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Artificial Bee Colony-Artificial Neural Network (ABC-ANN) 
Hybrid Algorithm’s Performance on the Modeling of 
Thermodynamic Properties of a Refrigerant Gas (R404a)
Semih Ozden

Electronics and Communication Engineering, Turkish Military Academy, National Defence University, 
Ankara, Turkey

ABSTRACT
In this study, it was aimed to determine the thermodynamic 
properties of an environmentally friendly refrigerant (R404a) for 
both the saturated liquid–vapor region (wet vapor) and super-
heated vapor region, in the temperature range of 173–498°K, 
and the pressure range of 10–3600 kPa by using an adaptive 
artificial neural network algorithm. Performing the analysis of 
these gases with differential equations by using a computer is 
very time consuming and requires high computational power 
for calculation. Using numerical equations for modeling the 
thermodynamic properties of gasses to eliminate these draw-
backs is a more accurate approach and this modeling can be 
accomplished with artificial intelligence algorithms such as the 
Artificial Neural Network (ANN). The proper selection of the 
activation function, which is one of the most important para-
meters for ANN, directly affects the validity of the model accord-
ing to the problem and its application. In this study, an adaptive 
ANN was developed in which the optimal activation function 
combination was found by using the ABC algorithm and thus 
the error of the network were reduced when compared to the 
classical ANN. The improvements of in percentage errors were 
observed to increase from 7.55% to 76.68%. Finally, the accuracy 
of the numerical equations that describe the thermodynamic 
properties of R404a gas was increased. Using this technique 
helps to figure out the performance of the gas under related 
working conditions.

ARTICLE HISTORY 
Received 9 March 2021  
Revised 9 October 2021  
Accepted 12 October 2021  

Introduction

Modeling the thermodynamic behavior of a gas, depending on various para-
meters such as temperature, pressure, and volume, is one of the critical issues. 
The enthalpy and entropy values of the gas, under the predetermined operat-
ing conditions, are obtained from the H-S graph or the Mollier diagram. It is 
very effective to use modeling methods such as artificial neural networks in 
obtaining these values, which are very difficult to express mathematically for 
the wet or the super-heated region. Additionally, modeling is always used 
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before any experimental testing to formulate new blends or to study the effect 
of changes in the composition, on the behavior and cooling performance 
(Doubek 2018).

Although Artificial Neural Network (ANN) has successfully calculated 
satisfied results in solving nonlinear equations, it is difficult to find the 
minimum global point if the model is not fully determined. In this aspect, 
the most important factor is to determine the activation function depending 
on the model. Another disadvantage is the need for a huge and consummate 
data set for developing an effective model with high estimation accuracy. 
Avoiding these disadvantages can be achieved with a hybrid algorithm that 
selects the most appropriate activation function of the ANN with a meta- 
heuristic algorithm. This feature takes an advantage over hybrid methods 
against classical AI-based methods. Hybrid algorithm-based optimization 
and estimation models are suitable for all branches of science. 
Furthermore, it provides great ease in predicting data where experimental 
applications are difficult to conduct. In addition, hybrid algorithms obtain 
more accurate and faster solutions for the optimization of nonlinear systems 
(Sonmez et al. 2015).

In this study, the thermodynamic properties of a refrigerant gas were 
determined by utilizing an adaptive/hybrid algorithm. Studies have been 
carried out on many different refrigerants and various efforts are underway 
to find new gases that are more efficient, energy-efficient, affordable, and 
environmentally friendly. It is important to test these refrigerants and 
figure out their thermodynamic properties. The R404a has been selected 
for calculating its thermodynamic properties by using a hybrid algorithm. 
R404A is a mixture of R-125 (44%), R-143a (52%), and R134a (4%). It is 
a non-ozone-depleting, long-term alternative to R-502 and R-22, as these 
gasses are well suited for low- and medium-temperature refrigeration 
applications. Its chemical notation is CHF2CF3/CH3CF3/CH2FCF3, its 
molecular weight is 97.60, and boiling point at one atmosphere is – 
46.45°C.

