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Abstract

In this paper, based on the interval grouped data, Bayapjaoach is used to obtain estimator
for the Weibull scale parameter and some lifetime ssctha reliability and hazard functions.
The estimation procedures have been developed and modifiedsgnuadeed error loss functign
(SELF) and general entropy loss function (GELF). The edtins are derived using the inverted
gamma conjugate prior. Credible intervals and high postddosity (HPD) credible intervals
are also obtained. Prediction for the future number dfifiesl in the corresponding intervals|is
presented. Finally, real life example is applied to illistrthe performance of the estimation
procedures.
Keywords: Weibull distribution; interval grouped data; bayesian estimatloss functions; high
posterior density estimator; credible intervals; Prediatio

1 Introduction

The Weibull distribution has been extensively used in lifertgsind reliability studies. Initially,
it was proposed by Weibull [1] for describing the fatigadures from the wear out materials.
Lieblein and Zelen [2] have used the model for the badlring failures. Recently, the Weibull
statistics have become the most popular to describe éaédywn events in solid dielectrics [3].
Weibull distribution also provides a good model for lives of elealtiand mechanical components
or systems [4]. Reliability and survival analysis basadhe weibull distribution are applied and
discussed by many authors [5-9].

The density function for the Weibull distribution with parders a, £ is given by
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B
f(t)=gt‘3’1 expéé ) ;t>0;6>0;8>0 (1)

Hence, the hazard rate and the reliability functioesgiven respectively by

h(t):StB_l t>0 )
_B
R(t) = eXp(?) , t>0 (3)

In the normal used conditions, the inspection units have long tor failure. Thus, having a
complete failure data set is costly and time consumimyg.tkis reason, censored life testing
experiments are performed either by terminating thetdif at a pre-assigned fixed single time,

sayT* to have "Type I" censored data or after a pre-assigonetber of failures at the random
variable timet(r)to have "Type II" censored data. Using both types of aémg, progressively

censored data may be obtained when at different stages ekpbement; some of the surviving
units remaining are censored from further observatioantptes are doubly, progressive type |
and type Il and hybrid progressive type | and type |l cestsdata.

In other situations when continuous monitoring is not feastble,intermittent inspection life

testing is the only probable procedure by testing the &uiuits periodically. In the reliability and

survival data analysis, the data obtained from the intemmiitspection are often called interval
grouped data. Hence, the sample space of the life destim be partitioned in different ways of
selecting the end points to achieve the experimenter interttienrange and the source from
which the data are collected. Interval grouped datawddely used in survival and reliability

analysis [10-13].

Using different types of failure time's data, manyeegshes are devoted for estimating the
Weibull parameters. Nicholas et al. [14] has proved thigueness of the maximum likelihood
estimators obtained from a complete data. He also pesbantegression method approach using
both complete and censored data. Using the censorednatanum likelihood and least square
regression estimators are applied to the Weibull paramgfé]. Nadarajah [16] has used
progressively "Type II" censored data for the moments ofWegbull distribution. Kundu [17]
presents maximum likelihood and Bayesian inference procedurdgefparameters when the data
are mixture of "Type I" and "Type II" censoring schemetheDreferees of interest may be found
in Varian [18], Berger and Sun [19], Thompson and Basu [284ng et al. [21], Chen et al. [22].

In order to select a single valdeas the Bayesian estimator ®f, a loss function must be
specified. A frequently used symmetric loss function isdtyeared error loss function (SELF)
defined by

L<(6;3) = (8-05)? (@)

Hence, the corresponding Bayesian estimator is thegasmean [23].
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In many practical situations, it appears more realistiexpress the loss function in terms of the
0
ratio 5 In this case, a useful symmetric loss function is ¢feneral entropy loss function

(GELF) proposed by Calabria and Pulcini [24] defined by
L4(8;0) = (g)m - Glog(g) -1 )

Whose minimum occurs a =& . This loss function is a generalization of the entropsslo
which used by many authors [25-26]. Hence, the Bayesiimator under GELF is obtained by

-1

Gy HE @) ®

where ] is the corresponding posterior.

