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Abstract 
 
In this paper, based on the interval grouped data, Bayesian approach is used to obtain estimator 
for the Weibull scale parameter and some lifetime such as the reliability and hazard functions. 
The estimation procedures have been developed and modified under squared error loss function 
(SELF) and general entropy loss function (GELF). The estimators are derived using the inverted 
gamma conjugate prior. Credible intervals and high posterior density (HPD) credible intervals 
are also obtained. Prediction for the future number of failures in the corresponding intervals is 
presented. Finally, real life example is applied to illustrate the performance of the estimation 
procedures. 

Keywords:  Weibull distribution; interval grouped data; bayesian estimation; loss functions; high 
posterior density estimator; credible intervals; Prediction. 

 
1 Introduction 
 
The Weibull distribution has been extensively used in life testing and reliability studies. Initially, 
it was proposed by Weibull [1] for describing the fatigue failures from the wear out materials. 
Lieblein and Zelen [2] have used the model for the ball bearing failures. Recently, the Weibull 
statistics have become the most popular to describe the breakdown events in solid dielectrics [3]. 
Weibull distribution also provides a good model for lives of electrical and mechanical components 
or systems [4]. Reliability and survival analysis based on the weibull distribution are applied and 
discussed by many authors [5-9]. 
 
The density function for the Weibull distribution with parameters βα ,  is given by 
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Hence, the hazard rate and the reliability functions are given respectively by 
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In the normal used conditions, the inspection units have long time for failure. Thus, having a 
complete failure data set is costly and time consuming. For this reason, censored life testing 
experiments are performed either by terminating the life test at a pre-assigned fixed single time, 

say *T  to have "Type I" censored data or after a pre-assigned number of failures at the random 
variable time )(rt to have "Type II" censored data. Using both types of censoring, progressively 

censored data may be obtained when at different stages of the experiment; some of the surviving 
units remaining are censored from further observation. Examples are doubly, progressive type I 
and type II and hybrid progressive type I and type II censored data.  
 
In other situations when continuous monitoring is not feasible, the intermittent inspection life 
testing is the only probable procedure by testing the failure units periodically. In the reliability and 
survival data analysis, the data obtained from the intermittent inspection are often called interval 
grouped data. Hence, the sample space of the life testing can be partitioned in different ways of 
selecting the end points to achieve the experimenter intention, the range and the source from 
which the data are collected. Interval grouped data are widely used in survival and reliability 
analysis [10-13].  
 
Using different types of failure time's data, many researches are devoted for estimating the 
Weibull parameters. Nicholas et al. [14] has proved the uniqueness of the maximum likelihood 
estimators obtained from a complete data. He also presented a regression method approach using 
both complete and censored data. Using the censored data, maximum likelihood and least square 
regression estimators are applied to the Weibull parameters [15]. Nadarajah [16] has used 
progressively "Type II" censored data for the moments of the Weibull distribution. Kundu [17] 
presents maximum likelihood and Bayesian inference procedures for the parameters when the data 
are mixture of "Type I" and "Type II" censoring schemes. Other referees of interest may be found 
in Varian [18], Berger and Sun [19], Thompson and Basu [20], Zhang et al. [21], Chen et al. [22].  
 

In order to select a single valueδ as the Bayesian estimator ofθ , a loss function must be 
specified. A frequently used symmetric loss function is the squared error loss function (SELF) 
defined by 

                              
2

s )();(L δ−θ=δθ                                                                        (4) 

 
Hence, the corresponding Bayesian estimator is the posterior mean [23]. 
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In many practical situations, it appears more realistic to express the loss function in terms of the 

ratio 
θ
δ

. In this case, a useful symmetric loss function is the general entropy loss function 

(GELF) proposed by Calabria and Pulcini [24] defined by 
 

                                               
1)log()();(L m

g −
θ
δθ−

θ
δ=δθ                                         (5) 

 
Whose minimum occurs at θδ = . This loss function is a generalization of the entropy loss 
which used by many authors [25-26]. Hence, the Bayesian estimator under GELF is obtained by 
 

                              
( )m

1
m~Bg )(E

−
−

Π θ=θ                                                                              (6)  

 

where Π~  is the corresponding posterior. 

 

2. Likelihood, Prior and Posterior 
 
Suppose that the lifetime T follow the Weibull distribution ( ),βθ  and assume the time scale 

line is divided into intervals by the constant inspection times ,..,k2,1j,a j = . Assuming 0a0 =
and ∞=+1ka , then the corresponding intervals are expressed as

),[),,[,,...),[,),0[ 1121211 ∞==== +− kkkkk aIaaIaaIaI . If n  units are put 

on the test for failure and the experimenter intermittently records the failure data which consists of 

the number of failures 
jf in the intervals 1k...,2,1j,I j +=  then the probability of failure in the 

corresponding intervals are 
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A fundamental element in the Bayesian estimation is to specify a respective prior for the indexed 
parameter. In this research, we adopt the natural conjugate prior density for the Weibull scale 
parameter, namely the inverted gamma prior given by  
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)(
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b
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b a
a

θ
θθ                                                         (9) 

 
The mean and the variance of the above prior are  
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if 0b,0a == , then we get the non-informative prior. 
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To obtain the integral in the denominator of (12), ∏
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denominator of (12) and hence, the best posterior approximation can be given (Appendix 1) by 
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Using the transformations: 
 

                   1)t(R0,
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        (14) 

 
The posterior functions for both the hazard and the reliability functions are readily derived. 
 

