML method. Furthermore, α̂ϵ was larger than 1.

4 Conclusions
Our numerical simulations demonstrate that when σ̂2

U is estimated in the light of future data, the
estimate should be substantially larger than that given by the REML or ML methods. That is, a linear
mixed model estimate requires the “third variance” concept (Takezawa (2012); Section 5 of Takezawa
(2013)). Moreover, the difference between conventional variances and the variance that considers
future data should not be ignored when using linear mixed models in practical applications. Values
of 5 or 10 for m are typical when applying linear mixed models to fields such as ecology, genetic
statistics, and animal breeding. In these applications, m stands for the number of cultivars or the
number of replications in an experiment. This indicates that the estimates derived using the REML
or ML methods are not valid, because the values of α̂U obtained here are substantially larger than
1. Therefore, the values of σ̂2

U calculated using the REML or ML methods (and the estimates it
gives for each cultivar or replication) are considerably different from those obtained by maximizing
the log-likelihood in the light of future data. This suggests that existing linear mixed models have not
completely exploited the information contained in available data.

However, the results obtained here are based on a limited number of numerical simulations.
Most applications of linear mixed models are more complex than Eq.(2.1), and often include more
linear term(s). Moreover, generalized linear mixed models are commonly used (in which errors
follow a distribution other than the normal distribution). Hence, a broad range of simulations and
analytical research should be carried out, so that we can fully understand the details of this problem
and establish reliable methods for estimation in the light of future data.
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