The most common algorithms for defining the parameters of refrigerant 
gases are ANN or GA. Sozen et al. proposed an approach by using ANN to 
determine the thermodynamic properties of the R404a gas. They examined 
and compared the performance of different ANN algorithms and the number 
of hidden layers (Sözen, Arcaklioğlu, and Menlik 2010). In another study, 
ANNs with a back-propagation algorithm were employed in different gases in 
order to obtain the accurate prediction models for the thermodynamic proper-
ties. ANNs show their ability to accurately predict the properties of refriger-
ants (Mora R et al. 2014). In another ANN modeling of the refrigerant, 
thermodynamic performance was realized under a variable speed compressor. 
Hence, this method avoids the need for a large number of experiments to 
analyze of the system (Kizilkan 2011).
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Mohebbi et al. developed a new approach to predict the density of a liquid 
for different refrigerants by using a neural network based on a genetic 
algorithm (GA). The main prediction was realized by ANN; moreover, 
some parameters such as the number of hidden processing elements, the 
learning rate and the momentum rate were optimized by the GA (Mohebbi, 
Taheri, and Soltani 2008). The Sencan et al. proposed an artificial neural 
network (ANN) model to determine properties such as the heat conduction 
coefficient, dynamic viscosity, kinematic viscosity, thermal diffusivity, den-
sity, and the specific heat capacity of refrigerants (Şencan, Köse, and Selbaş 
2011).

The reason for using ANN in studies is its strong modeling capability. 
When ANN is not preferred, different equations have been developed, similar 
to the work performed by Zyczkowski et al., to obtain the properties of the 
R1234 gas (Zyczkowski et al. 2020). The use of cubic equations of state, which 
is another modeling technique, is highly preferred in the literature. A desktop 
application was developed to model the thermophysical properties of the two 
different types of refrigerants, namely R1234yf and R410A (Atalay and Coban 
2015). Another cubic equation of state modeling study was conducted to 
generate thermodynamic property data (Neto and Barbosa 2010). A three- 
parameter cubic equation of state was developed by Coquelet et al. to predict 
the properties of mixture gases (Coquelet, El Abbadi, and Houriez 2016). 
Sahin et al. preferred gene expression programming to estimate the thermo-
dynamic properties of the R513A refrigerant (Sahin, Kovacı, and Dikmen 
2021).

In this study, a proposed hybrid algorithm was developed and applied to 
predict the thermodynamic properties (enthalpy and entropy) of the R404a 
gas. The key point is finding the enthalpy and entropy value of the gas under 
specified conditions. Probably, the easiest and fastest way to achieve this 
value is to model mathematically. Here, the modeling capability of ANN 
becomes crucial. On the other hand, the optimum selection of the para-
meters of the ANN affects the performance of the model considerably. In 
this study, a new hybrid algorithm was proposed by combining ANN with 
an Artificial Bee Colony (ABC). The ABC was used for selecting the best 
suitable activation function of ANN. The results show that a hybrid ANN 
produces better results as compared to a classical ANN. Furthermore, 
compared with previous studies, the error of modeling has been reduced 
and the modeling capacity of ANN has been increased with hybrid 
algorithms.

This manuscript is organized into four sections. The second section 
includes the mathematical definitions of the algorithms (classical ANN, ABC 
and adaptive algorithm). In the last subsection of this section, the methodol-
ogy, equations, and combining of the steps of ANN and ABC are represented. 
The third section includes applications of the proposed hybrid algorithm for 
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modeling the thermodynamic properties. The experimental results of model-
ing for the enthalpy and entropy data of the R404a gas are given in the last 
section.

Modeling of the R404 Gas by an Adaptive Artificial Neural Network 
(AANN)

Classical ANN

ANN is one of the most powerful methods in many processes such as pattern 
recognition, classification, function estimation, and optimization. Many suc-
cessful applications of these processes have been developed thanks to the 
method that imitates the human nervous system and the brain’s learning 
ability. There are several network structures with different types of learning 
in ANN. Back propagation (BP) is the most common network structure and 
a powerful algorithm type for the node weights adjustment (Dursun and 
Ozden 2017; Mohanraj, Jayaraj, and Muraleedharan 2012).