3. Bayesian Estimation 
  
In this section, based on the interval grouped data, the Bayesian and the HPD estimators for the 

parameter θ are obtained and modified. Under SELF, the Bayesian estimator is given by the 
mean of the posterior, define:  
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and taking the mean of )G,|( βθΠ , the Bayesian estimator of θ  under SELF is given from the 

following formula. 
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and under GELF  of shape parameter m, the Bayesian estimator  
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To base the estimation on the sufficient statistics for θ  given the interval grouped data 
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hence, Bayesian estimator under SELF is 
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and the corresponding Bayesian estimator under GELF is 

                                                      m

1
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++Γ=θ                                        (20) 

Mathematically, since the estimators in (19) and (20) are in closed form, they are sufficient for 
computing and modifications. 
 
If it is accepted for some specific loss function, the estimation can be based on the maximum 
likelihood principle. In the Bayesian inference, this leads to the mode of the posterior density or 

the HPD estimator. Since the posterior defined in (14) is unimodal, the HPD estimator of θ 

denoted by HPDθ ,  can be obtained by solving the equation 

 

 

                       

0
)1ra(S

)
S

exp(
2

)1ra( =








θ
++−

θ
θ

θ
− ++−

                                          (21) 
 
This implies, the HPD estimator is given by 
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using the transformations in (14), the Bayesian estimators for the hazard rate and the reliability 
functions under SELF at a given specified t are respectively 
 

                     0t,
tS

S
)t(R,

S

t)ra(
)t(h

ra

s

1

s >








+
=+β=

+

β

−β
                 (23) 

 
Also, the Bayesian estimators for the hazard rate, and the reliability functions under GELF at a 
given specified time t are respectively 
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4. Credible Intervals 
 
Another common Bayesian inference to obtain intervals ]C,C[ 21  

for the unknown parameterθ is 

probably to lie. Based on the posterior distribution, the interval
 ]C,C[ 21

 is said to be a )%1( α−
credible interval forθ if  
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In choosing a credible interval forθ , it is usually desirable to minimize its size subject to the 
condition (25) which requires 
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an interval ]C,C[ 21
 which simultaneously satisfies (25) and (26) is called the )%1( α−  HPD 

credible interval. Substituting for )|( GθΠ  from (18) and using the integral transform 
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Implies HPD credible intervals can be obtained by choosing 

21 C,C  that satisfied the following 

two equations, simultaneously 
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−    is the incomplete gamma function 

 
Using the transformations in (14), credible intervals and HPD credible intervals for the hazard and 
the reliability functions at a pre-given time t can be derived.  
 

5. Prediction 
 
In the Bayesian frame work related to life testing experiments, prediction is mainly concern with 
the future order failure time )(rt . In this research, we approach the prediction for the future 
number of failures in a pre-given interval.  
 
Assume a new sample of size N is put on the test for failure, if the corresponding intervals 

),[),,[,,...),[,),0[ 1121211 ∞==== +− kkkkk aIaaIaaIaI  are still fixed and the 

number of failures 1k,...,2,1j,f j +=  in these intervals for the pre sample of size n are given, 

then the distribution for each of the new number of failures 
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 1k,...,2,1j,f *
j +=  for a new sample of size N is binomial ))(,( θjPNNNN where

 
)(Pj θ  is as 

defined in (7). This implies the predictive posterior of *
jf  which is given by 
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In particular, the predictive posterior of *
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This implies, the expected prediction value of 11 , +kff  are 
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6. Application and Conclusion 
 
To illustrate the performance of the Bayesian inference, real life example is presented in this 
section [27]. The data represent number of million revolutions before failure for 23 ball bearings 
dividing each by 17. The data are as follows: 
 
1.05, 1.70, 1.94, 2.44, 2.48, 2.68, 2.85, 3.05, 3.06, 3.18, 3.27, 3.99, 4.04, 4.04, 4.05, 4.95, 5.48, 
5.80, 6.18, 6.23, 7.52, 7.53, 10.20. 
 