2. Likelihood, Prior and Posterior

Suppose that the lifetimd follow the Weibull distribution @, B) and assume the time scale
line is divided into intervals by the constant inspectimet".aj , j =12,..k. Assuminga, = 0
and g, =0 then  the corresponding intervals  are expressed as

=00 &) , I,=[a, &) ,.., I, =[a., &), ln =[a, «). If n units are put
on the test for failure and the experimenter intermittenettyrds the failure data which consists of

the number of failure$j in the intervalsl i j=12...,k +1 then the probability of failure in the

corresponding intervals are

B —g.P

) - oy N = N a; 7
P;(8,B) =R(@j-1) ~R(@;) =exp( 5 ) — exp( 5 ) (@)

_ ‘aj—Bl ajB-ajﬁl o
= exp( 8 )l—exp(T) Jj=12,..,k+1

Since ki:lfj -n %P ©) =1 the likelihood function given the interval grouped data
= =
is
k+1
‘Z ai 1] ) B (8)
L(6IB.G) D expﬁ)n[l exp%)}
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A fundamental element in the Bayesian estimation ipécify a respective prior for the indexed
parameter. In this research, we adopt the natural coejygair density for the Weibull scale
parameter, namely the inverted gamma prior given by

— ba a+l) (> 9
n(e)_r(a) p( ) ,a>0,b>0 9)

The mean and the variance of the above prior are

E@) =L b>0 ,a>1 (10)
a-1

V(G):bZ{(l)zl(z)J b>0,a>2 (11)
a-1)°@-

if a=0,b =0, then we get the non-informative prior.

k+1 .. . . .
Setting S= z ajB f +b and combining (8) and (9), the posterior functiorBois

_( _a—lﬁ)

Y exp(—> )|_! (1-exp¢

( g _aj—lﬂ)
[

j 7 expt> )|‘j (1-exp(

)"
ne|c) =

(12)
) "dé

To obtain the integral in the denominator of (lZIj—I 1-ex |OE( 84 )) is

=L

approximated by substituting the average—= Z(aj a] B) in both numerator and
1-1
denominator of (12) and hence, the best posterior approximation ¢avebgAppendix 1) by

S ()1 g exp U2 *S “Z+S)
ne|c)=—:="_ (13)

()(1)' 6= exp(——")dé
z J‘ (a+) (JZ +S

j=0 |

k
Where,
r :ij :n_fk+1
=1
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Using the transformations:

B-1 B-1
BT >0 t

, 0= O<R()<1 4
h(t) R(t)(log(R(1))?

The posterior functions for both the hazard and the reliplilnctions are readily derived.
3. Bayesian Estimation

In this section, based on the interval grouped data, the Bayasd the HPD estimators for the

parametere are obtained and modified. Under SELF, the Bayesian estirsatgiven by the
mean of the posterior, define:

W(r,h,w) = Zr:(;)(—lj W (15)
i=0

and taking the mean 4fl(0|[3,G), the Bayesian estimator & under SELF is given from the
following formula.

_ WY(r,jZ+Sa-1 (16)
@-D¥(r,jz+ Sa)

SB

and under GELF of shape parameter m, the Bayesian estimato

-1
r(a+m)),'nl W(r,jz + Sa+m)m an
@) W(r,jz+Sa)

Bep = (

To base the estimation on the sufficient statistics @ogiven the interval grouped data
k+1

, the posterior can be approximated by
s=2 a5 fj+b
=
=@+ gy j) (18)
n(eIp.G) = g
j 6~ @* ™D exp(—2) d6
0 0
hence, Bayesian estimator under SELF is
S
Oqp ——— (19)
SBa+r-1
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and the corresponding Bayesian estimator under GELF is
-1

B =S Fa+r+m)m (20)
M@a+r)

Mathematically, since the estimators in (19) and (20)imrdosed form, they are sufficient for
computing and modifications.