As can be seen in the general network structure, which is given in Figure 1, 
a BP network structure consists of layers including an input layer, at least one 
hidden layer, and an output layer; and characteristics including a series of 
propagation errors (PEs), an activation function for each PE in layers, and 
weights. In order to realize the training process known as the generalized delta 
rule, in the beginning, random values are assigned to each weight and then 
input samples are delivered to the network in order. In this feed-forward 
process, outputs are calculated for each input sample. Then error signals are 
calculated by comparing the calculated outputs and targets. After this, these 
error signals are propagated backward from output to input layer in order to 

Bias Bias

Input Layer Hidden Layer Output Layer

OutputsInputs

Weights
. . .

. . .

. . .

. 

. 

.
. 
. 
.

Figure 1. General structure of the BP Neural Network.
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make weight adjustments. This feed forward-back propagation process repeats 
until the total error value reaches the expected minimum value and then the 
learning process is stopped (Ahmed et al. 2021; Efkolidis et al. 2019).

When it is assumed that A defines the input vector and B defines the desired 
target, A and B values in the network for n inputs and m outputs can be given 
as follows. 

A ¼ a1; a2; � � � � � � ; anð Þ (1) 

B ¼ b1; b2; � � � � � � ; bnð Þ (2) 

In the feed-forward process for training, a set of input samples is given to the 
input layer, and they move to the hidden layer through weights. Each PE in the 
hidden layer calculates the sum of its weighted inputs to calculate the net 
output. The net output of the i-th PE on j-th layer is calculated as follows. 

netj
i ¼

Xn

k¼0
wikaik þ bk (3) 

Where wik is the weight value of i-th PE on k-th layer. Then the activation 
value is calculated as follows by subjecting it to an activation function. 
Transfer functions used in this study are given in Table 1. 

bnet ¼ f k netið Þ (4) 

These activation values are moved to the output layer and real outputs of the 
network are calculated in the same way. The BP networks aim to minimize the 
error between the desired output b and the real output of the network bnet. The 
network training is continued until this error value is at the minimum level.

Table 1. Activation functions used in AANN.
Function Number Function Name Function

1 Linear f xð Þ ¼ wik aik þ bk
2 Threshold

f xð Þ ¼
1 if wik aik þ bk � 0
0 if wik aik þ bk < 0

�

3 Logistic Sigmoid f xð Þ ¼ 1
1þewik aikþbk

4 Sinus f xð Þ ¼ sin wik aik þ bkð Þ

5 Hyperbolic Tangent f xð Þ ¼ 1� e� 2 wik aikþbð Þ

1þe� 2 wik aikþbð Þ

6 Radial Bases f xð Þ ¼ e� wik aikþbð Þ
2
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Adaptive ANN

Unlike the classical ANN method, the AANN method has a heuristic 
search unit. AANN is achieved by optimizing ANN with ABC. It is 
important to note that the hybrid methods can be applied to several 
optimization problems (Awan et al. 2014; Karaboga and Ozturk 2011; 
Shah et al. 2012; Shunmugapriya and Kanmani 2017; Tsai 2014). The 
developed method is based on the hypothesis that neurons can respond 
to different characteristics. To realize this hypothesis, neurons in a network 
are designed to have different types of activation functions. The task of the 
heuristic search algorithm is to determine the type of function of each 
neuron to maximize the network performance. In this paper, Artificial Bee 
Colony (ABC) algorithm is used as a heuristic search unit. The six different 
transfer functions, which are used by each neuron in the network, are 
determined by the ABC algorithm. These functions have been presented in 
Table 1 above.

ABC Based Heuristic Search Unit

Artificial Bee Colony is a metaheuristic optimization algorithm and was 
initially defined by Karaboğa in 2005, and it imitates the life processes and 
attitudes of honeybees in a colony (Karaboga 2005). In the ABC algorithm, 
three types of artificial bees, which are namely: employed, onlookers, and 
scouts, are defined to find the food source with the highest nectar amount 
by modifying their food positions with time, in the search process. The duty of 
the employed bees is to exploit the food sources and giving information about 
the nectar amount to onlookers. The duty of onlookers is to wait at the 
dancing area and to select the food source. Scouts aim to discover new food 
sources. The numbers of employed and onlooker bees are half of the colony 
size, and this number corresponds to the solution number in the search space, 
because of assigning one employer bee for each food source (Karaboga and 
Akay 2009; Karaboga and Basturk 2007, 2008; Karaboga and Ozturk 2009; 
Ozturk and Karaboga 2011; Sonmez 2013).