Since the interval grouped data have specific loss of information about the exact failure times, the 
obtained Bayesian estimator derived in this paper are compared with the maximum likelihood 
estimator using the complete ungrouped data. The above ungrouped data are fit to the Weibull 
distribution by the maximum likelihood estimation method using Minitab with 95% confidence 
interval. The corresponding maximum likelihood estimators using the complete ungrouped data 

for the scale and the shape parameters are 10185.2ˆ,81615.4ˆ == βα  implies the value of θ ,
 

2228.27ˆ
mle =θ . Then the data are grouped into intervals of fixed length = 1.5, This length is 

probable to the above data range to terminate the experiment at the times =ka 4.5, 6 and 7.5 to 

have 3,4,5 intervals. Two cases for the informative priors are considered. In the first case 
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assuming 10)var( =θ  and in the second case 5)var( =θ . In both cases, the prior mean is 

assumed to satisfy 2228.27ˆ)( ==Π mleE θθ . Thus, the available prior information indicates a= 

76.108, b= 2044.65 for the first case and a= 150.2161, b= 4062.08 for the second. For the general 

loss the value of m is fixed to be 2 in both cases. The Bayesian estimators SBθ , GBθ  and 

HPDθ are computed assuming the end interval points =ka 4.5, 6 and 7.5 using equations 

(19), (20) and (22) and their efficiencies is computed as the ratio of their values to  
mleθ̂ . 90% 

symmetric Credible Intervals are derived using (27) and (28). The predicted values for the number 
of failures are also computed using (30) and (31) as illustrated in Tables 1 and 2. 
 

Table 1. Case 1 performance with a= 76.108, and b= 2044.65 
 

ja  
SBθ  efficiency 

GBθ  

efficiency 
HPDθ  efficiency 90% 

Credible 
Interval 

Real and Predicted 
value s of 

1+kf
          

1
*

+kf  

4.5 
6 
7.5 

24.5267    90.09% 
24.6645    90.60% 
26.3243    96.69% 

24.1254  88.62% 
24.2738  89.16% 
25.9160  95.19% 

23.9941    88.14% 
24.1459    88.69% 
25.7822    94.71% 

(20.60,29.40) 
(20.75,29.33) 
(22.55,29.21) 

8               7.35 
5               4.42 
3               2.85 

 
Table 2. Case 2 performance with a= 150.2161, and b= 4062.08 

 

ja  
SBθ efficiency GBθ  efficiency HPDθ  efficiency 90% 

Credible 
Interval 

Real and Predicted 
values  of 

1+kf
          

1
*

+kf  

4.5 
6 
7.5 

25.7434    94.55% 
26.2696    96.49% 
27.2000    99.91% 

25.5105  93.71% 
25.5691  93.92% 
26.4832  97.28% 

25.4336    93.42% 
25.9535    95.33% 
26.2312    96.35% 

(22.62,29.24) 
(22.70,29.23) 
(23.53,29.20) 

8            7.76 
5            4.71 
3            2.96 

 
Despite there is a considerable loss of information about the exact failure times. From the results 
in Tables 1 and 2, Bayesian inference based on the interval grouped data show significance 
efficiency as compared to the maximum likelihood estimation using the complete ungrouped data. 
This efficiency increases as the number of intervals increases. This result is satisfied, as the 
number of interval increases, the loss of information about the exact failure times decreases. The 
available prior information clearly affects the accuracy of the Bayesian estimates. This depends on 
the variance of the indicated priors. The developed computations for both the posterior and the 
corresponding estimators and prediction gave a high precision and thus, can be used for any 
further inference. 
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Appendix 1 
 
Proof for the posterior approximation in equations (12) and (13)   
Let; 
 
�1 = �����	
 � − 	
���, � = 1,2, … , ��    
�2 = �	���	
� − 	
���, � = 1,2, … , �� 

� = 	�	�����	
� − 	
���, � = 1,2, … , �� = ∑ �	
� − 	
����
�� �   
This implies, 
 

1 − � !
" ≤ 1 − �$%&'(%&()'*

"  ≤ 1 − �+
" ≤ 1 − � )

"  , � = 1,2, … , � 
 
This implies, 
 

, (1 − � !
"

�

�� )/& ≤ , 01 − �$%&'(%&()'*

"  1
/&�


�� ≤ , $1 − �+
"*/&�


��  

                                                                                                         ≤ , (1 − � )
" )/&2

3��   
 

Thus, substitute     for    ∏ 01 − �$%&'(%&()'*
"  1

/&
�
��        

 

∏ (1 − � !
"�
�� )/&          in the denominator  of   (12) 

∏ (1 − � )
" )/&23��           in the numerator  of   (12) 

 
We will have a lower bound for the posterior in (12) which gives a lower bound estimate for the 
Bayesian estimator. 

Similarly, substitute     for    ∏ 01 − �$%&'(%&()'*
"  1

/&
�
��     

    

∏ (1 − � )
"�
�� )/&          in the denominator of   (12) 

∏ (1 − � !
" )/&23��           in the numerator  of (12) 

 
Then, we will have an upper bound for the posterior which gives an upper bound estimate for the 
Bayesian estimator. 
 
Therefore to have a best approximation estimate for the posterior and the Bayesian estimator, 
substitute for 
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∏ 01 − �$%&'(%&()'*
"  1

/&
�
��   , ∏ $1 − �+

"*/&�
��  in both numerator and denominator 

of   (12) and set    � = � − 5�+1 and use the binomial expansion 
 

∏ $1 − �+
"*/&�
�� = (1 − �7)8/9:) =

                                                                 ∑ (−1)
(� − 5�;��8/9:)
�< )�
7 

 
Then, simplify, you will have exactly equation (13). 
 

 Note: )exp(xex =  
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