If it is accepted for some specific loss function, gsimation can be based on the maximum
likelihood principle. In the Bayesian inference, théads to the mode of the posterior density or

the HPD estimator. Since the posterior defined in (14ynisnodal, the HPD estimator &
denoted byeHPD' can be obtained by solving the equation

e e
6 6 6 21)

This implies, the HPD estimator is given by

S 22)

3] =
HPD a+r+1

using the transformations in (14), the Bayesian estimatorthé hazard rate and the reliability
functions under SELF at a given specified t are respygt

_B@+ntt? _( S T” 23)
ho(t) =", R.(t) = ,1>0
o(t) S 0= S

Also, the Bayesian estimators for the hazard rate,the reliability functions under GELF at a
given specified time t are respectively

-1 -1

_ il r%m F@+r-m)m _ S m (24)
hg(t) =Bt S (rwa+r)j Rg(t) (S—rnﬁ“lj

4. Credible Intervals

Another common Bayesian inference to obtain inter[ql,gz] for the unknown paramet6ris
probably to lie. Based on the posterior distribution, therial [C.C) is said to be 1 — a )%
credible interval foB if
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G
[n@|c)do=1-a (25)
G

In choosing a credible interval fBr, it is usually desirable to minimize its size subjecthie
condition (25) which requires

NG 16) =n(c, |6) (26)

an interval[q,cz] which simultaneously satisfies (25) and (26) is called(the a )% HPD

credible interval. Substituting fdrl (€ | G) from (18) and using the integral transform
s

o _ h
J g~ (@tr+l) exp(?S)de =g @) .[W @01 expw)dw
h 0

Implies HPD credible intervals can be obtained by choog'ﬂg;z that satisfied the following
two equations, simultaneously

S S 27)
lq(—.,a+r)-l,(—,a+r)=1-a (
g Cl g C2
Cl —(atr+l) _ 1 1 (28)
- zexpS(—-—
(Cz) IOS(C1 Cz))
1 X . : ,
where, | g (X, y) - r(y) Ity—l exp(—t) dt s the incomplete gamma function
0

Using the transformations in (14), credible intervals aR®DHredible intervals for the hazard and
the reliability functions at a pre-given time t can bewal.

5. Prediction

In the Bayesian frame work related to life testing experits, prediction is mainly concern with
the future order failure timé(r). In this research, we approach the prediction for the future
number of failures in a pre-given interval.

Assume a new sample of sidéis put on the test for failure, if the corresponding irdaésv
L=1[0, &) , I,=[a, &) ,..., |, =[a_, &) | =[a, ) are still fixed and the
number of failuresfj ,j=12,....k +1in these intervals for the pre sample of size n areng

then the distribution for each of the new number of failures
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f;, j=12,....k +1 for a new sample of size I binomial (N, P, (8)) wherepj(e) is as

defined in (7). This implies the predictive posteriorféfwhich is given by

I'I*(fj* =x)=—2 _ o
J.g‘(a+r+1) expé)dﬁ
0 g

In particular, the predictive posterior Offl*, y are given by substituting

fk+1

_aB
P1(6) =1—eXp(%) Pe1(6) = exp(—X k) for P;(6) in (29), respectively.

This implies, the expected prediction valuefpf f,,, are

k+1

)= S Xg 'S r(a+r+x) 30
0 e e o >
NS S X gy S*'T(a+r+x) a1
F e = r(a+r>z( ECETTA I o

6. Application and Conclusion

To illustrate the performance of the Bayesian infereneal life example is presented in this
section [27]. The data represent number of million revahgtibefore failure for 23 ball bearings
dividing each by 17. The data are as follows:

1.05, 1.70, 1.94, 2.44, 2.48, 2.68, 2.85, 3.05, 3.06, 3.18, 3.27,43049,4.04, 4.05, 4.95, 5.48,
5.80, 6.18, 6.23, 7.52, 7.53, 10.20.

Since the interval grouped data have specific loss of infoomatbout the exact failure times, the
obtained Bayesian estimator derived in this paper are cothpétk the maximum likelihood
estimator using the complete ungrouped data. The above ungrdatzedre fit to the Weibull
distribution by the maximum likelihood estimation method gditinitab with 95% confidence
interval. The corresponding maximum likelihood estimatoiegughe complete ungrouped data

for the scale and the shape parametersfHFél816l5é=2101€ implies the value of0,
émle = 27.2228. Then the data are grouped into intervals of fixed length =ThiS length is

probable to the above data range to terminate the experantrg timesak =45,6and7.5t0
have 3,4,5 intervals. Two cases for the informative prames considered. In the first case
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assumingvar(e) =10 and in the second cagar(@) =5. In both cases, the prior mean is

assumed to satisfy, (6) = ém,e = 27.2228 Thus, the available prior information indicates
76.108, b= 2044.65 for the first case and a= 150.2161, b= 4082.0& second. For the general

loss the value of m is fixed to be 2 in both cases. Bagesian estimatorQSB,GGB and
eHPD are computed assuming the end interval poBs=4.5, 6 and 7.5 using equations

(19), (20) and (22) and their efficiencies is computed aséatie of their values toémle. 90%

symmetric Credible Intervals are derived using (27) anll @& predicted values for the number
of failures are also computed using (30) and (31) asr#itest in Tables 1 and 2.