Implementation of the ABC Algorithm for Optimizing ANN
In the ABC algorithm, the position of a food source corresponds to a possible 
solution to the problem. For this purpose, in this study, ABC creates 
a sequence of sources (a set of solution candidates) as the number of neurons 
in the AANN network model. Accordingly, for a network with n-pieces of 
neurons, the representation of m-number of solution candidates can be 
expressed as given in Eq. (5). 
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In Eq. (5), each row in S is a solution candidate for the problem, and each 
row in F represents the fitness value of the corresponding solution candi-
date. The task of the ABC is to improve and update the solution candidates 
in the S-set and to record the candidate with the best fitness value as 
a solution. The pseudo-code and operation steps of the intuitive search 
unit are given in Algorithm 1. The flow chart of the adaptive ANN is 
presented in Figure 2. 

Figure 2. Flow chart of the proposed adaptive algorithm.
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Algorithm 1. Pseudo-code of the ABC algorithm
Defining of cost function 

Determining of Colony size (p) 
Creation of Solution Candidate Set (S) (Initial Colony) 
Repeat 1:p 
Calculate fitness 
if (ending criteria) 
Save the best solution in S and exit 
else 
Move the employed bees onto their food sources and determine their nectar amounts. 
Move the onlookers onto the food sources and determine their nectar amounts. 
Move the scouts for searching new food sources. 
Memorize the best food source found so far 
end for

Classical ANN activation functions are defined at the beginning of the 
algorithm. As seen in Figure 2, the AANN starts with the random selection 
of activation functions for the neurons. The network is trained by the dataset 
and the performance of the network is evaluated by the RMSE value. Then this 
information is used in the ABC algorithm to update the activation functions. 
The main steps of ABC are applied to find the optimal function. This loop 
continues until the stopping criteria are satisfied. In this study, ABC aims to 
find the optimal combination of activation functions used by neurons, in the 
two hidden layers in the AANN network. In order to achieve this, the cost 
function used for optimization is defined as the Root Mean Square Error 
(RMSE) value produced by ANN for each epoch. ABC algorithm minimizes 
this error value by operating in each epoch during the learning process. Here, 
the implementations of the ABC algorithm for optimization are explained 
below step by step.

Step 1: Data input
In this step, the cost functions, which will be used in ANN and, given in 

Table 1 are defined.
Step 2: Initialization of ABC parameters
In this step, ABC parameters such as the colony dimension, maximum cycle 

number (MCN), number of variables, and limit parameters are set. The 
defined parameters of the ABC algorithm for minimizing the RMSE value 
are given in Table 2.

Step 3: Creation of solution candidate set

Table 2. Defined parameters for 
ABC algorithm.

Colony dimension 40
MCN 400
Number of variables 10
Limit parameter 3000
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In this step, a set of food sources (m -number of solution candidates for 
a network with n-pieces of neurons), which is given in Eq. (5), is generated 
randomly.

Step 4: Calculation of fitness
Here, the fitness values for each food source positions are calculated by the 

RMSE value obtained from ANN. Then, the best fitness value is memorized.
Step 5: Move the employed bees onto their food sources and determine their 

nectar amounts
In this step, a food source position is modified by an employed bee. Thus, 

a new food source is created by visual information. Then, the nectar amount of 
this new source is calculated. Creating this new source is achieved by the 
following equation. 

vij ¼ gij þ αij gij � gkj
� �

; k 2 ð1; 2; . . . ::; SÞ; j 2 ð1; 2; . . . ::;DÞ (6) 

where, k and j are indices chosen randomly, αis a random number in the 
interval of � 1; 1½ �, D is the number of parameters to be optimized. Then, 
a comparison between the fitness values of the old food source and the new 
one is conducted by the employed bees. If the new nectar amount is better than 
the old one, the new food source is memorized. Otherwise, the old food source 
is kept and the new one is discarded.

Step 6: Move the onlookers onto the food sources and determine their nectar 
amounts

After the previous step, employed bees come back to the hive to share 
information on the nectar amount of the sources. Then, according to this 
information, onlooker bees select a new food source and calculate its fitness 
value. The selection process is achieved by a probability value given as follows. 

Pi ¼
fitnessi

PS

j¼1
fitnessj

(7) 

Step 7: Move the scouts for searching new food sources
In this step, onlooker bees find new positions by modifying existing food 

source positions and then they calculate fitness values of the new sources. The 
evaluation and discarding process of food sources are conducted in the same 
way as given in step 5.

Step 8: Memorize the best food source found so far
The best food sources are kept memorized and the number of cycle is 

increased.
Step 9: Stopping the search process
This loop between steps 5 to 9 continues until the stopping criterion is met. 

The stop criterion is defined with the maximum cycle number (MCN).
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Application of the Proposed Adaptive Model

The proposed adaptive model was developed for both the saturated liquid– 
vapor region (wet vapor, WV) and the superheated vapor (SHV) of R404a. The 
output parameters of the prediction models are thermodynamic properties 
such as enthalpy and entropy. The first model that has two inputs of “tem-
perature” and “vapor quality” developed the R404a gas parameters under the 
wet vapor region. The second model that has three inputs of “temperature,” 
“pressure” and “volume” developed the R404a gas parameters under the 
superheated vapor region.

ANN and Adaptive AANN program codes have been developed and written 
in Visual Studio.Net by using C# language. The implementations of the 
algorithm and problem formulation have been conducted on the same plat-
form. The algorithm is simulated on an Intel Core2 Duo processor with 
2.2 GHz frequency and 2046 MB RAM.

In Figure 3, the proposed AANN model for the WV region is given. It has 
three layers as two inputs, hidden layers, and outputs. The input parameters of 
the developed model are temperature and vapor quality. Enthalpy and entropy, 
which are the output parameters, represent the thermodynamic properties of 

Figure 3. The proposed model of the gas under wet vapor region.
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the R404a. The outputs are applied to the model separately, since the data 
distribution has completely different characteristics. The first case shows 
enthalpy and the second one shows the entropy parameter of the gas.

In Figure 4, the proposed AANN model for the SHV region is given. It has 
three layers as three inputs, two hidden layers, and two outputs. The input 
parameters of the developed model are temperature, pressure, and volume. 
Enthalpy and entropy represent the thermodynamic properties of the R404a, 
which are the output parameters of the proposed model. The outputs are 
applied to the model separately since the data distribution has completely 
different characteristics. The third case shows enthalpy and the fourth one 
shows the entropy parameter of the gas.

In order to define the best number of neurons for each layer, approximately 
50 different network structures have been established. The general feature of 
these network structures is that the number of neurons will decrease from the 
first hidden layer to the output. That is the funnel network structure has been 
adopted. The structure that produces minimum network error was obtained as 
6 neurons in the first hidden layer and 4 neurons in the second hidden layer 
for both the wet vapor and superheated regions.

Figure 4. The proposed model of the gas under superheated vapor region.
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AANN estimation model is used for enthalpy and entropy data in two 
different regions (WV and SHV) of the R404a gas for four different experi-
mental data in total. AANN selects a function that provides the lowest error 
from seven different transfer functions for each model. Thus, the development 
of a more accurate prediction model is provided as compared to a classical 
ANN. The optimum combination of transfer functions, that have been devel-
oped by AANN, are given in Table 3 for each case. The first and second cases 
indicate the activation function’s number for the developed AANN’s neurons 
for the enthalpy and entropy data of R404a under the WV region, respectively. 
The third and fourth cases indicate the activation function’s number of the 
developed AANN’s neurons for enthalpy and entropy data of R404a under the 
SHV region, respectively.