Table 1. Case 1 performance with a= 76.108, and b= 2044.65

a. 8., efficiency ) efficiency | 90% Real and Predicted
! SB GGB HPC y Credible value s of
efficiency Interval fra i
45 | 245267 90.09%| 24.1254 88.62% 23.9941 88.14%| (20.60,29.40)| 8 7.35
6 24.6645 90.60% 24.2738 89.16% 24.1459 88.69%| (20.75,29.33)| 5 4.42
7.5 | 26.3243 96.69%| 25.9160 95.19% 25.7822 94.71%| (22.55,29.21)| 3 2.85
Table 2. Case 2 performance with a= 150.2161, and b= 4062.08
a: | gepefficiency 0~p Efficiency | 0 efficiency | 90% Real and Predicted
I} ¥sB GB Y| PHPD Credible  |values of
I nterval fon fren
45 | 25.7434 94.55% 25.5105 93.71% 25.4336 93.42%| (22.62,29.24)8 7.76
6 26.2696 96.49% 25.5691 93.929%4 25.9535 95.33%| (22.70,29.23)|5 4.71
7.5 | 27.2000 99.91% 26.4832 97.28% 26.2312 96.35%]| (23.53,29.20)/3 2.96

Despite there is a considerable loss of information albeuexact failure times. From the results
in Tables 1 and 2, Bayesian inference based on the intgreaped data show significance
efficiency as compared to the maximum likelihood estiomatising the complete ungrouped data.
This efficiency increases as the number of intervalseames. This result is satisfied, as the
number of interval increases, the loss of information ablmiexact failure times decreases. The
available prior information clearly affects the accuracthefBayesian estimates. This depends on
the variance of the indicated priors. The developed ctatipns for both the posterior and the
corresponding estimators and prediction gave a high praceid thus, can be used for any
further inference.
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Appendix 1

Proof for the posterior approximation in equations (12) @3)
Let;

wl = min{(ajﬁ - aj_lﬁ),j =12,..,k}
w2 = max{(ajﬁ - a]-_lﬁ),j =1.2,..,k}

ke B_q. B
Z = avarge{(a;f — a;_,#),j =12, .k} = DEICELEY

. k
This implies,
w2 _(a;f-a;-1F) z w1
l1—-e 6 <1-—e¢ 7 <l-eo<l1l-e90,j=12..,k
Thisimplies,

Kk w2 K (jf-a;-1F)\ I k z\7j
R O
j=1 j=1 j=1

B k wi
< 1_[ 1—e"8)i
j=1

(o) \
. k N gt )
Thus, substitute  for Hj=1 <1 —e 6 )
w2 . .
k1 —e"e)i in the denominator of (12)
w1l
(1 —e o)) in the numerator of (12)

We will have a lower bound for the posterior in (12) whiives a lower bound estimate for the
Bayesian estimator.
fj

of ey 19)
Similarly, substitute  for H;;l <1 —e 0 )

.- e‘WTl)ff in the denominator of (12)

w2
[ —e o)) in the numerator of (12)

Then, we will have an upper bound for the posterior whichsgawveupper bound estimate for the
Bayesian estimator.

Therefore to have a best approximation estimate éptsterior and the Bayesian estimator,
substitute for
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(aff-aiP)\T _z\Ti
;-‘=1 (1 —e 7 ) Alj=1 (1 —e 9) in both numerator and denominator
of (12)andsetr=n— fk+1 and use the binomial expansion

k A VA f

) — - n— —
fa(1-e) = @-e )i =
N—fr+1 j n_fk+1 -jz
D GV G K

Then, simplify, you will have exactly equation (13).

Note: € = exp(X)
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