As mentioned above, one of the characteristics of transfer functions of the 
AANN models is that only a value between zero and one can be produced. The 
input and output data sets were normalized before the training and testing 
process to obtain the optimal predictions. Inputs and outputs are normalized 
(i.e., between the ranges of zero and one) by using the equation below: 

Xnormalized ¼
xi � xmin

xmax � xmin
(8) 

The performance (accuracy) of the developed model assesses by using multiple 
metrics such as the root mean squared error (RMSE), the coefficient determi-
nation (R2), the mean absolute error (MAE), and the mean absolute percen-
tage error (MAPE). Additionally, the standard deviation of the test value is 
given in the last row. These statistical criteria may be used to compare the 
predicted and actual values. During learning, the error is estimated by RMSE.

The root mean square error (RMSE) has been used as a standard statistical 
metric to measure the model performance. It measures the difference between 
values predicted by a model and the values actually observed from the envir-
onment. The mean absolute error (MAE) is another useful measure widely 
used in model evaluations. While they have both been used to assess model 

Table 3. The optimum combination of transfer functions for AANN.

Cases
The transfer function numbers 

for first hidden layer
The transfer function numbers 

for second hidden layer
The transfer function 

numbers for output layer

1 (WV- Enthalpy) 1-1-2-4-4-1 4-4-1-3
1
2 (WV- 

Entropy)
6-4-6-1-6-4 1-1-1-4 1

3 (SHV- Enthalpy) 4-4-4-5-6-5 4-4-4-4
1
4 (SHV- 

Entropy)
4-3-1-2-3-4 6-1-1-1 1
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performance for many years, there is no consensus on the most appropriate 
metric for model errors (Chai and Draxler 2014; Sahin 2011). The coefficient 
of determination (R2) represents the variance between predicted and the linear 
fit data. In other words, it is the percent of closeness to linear fit line. The mean 
absolute percentage error (MAPE) is one of the most widely used measures of 
forecast accuracy, due to its advantages of scale-independency and interpret-
ability (Kim and Kim 2016). The formulas of the metric forecast-accuracy 
metrics are given below. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1
yk � ŷk

�
�

�
�2

s

(9) 

MAE ¼
1
n

Xn

k¼1
yk � ŷk

�
�

�
� (10) 

MAPE ¼
1
n

Xn

k¼1

yk � ŷk

�
�

�
�

ŷk
� 100 (11) 

R2 ¼ 1 �

Pn

k¼1
yk � ŷk

�
�

�
�2

Pn

k¼1
ŷk

2

0

B
B
@

1

C
C
A (12) 

Where yk is the real (measured) value, byk is the predicted value and n is the 
number of samples.

Experimental Results

In this study, the thermodynamic properties of R404a have two main regions, 
namely: wet vapor (WV) and superheated vapor (SHV). For both regions, the 
properties of the gas are as follows. Critical temperature, pressure, density, and 
volume are 72.07°C, 3731.5 kPa, 484.5 kg/m3, 0.00206 m3/kg, respectively. 
1826 experimental data for WV region sets were pre-pared for the training and 
testing of AANN. The ratio for the training and testing data was selected as 
85:15, i.e. 1566 and 260 sets of the experimental data were randomly selected. 
2332 experimental data for SHV region sets were pre-pared for the training 
and testing of AANN. The ratio for training and testing data was selected as 
80:20, i.e., 1867 and 465 sets of the experimental data were randomly selected. 
Additionally, for both regions, the sample patterns are shown in Table 4. The 
data used has been obtained from the technical information sheet of the 
DuPont Suva 404a refrigerant gas.
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As an example, weights and biases obtained from ANN and AANN after 
training to estimate the Entropy for the saturated region are given in Tables 5 
and 6, respectively.

The metrics of the accuracy of the developed model are described in the 
previous section. RMSE is the main stop criteria for the optimization cycle. It 
is the most important value for the comparison of the developed algorithm. 
Additionally, standard deviation (SD) values of the errors are given in tables in 
the last column. It helps to verify the normal distribution of the data.

The results of the statistical metrics for enthalpy data at the WV region are 
given in Table 7. It can be clearly shown that R2 results are very close to one. 
The other metrics are very close to AANN and classical ANN except for 
MAPE. The difference of the developed model gives a better solution for the 
MAPE metric. In Figure 5, data regression graphs are given. The comparisons 
of the measured and predicted data (ANN and AANN) are presented in 
Figure 6a, which demonstrates the difference between them. As can be seen 
clearly from the zoomed graphs (Figure 6b,c), the developed hybrid model 
provides closer results to the measured data line than the classic ANN model.

The results of the statistical metrics for entropy data at the WV region are 
given in Table 8. It can be clearly shown that R2 results are very close to one. 
The other metrics show that visible improvement could be achieved by AANN 
compared to classical ANN. In Figure 7, data regression graphs are given. The 
comparisons of the measured and predicted data (classical ANN and AANN) 
are presented in Figure 8a. As can be seen clearly from the zoomed graphs 
(Figure 8b,c), the developed hybrid model provides closer results to the 
measured data line than the classic ANN model.

The results of the statistical metrics for entropy and enthalpy data at the 
SHV region are given in Tables 9 and 10, respectively. It is shown that R2 

results are very close to one. The other error metrics (RMSE, MAE, MAPE, 
and SD) are under the acceptable threshold. The developed adaptive model 
(AANN) achieves a serious improvement as compared to the classical ANN. In 
Figs. 9 and 11, data regression plots are given for enthalpy and entropy, 
respectively. Fig. 10a-c and Fig. 12a-c were obtained to compare and evaluate 
the performance of the developed model.

Table 4. Data samples for wet vapor and superheated vapor regions.
Region

Properties WV SHV

Temperature (°C) – 46 65 0 0 –35 100
Vapor Quality 0 1 0.5
Pressure (kPa) 103.5 3194.6 611.1 20 40 70
Specific Volume (m3/kg) 0.0008 0.0043 0.1715 1.1586 0.501 0.4516
Enthalpy (kJ/kg) 138.1 380.9 284.15 377.3 349.3 468.4
Entropy (kJ/kgK) 0.7537 1.5599 1.3084 1.9289 1.7606 2.1056
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In Table 11, some samples consisting of real values and calculated values 
with ANN and AANN have been given. Moreover, error values between real 
and calculated values obtained from both methods have been presented. It is 
clearly seen that AANN provides a decreased error of the model. The last 
column represents the improvement of percentage error reduction (IPER). 
The calculation equation of the improvement as a percentage is given below. 

Ereduction ¼
EAANN � EANN

EANN
� 100 (13) 

The improvements of the percentage error reduction (IPER) were calcu-
lated for all the test data and represented in Table 12. According to results, the 
errors of the model has been reduced thanks to the presented/proposed 
AANN. Thus, the thermodynamics properties of R404a were estimated more 
accurately as compared to classical ANN. In Case-4, the improvement of 
percentage is higher than other cases. This is most probably because the 
randomly selected test data is predicted by the ANN with greater error.

Conclusion

In this study, an adaptive ANN model is proposed to model the thermodynamic 
properties of the environmentally friendly refrigerant gas (R404a) for both the 
saturated liquid–vapor region (wet vapor) and superheated vapor region.

Table 7. Performance analysis of the prediction algorithms for Enthalpy at WV region.
Algorithm R2 RMSE MAE MAPE SD

Classical ANN 0,99,997 0,00339 0,00266 0,64,521 0,0021
ABC-ANN 0,99,998 0,00329 0,00265 0,55,950 0,0019

Figure 5. Test data (Enthalpy, WV region) regression graph for ANN and AANN (ABC-ANN).
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Figure 6. Comparison of measured, ANN and AANN data for Enthalpy, WV region a) all data b) 
zoom in beginning data c) zoom in last data.

Figure 7. Test data (Entropy, WV region) regression graph for ANN and AANN (ABC-ANN).
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One of the biggest disadvantages of ANN, which has a strong modeling 
ability between its complex network structure and inputs as well as outputs, is 
the necessity of choosing the correct parameters. The classical ANN uses 

Figure 8. Comparison of measured, ANN and AANN data for Entropy, WV region a) all data b) zoom 
in beginning data c) zoom in last data.

Table 8. Performance analysis of the prediction algorithms for Entropy at WV region.
Algorithm R2 RMSE MAE MAPE SD

Classical ANN 0,99,997 0,00340 0,00268 0,60,310 0,0021
ABC-ANN 0,99,998 0,00285 0,00205 0,51,129 0,0017
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Figure 9. Test data (Enthalpy, SHV region) regression graph for ANN and AANN (ABC-ANN).

Table 11. Comparison of real and calculated h and s values.
Real ANN AANN Error ANN Error AANN IPER

Case-1 Enthalpy (h) WV 
(kJ/kg)

82,1000 82,5931 82,2524 0,4931 0,1524 69%
137,4900 138,9136 137,9281 1,4236 0,4381 69%
200,0600 200,1748 199,9467 0,1148 0,1133 1%
328,8000 329,0916 328,7641 0,2916 0,0359 88%

Case-2 
Entropy (s) WV 
(kJ/kgK)

0,7489 0,7450 0,7485 0,0039 0,0004 90%
0,4781 0,4805 0,4787 0,0024 0,0006 75%
1,1683 1,1613 1,1683 0,0070 0,0000 100%
1,6440 1,6397 1,6454 0,0043 0,0014 67%

Case-3 
Enthalpy (h) SHV 
(kJ/kg)

550,8000 549,4844 549,8028 1,3156 0,9972 24%
348,8000 348,4706 348,7368 0,3294 0,0632 81%
411,1000 411,5447 411,4506 0,4447 0,3506 21%
476,2000 476,4546 476,1729 0,2546 0,0271 89%

Case-4 
Entropy (s) SHV 
(kJ/kgK)

1,8642 1,8633 1,8640 0,0009 0,0002 78%
2,0430 2,0461 2,0440 0,0031 0,0010 68%
1,6422 1,6402 1,6412 0,0020 0,0010 50%
1,9454 1,9486 1,9442 0,0032 0,0012 63%

Table 9. Performance analysis of the prediction algorithms for Enthalpy at SHV region.
Algorithm R2 RMSE MAE MAPE SD

Classical ANN 0,99,998 0,00205 0,00161 1,78,711 0,0013
ABC-ANN 0,99,999 0,00117 0,00080 1,26,715 0,0009

Table 10. Performance analysis of the prediction algorithms for Entropy at SHV region.
Algorithm R2 RMSE MAE MAPE SD

Classical ANN 0,99,989 0,00522 0,00418 1,09859 0,0031
ABC-ANN 0,99,994 0,00389 0,00321 0,96,811 0,0022

Table 12. Improvements of percentage error (IPER).
ANN AANN IPER

Case – 1 0,3549 0,3281 7,55
Case – 2 0,3084 0,2485 19,41
Case – 3 0,1062 0,0328 8,34
Case – 4 0,1313 0,0103 76,68
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Figure 10. Comparison of measured, ANN and AANN data for Enthalpy, SHV region a) all data b) 
zoom in beginning data c) zoom in last data.

Figure 11. Test data (Entropy, SHV region) regression graph for ANN and AANN (ABC-ANN).
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a predefined activation function to calculate the neurons’ output. In this sense, 
the correct selection of the activation functions leads to both the modeling 
accuracy of the ANN and the prolongation of the time to obtain the para-
meters in the modeling. The developed adaptive model updates these func-
tions dynamically per each layer. In this developed model, in order to define 
the optimal combination of the activation function of neurons, the ABC 
algorithm has been used as a heuristic search unit. The developed model has 
been applied to test data and the results obtained have been compared with 
classical ANN results. The main metric of the performance of the developed 

Figure 12. Comparison of measured, ANN and AANN data for Entropy, SHV region a) all data b) 
zoom in beginning data c) zoom in last data.
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model is R2 and it is closer to one. The other metrics show that the AANN 
gives a better performance than the classical ANN. The improvements of 
percentage error reduction (IPER) are improved by AANN. Thus, empirical 
equations of the thermodynamic properties of the R404a calculate more 
accurately. In further studies, if the thermodynamic properties are unknown, 
modeling can be performed with less experimentation by using a heuristic- 
based algorithm to develop properties (instead of the Mollier Chart). Deep 
learning-based neural networks or derivatives can be studied in the general 
modeling of gases.
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